2007-10-27 11:17:01 +04:00
/* include/asm-sparc/dma.h
2005-04-17 02:20:36 +04:00
*
2007-10-27 11:17:01 +04:00
* Copyright 1995 ( C ) David S . Miller ( davem @ davemloft . net )
2005-04-17 02:20:36 +04:00
*/
# ifndef _ASM_SPARC_DMA_H
# define _ASM_SPARC_DMA_H
# include <linux/kernel.h>
# include <linux/types.h>
# include <asm/vac-ops.h> /* for invalidate's, etc. */
# include <asm/sbus.h>
# include <asm/delay.h>
# include <asm/oplib.h>
# include <asm/system.h>
# include <asm/io.h>
# include <linux/spinlock.h>
struct page ;
extern spinlock_t dma_spin_lock ;
2007-10-27 11:17:01 +04:00
static inline unsigned long claim_dma_lock ( void )
2005-04-17 02:20:36 +04:00
{
unsigned long flags ;
spin_lock_irqsave ( & dma_spin_lock , flags ) ;
return flags ;
}
2007-10-27 11:17:01 +04:00
static inline void release_dma_lock ( unsigned long flags )
2005-04-17 02:20:36 +04:00
{
spin_unlock_irqrestore ( & dma_spin_lock , flags ) ;
}
/* These are irrelevant for Sparc DMA, but we leave it in so that
* things can compile .
*/
# define MAX_DMA_CHANNELS 8
# define MAX_DMA_ADDRESS (~0UL)
# define DMA_MODE_READ 1
# define DMA_MODE_WRITE 2
/* Useful constants */
# define SIZE_16MB (16*1024*1024)
# define SIZE_64K (64*1024)
/* SBUS DMA controller reg offsets */
# define DMA_CSR 0x00UL /* rw DMA control/status register 0x00 */
# define DMA_ADDR 0x04UL /* rw DMA transfer address register 0x04 */
# define DMA_COUNT 0x08UL /* rw DMA transfer count register 0x08 */
# define DMA_TEST 0x0cUL /* rw DMA test/debug register 0x0c */
/* DVMA chip revisions */
enum dvma_rev {
dvmarev0 ,
dvmaesc1 ,
dvmarev1 ,
dvmarev2 ,
dvmarev3 ,
dvmarevplus ,
dvmahme
} ;
# define DMA_HASCOUNT(rev) ((rev)==dvmaesc1)
/* Linux DMA information structure, filled during probe. */
struct sbus_dma {
struct sbus_dma * next ;
struct sbus_dev * sdev ;
void __iomem * regs ;
/* Status, misc info */
int node ; /* Prom node for this DMA device */
int running ; /* Are we doing DMA now? */
int allocated ; /* Are we "owned" by anyone yet? */
/* Transfer information. */
unsigned long addr ; /* Start address of current transfer */
int nbytes ; /* Size of current transfer */
int realbytes ; /* For splitting up large transfers, etc. */
/* DMA revision */
enum dvma_rev revision ;
} ;
extern struct sbus_dma * dma_chain ;
/* Broken hardware... */
# ifdef CONFIG_SUN4
/* Have to sort this out. Does rev0 work fine on sun4[cmd] without isbroken?
* Or is rev0 present only on sun4 boxes ? - jj */
# define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev0 || (dma)->revision == dvmarev1)
# else
# define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1)
# endif
# define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1)
/* Main routines in dma.c */
extern void dvma_init ( struct sbus_bus * ) ;
/* Fields in the cond_reg register */
/* First, the version identification bits */
# define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */
# define DMA_VERS0 0x00000000 /* Sunray DMA version */
# define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */
# define DMA_VERS1 0x80000000 /* DMA rev 1 */
# define DMA_VERS2 0xa0000000 /* DMA rev 2 */
# define DMA_VERHME 0xb0000000 /* DMA hme gate array */
# define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */
# define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */
# define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */
# define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */
# define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */
# define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */
# define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */
# define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */
# define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */
# define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */
# define DMA_RST_BPP DMA_RST_SCSI /* Reset the BPP controller */
# define DMA_ST_WRITE 0x00000100 /* write from device to memory */
# define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */
# define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */
# define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */
# define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */
# define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */
# define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */
# define DMA_TERM_CNTR 0x00004000 /* Terminal counter */
# define DMA_SCSI_SBUS64 0x00008000 /* HME: Enable 64-bit SBUS mode. */
# define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */
# define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */
# define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */
# define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */
# define DMA_E_BURSTS 0x000c0000 /* ENET: SBUS r/w burst mask */
# define DMA_E_BURST32 0x00040000 /* ENET: SBUS 32 byte r/w burst */
# define DMA_E_BURST16 0x00000000 /* ENET: SBUS 16 byte r/w burst */
# define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */
# define DMA_BRST64 0x00080000 /* SCSI: 64byte bursts (HME on UltraSparc only) */
# define DMA_BRST32 0x00040000 /* SCSI/BPP: 32byte bursts */
# define DMA_BRST16 0x00000000 /* SCSI/BPP: 16byte bursts */
# define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */
# define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */
# define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */
# define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */
# define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */
# define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */
# define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */
# define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */
# define DMA_BPP_ON DMA_SCSI_ON /* Enable BPP dma */
# define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */
# define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */
# define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */
# define DMA_RESET_FAS366 0x08000000 /* HME: Assert RESET to FAS366 */
/* Values describing the burst-size property from the PROM */
# define DMA_BURST1 0x01
# define DMA_BURST2 0x02
# define DMA_BURST4 0x04
# define DMA_BURST8 0x08
# define DMA_BURST16 0x10
# define DMA_BURST32 0x20
# define DMA_BURST64 0x40
# define DMA_BURSTBITS 0x7f
/* Determine highest possible final transfer address given a base */
# define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL))
/* Yes, I hack a lot of elisp in my spare time... */
# define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR))
# define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR)))
# define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE))
# define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE)))
# define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB)))
# define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB)))
# define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV))
# define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr))
# define DMA_BEGINDMA_W(regs) \
( ( ( ( regs ) - > cond_reg | = ( DMA_ST_WRITE | DMA_ENABLE | DMA_INT_ENAB ) ) ) )
# define DMA_BEGINDMA_R(regs) \
( ( ( ( regs ) - > cond_reg | = ( ( DMA_ENABLE | DMA_INT_ENAB ) & ( ~ DMA_ST_WRITE ) ) ) ) )
/* For certain DMA chips, we need to disable ints upon irq entry
* and turn them back on when we are done . So in any ESP interrupt
* handler you * must * call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT
* when leaving the handler . You have been warned . . .
*/
# define DMA_IRQ_ENTRY(dma, dregs) do { \
if ( DMA_ISBROKEN ( dma ) ) DMA_INTSOFF ( dregs ) ; \
} while ( 0 )
# define DMA_IRQ_EXIT(dma, dregs) do { \
if ( DMA_ISBROKEN ( dma ) ) DMA_INTSON ( dregs ) ; \
} while ( 0 )
#if 0 /* P3 this stuff is inline in ledma.c:init_restart_ledma() */
/* Pause until counter runs out or BIT isn't set in the DMA condition
* register .
*/
2005-10-04 04:37:02 +04:00
static inline void sparc_dma_pause ( struct sparc_dma_registers * regs ,
2005-04-17 02:20:36 +04:00
unsigned long bit )
{
int ctr = 50000 ; /* Let's find some bugs ;) */
/* Busy wait until the bit is not set any more */
while ( ( regs - > cond_reg & bit ) & & ( ctr > 0 ) ) {
ctr - - ;
__delay ( 5 ) ;
}
/* Check for bogus outcome. */
if ( ! ctr )
panic ( " DMA timeout " ) ;
}
/* Reset the friggin' thing... */
# define DMA_RESET(dma) do { \
struct sparc_dma_registers * regs = dma - > regs ; \
/* Let the current FIFO drain itself */ \
sparc_dma_pause ( regs , ( DMA_FIFO_ISDRAIN ) ) ; \
/* Reset the logic */ \
regs - > cond_reg | = ( DMA_RST_SCSI ) ; /* assert */ \
__delay ( 400 ) ; /* let the bits set ;) */ \
regs - > cond_reg & = ~ ( DMA_RST_SCSI ) ; /* de-assert */ \
sparc_dma_enable_interrupts ( regs ) ; /* Re-enable interrupts */ \
/* Enable FAST transfers if available */ \
if ( dma - > revision > dvmarev1 ) regs - > cond_reg | = DMA_3CLKS ; \
dma - > running = 0 ; \
} while ( 0 )
# endif
# define for_each_dvma(dma) \
for ( ( dma ) = dma_chain ; ( dma ) ; ( dma ) = ( dma ) - > next )
extern int get_dma_list ( char * ) ;
extern int request_dma ( unsigned int , __const__ char * ) ;
extern void free_dma ( unsigned int ) ;
/* From PCI */
# ifdef CONFIG_PCI
extern int isa_dma_bridge_buggy ;
# else
# define isa_dma_bridge_buggy (0)
# endif
/* Routines for data transfer buffers. */
BTFIXUPDEF_CALL ( char * , mmu_lockarea , char * , unsigned long )
BTFIXUPDEF_CALL ( void , mmu_unlockarea , char * , unsigned long )
# define mmu_lockarea(vaddr,len) BTFIXUP_CALL(mmu_lockarea)(vaddr,len)
# define mmu_unlockarea(vaddr,len) BTFIXUP_CALL(mmu_unlockarea)(vaddr,len)
/* These are implementations for sbus_map_sg/sbus_unmap_sg... collapse later */
BTFIXUPDEF_CALL ( __u32 , mmu_get_scsi_one , char * , unsigned long , struct sbus_bus * sbus )
BTFIXUPDEF_CALL ( void , mmu_get_scsi_sgl , struct scatterlist * , int , struct sbus_bus * sbus )
BTFIXUPDEF_CALL ( void , mmu_release_scsi_one , __u32 , unsigned long , struct sbus_bus * sbus )
BTFIXUPDEF_CALL ( void , mmu_release_scsi_sgl , struct scatterlist * , int , struct sbus_bus * sbus )
# define mmu_get_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_get_scsi_one)(vaddr,len,sbus)
# define mmu_get_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_get_scsi_sgl)(sg,sz,sbus)
# define mmu_release_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_release_scsi_one)(vaddr,len,sbus)
# define mmu_release_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_release_scsi_sgl)(sg,sz,sbus)
/*
* mmu_map / unmap are provided by iommu / iounit ; Invalid to call on IIep .
*
* The mmu_map_dma_area establishes two mappings in one go .
* These mappings point to pages normally mapped at ' va ' ( linear address ) .
* First mapping is for CPU visible address at ' a ' , uncached .
* This is an alias , but it works because it is an uncached mapping .
* Second mapping is for device visible address , or " bus " address .
* The bus address is returned at ' * pba ' .
*
* These functions seem distinct , but are hard to split . On sun4c ,
* at least for now , ' a ' is equal to bus address , and retured in * pba .
* On sun4m , page attributes depend on the CPU type , so we have to
* know if we are mapping RAM or I / O , so it has to be an additional argument
* to a separate mapping function for CPU visible mappings .
*/
BTFIXUPDEF_CALL ( int , mmu_map_dma_area , dma_addr_t * , unsigned long , unsigned long , int len )
BTFIXUPDEF_CALL ( struct page * , mmu_translate_dvma , unsigned long busa )
BTFIXUPDEF_CALL ( void , mmu_unmap_dma_area , unsigned long busa , int len )
# define mmu_map_dma_area(pba,va,a,len) BTFIXUP_CALL(mmu_map_dma_area)(pba,va,a,len)
# define mmu_unmap_dma_area(ba,len) BTFIXUP_CALL(mmu_unmap_dma_area)(ba,len)
# define mmu_translate_dvma(ba) BTFIXUP_CALL(mmu_translate_dvma)(ba)
# endif /* !(_ASM_SPARC_DMA_H) */