linux/Documentation/security/siphash.rst

190 lines
6.4 KiB
ReStructuredText
Raw Normal View History

===========================
SipHash - a short input PRF
===========================
:Author: Written by Jason A. Donenfeld <jason@zx2c4.com>
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
SipHash is a cryptographically secure PRF -- a keyed hash function -- that
performs very well for short inputs, hence the name. It was designed by
cryptographers Daniel J. Bernstein and Jean-Philippe Aumasson. It is intended
as a replacement for some uses of: `jhash`, `md5_transform`, `sha_transform`,
and so forth.
SipHash takes a secret key filled with randomly generated numbers and either
an input buffer or several input integers. It spits out an integer that is
indistinguishable from random. You may then use that integer as part of secure
sequence numbers, secure cookies, or mask it off for use in a hash table.
Generating a key
================
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
Keys should always be generated from a cryptographically secure source of
random numbers, either using get_random_bytes or get_random_once::
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
siphash_key_t key;
get_random_bytes(&key, sizeof(key));
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
If you're not deriving your key from here, you're doing it wrong.
Using the functions
===================
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
There are two variants of the function, one that takes a list of integers, and
one that takes a buffer::
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
u64 siphash(const void *data, size_t len, const siphash_key_t *key);
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
And::
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
u64 siphash_1u64(u64, const siphash_key_t *key);
u64 siphash_2u64(u64, u64, const siphash_key_t *key);
u64 siphash_3u64(u64, u64, u64, const siphash_key_t *key);
u64 siphash_4u64(u64, u64, u64, u64, const siphash_key_t *key);
u64 siphash_1u32(u32, const siphash_key_t *key);
u64 siphash_2u32(u32, u32, const siphash_key_t *key);
u64 siphash_3u32(u32, u32, u32, const siphash_key_t *key);
u64 siphash_4u32(u32, u32, u32, u32, const siphash_key_t *key);
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
If you pass the generic siphash function something of a constant length, it
will constant fold at compile-time and automatically choose one of the
optimized functions.
Hashtable key function usage::
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
struct some_hashtable {
DECLARE_HASHTABLE(hashtable, 8);
siphash_key_t key;
};
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
void init_hashtable(struct some_hashtable *table)
{
get_random_bytes(&table->key, sizeof(table->key));
}
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input)
{
return &table->hashtable[siphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)];
}
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
You may then iterate like usual over the returned hash bucket.
Security
========
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
SipHash has a very high security margin, with its 128-bit key. So long as the
key is kept secret, it is impossible for an attacker to guess the outputs of
the function, even if being able to observe many outputs, since 2^128 outputs
is significant.
Linux implements the "2-4" variant of SipHash.
Struct-passing Pitfalls
=======================
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
Often times the XuY functions will not be large enough, and instead you'll
want to pass a pre-filled struct to siphash. When doing this, it's important
to always ensure the struct has no padding holes. The easiest way to do this
is to simply arrange the members of the struct in descending order of size,
and to use offsetendof() instead of sizeof() for getting the size. For
performance reasons, if possible, it's probably a good thing to align the
struct to the right boundary. Here's an example::
const struct {
struct in6_addr saddr;
u32 counter;
u16 dport;
} __aligned(SIPHASH_ALIGNMENT) combined = {
.saddr = *(struct in6_addr *)saddr,
.counter = counter,
.dport = dport
};
u64 h = siphash(&combined, offsetofend(typeof(combined), dport), &secret);
Resources
=========
siphash: add cryptographically secure PRF SipHash is a 64-bit keyed hash function that is actually a cryptographically secure PRF, like HMAC. Except SipHash is super fast, and is meant to be used as a hashtable keyed lookup function, or as a general PRF for short input use cases, such as sequence numbers or RNG chaining. For the first usage: There are a variety of attacks known as "hashtable poisoning" in which an attacker forms some data such that the hash of that data will be the same, and then preceeds to fill up all entries of a hashbucket. This is a realistic and well-known denial-of-service vector. Currently hashtables use jhash, which is fast but not secure, and some kind of rotating key scheme (or none at all, which isn't good). SipHash is meant as a replacement for jhash in these cases. There are a modicum of places in the kernel that are vulnerable to hashtable poisoning attacks, either via userspace vectors or network vectors, and there's not a reliable mechanism inside the kernel at the moment to fix it. The first step toward fixing these issues is actually getting a secure primitive into the kernel for developers to use. Then we can, bit by bit, port things over to it as deemed appropriate. While SipHash is extremely fast for a cryptographically secure function, it is likely a bit slower than the insecure jhash, and so replacements will be evaluated on a case-by-case basis based on whether or not the difference in speed is negligible and whether or not the current jhash usage poses a real security risk. For the second usage: A few places in the kernel are using MD5 or SHA1 for creating secure sequence numbers, syn cookies, port numbers, or fast random numbers. SipHash is a faster and more fitting, and more secure replacement for MD5 in those situations. Replacing MD5 and SHA1 with SipHash for these uses is obvious and straight-forward, and so is submitted along with this patch series. There shouldn't be much of a debate over its efficacy. Dozens of languages are already using this internally for their hash tables and PRFs. Some of the BSDs already use this in their kernels. SipHash is a widely known high-speed solution to a widely known set of problems, and it's time we catch-up. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-08 15:54:00 +03:00
Read the SipHash paper if you're interested in learning more:
https://131002.net/siphash/siphash.pdf
-------------------------------------------------------------------------------
===============================================
HalfSipHash - SipHash's insecure younger cousin
===============================================
:Author: Written by Jason A. Donenfeld <jason@zx2c4.com>
On the off-chance that SipHash is not fast enough for your needs, you might be
able to justify using HalfSipHash, a terrifying but potentially useful
possibility. HalfSipHash cuts SipHash's rounds down from "2-4" to "1-3" and,
even scarier, uses an easily brute-forcable 64-bit key (with a 32-bit output)
instead of SipHash's 128-bit key. However, this may appeal to some
high-performance `jhash` users.
Danger!
Do not ever use HalfSipHash except for as a hashtable key function, and only
then when you can be absolutely certain that the outputs will never be
transmitted out of the kernel. This is only remotely useful over `jhash` as a
means of mitigating hashtable flooding denial of service attacks.
Generating a HalfSipHash key
============================
Keys should always be generated from a cryptographically secure source of
random numbers, either using get_random_bytes or get_random_once:
hsiphash_key_t key;
get_random_bytes(&key, sizeof(key));
If you're not deriving your key from here, you're doing it wrong.
Using the HalfSipHash functions
===============================
There are two variants of the function, one that takes a list of integers, and
one that takes a buffer::
u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key);
And::
u32 hsiphash_1u32(u32, const hsiphash_key_t *key);
u32 hsiphash_2u32(u32, u32, const hsiphash_key_t *key);
u32 hsiphash_3u32(u32, u32, u32, const hsiphash_key_t *key);
u32 hsiphash_4u32(u32, u32, u32, u32, const hsiphash_key_t *key);
If you pass the generic hsiphash function something of a constant length, it
will constant fold at compile-time and automatically choose one of the
optimized functions.
Hashtable key function usage
============================
::
struct some_hashtable {
DECLARE_HASHTABLE(hashtable, 8);
hsiphash_key_t key;
};
void init_hashtable(struct some_hashtable *table)
{
get_random_bytes(&table->key, sizeof(table->key));
}
static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input)
{
return &table->hashtable[hsiphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)];
}
You may then iterate like usual over the returned hash bucket.
Performance
===========
HalfSipHash is roughly 3 times slower than JenkinsHash. For many replacements,
this will not be a problem, as the hashtable lookup isn't the bottleneck. And
in general, this is probably a good sacrifice to make for the security and DoS
resistance of HalfSipHash.