linux/net/mac80211/cfg.c

3885 lines
102 KiB
C
Raw Normal View History

/*
* mac80211 configuration hooks for cfg80211
*
* Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2015 Intel Mobile Communications GmbH
*
* This file is GPLv2 as found in COPYING.
*/
#include <linux/ieee80211.h>
#include <linux/nl80211.h>
#include <linux/rtnetlink.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
#include <net/net_namespace.h>
#include <linux/rcupdate.h>
#include <linux/if_ether.h>
#include <net/cfg80211.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "rate.h"
#include "mesh.h"
#include "wme.h"
static struct wireless_dev *ieee80211_add_iface(struct wiphy *wiphy,
const char *name,
unsigned char name_assign_type,
enum nl80211_iftype type,
u32 *flags,
struct vif_params *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct wireless_dev *wdev;
struct ieee80211_sub_if_data *sdata;
int err;
err = ieee80211_if_add(local, name, name_assign_type, &wdev, type, params);
if (err)
return ERR_PTR(err);
if (type == NL80211_IFTYPE_MONITOR && flags) {
sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
sdata->u.mntr_flags = *flags;
}
return wdev;
}
static int ieee80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev)
{
ieee80211_if_remove(IEEE80211_WDEV_TO_SUB_IF(wdev));
return 0;
}
static int ieee80211_change_iface(struct wiphy *wiphy,
struct net_device *dev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int ret;
ret = ieee80211_if_change_type(sdata, type);
if (ret)
return ret;
if (type == NL80211_IFTYPE_AP_VLAN &&
params && params->use_4addr == 0)
RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
else if (type == NL80211_IFTYPE_STATION &&
params && params->use_4addr >= 0)
sdata->u.mgd.use_4addr = params->use_4addr;
if (sdata->vif.type == NL80211_IFTYPE_MONITOR && flags) {
struct ieee80211_local *local = sdata->local;
if (ieee80211_sdata_running(sdata)) {
u32 mask = MONITOR_FLAG_COOK_FRAMES |
MONITOR_FLAG_ACTIVE;
/*
* Prohibit MONITOR_FLAG_COOK_FRAMES and
* MONITOR_FLAG_ACTIVE to be changed while the
* interface is up.
* Else we would need to add a lot of cruft
* to update everything:
* cooked_mntrs, monitor and all fif_* counters
* reconfigure hardware
*/
if ((*flags & mask) != (sdata->u.mntr_flags & mask))
return -EBUSY;
ieee80211_adjust_monitor_flags(sdata, -1);
sdata->u.mntr_flags = *flags;
ieee80211_adjust_monitor_flags(sdata, 1);
ieee80211_configure_filter(local);
} else {
/*
* Because the interface is down, ieee80211_do_stop
* and ieee80211_do_open take care of "everything"
* mentioned in the comment above.
*/
sdata->u.mntr_flags = *flags;
}
}
return 0;
}
static int ieee80211_start_p2p_device(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
int ret;
mutex_lock(&sdata->local->chanctx_mtx);
ret = ieee80211_check_combinations(sdata, NULL, 0, 0);
mutex_unlock(&sdata->local->chanctx_mtx);
if (ret < 0)
return ret;
return ieee80211_do_open(wdev, true);
}
static void ieee80211_stop_p2p_device(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
ieee80211_sdata_stop(IEEE80211_WDEV_TO_SUB_IF(wdev));
}
static int ieee80211_set_noack_map(struct wiphy *wiphy,
struct net_device *dev,
u16 noack_map)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
sdata->noack_map = noack_map;
ieee80211_check_fast_xmit_iface(sdata);
return 0;
}
static int ieee80211_add_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
struct key_params *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta = NULL;
const struct ieee80211_cipher_scheme *cs = NULL;
struct ieee80211_key *key;
int err;
if (!ieee80211_sdata_running(sdata))
return -ENETDOWN;
/* reject WEP and TKIP keys if WEP failed to initialize */
switch (params->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_WEP104:
if (IS_ERR(local->wep_tx_tfm))
return -EINVAL;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
break;
default:
cs = ieee80211_cs_get(local, params->cipher, sdata->vif.type);
break;
}
key = ieee80211_key_alloc(params->cipher, key_idx, params->key_len,
params->key, params->seq_len, params->seq,
cs);
if (IS_ERR(key))
return PTR_ERR(key);
if (pairwise)
key->conf.flags |= IEEE80211_KEY_FLAG_PAIRWISE;
mutex_lock(&local->sta_mtx);
if (mac_addr) {
if (ieee80211_vif_is_mesh(&sdata->vif))
sta = sta_info_get(sdata, mac_addr);
else
sta = sta_info_get_bss(sdata, mac_addr);
/*
* The ASSOC test makes sure the driver is ready to
* receive the key. When wpa_supplicant has roamed
* using FT, it attempts to set the key before
* association has completed, this rejects that attempt
* so it will set the key again after association.
*
* TODO: accept the key if we have a station entry and
* add it to the device after the station.
*/
if (!sta || !test_sta_flag(sta, WLAN_STA_ASSOC)) {
ieee80211_key_free_unused(key);
err = -ENOENT;
goto out_unlock;
}
}
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
/* Keys without a station are used for TX only */
if (key->sta && test_sta_flag(key->sta, WLAN_STA_MFP))
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
case NL80211_IFTYPE_ADHOC:
/* no MFP (yet) */
break;
case NL80211_IFTYPE_MESH_POINT:
#ifdef CONFIG_MAC80211_MESH
if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
break;
#endif
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_OCB:
/* shouldn't happen */
WARN_ON_ONCE(1);
break;
}
if (sta)
sta->cipher_scheme = cs;
err = ieee80211_key_link(key, sdata, sta);
out_unlock:
mutex_unlock(&local->sta_mtx);
return err;
}
static int ieee80211_del_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
struct ieee80211_key *key = NULL;
int ret;
mutex_lock(&local->sta_mtx);
mutex_lock(&local->key_mtx);
if (mac_addr) {
ret = -ENOENT;
sta = sta_info_get_bss(sdata, mac_addr);
if (!sta)
goto out_unlock;
if (pairwise)
key = key_mtx_dereference(local, sta->ptk[key_idx]);
else
key = key_mtx_dereference(local, sta->gtk[key_idx]);
} else
key = key_mtx_dereference(local, sdata->keys[key_idx]);
if (!key) {
ret = -ENOENT;
goto out_unlock;
}
ieee80211_key_free(key, true);
ret = 0;
out_unlock:
mutex_unlock(&local->key_mtx);
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_get_key(struct wiphy *wiphy, struct net_device *dev,
u8 key_idx, bool pairwise, const u8 *mac_addr,
void *cookie,
void (*callback)(void *cookie,
struct key_params *params))
{
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta = NULL;
u8 seq[6] = {0};
struct key_params params;
struct ieee80211_key *key = NULL;
u64 pn64;
u32 iv32;
u16 iv16;
int err = -ENOENT;
struct ieee80211_key_seq kseq = {};
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
if (mac_addr) {
sta = sta_info_get_bss(sdata, mac_addr);
if (!sta)
goto out;
if (pairwise && key_idx < NUM_DEFAULT_KEYS)
key = rcu_dereference(sta->ptk[key_idx]);
else if (!pairwise &&
key_idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
key = rcu_dereference(sta->gtk[key_idx]);
} else
key = rcu_dereference(sdata->keys[key_idx]);
if (!key)
goto out;
memset(&params, 0, sizeof(params));
params.cipher = key->conf.cipher;
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
iv32 = key->u.tkip.tx.iv32;
iv16 = key->u.tkip.tx.iv16;
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) {
drv_get_key_seq(sdata->local, key, &kseq);
iv32 = kseq.tkip.iv32;
iv16 = kseq.tkip.iv16;
}
seq[0] = iv16 & 0xff;
seq[1] = (iv16 >> 8) & 0xff;
seq[2] = iv32 & 0xff;
seq[3] = (iv32 >> 8) & 0xff;
seq[4] = (iv32 >> 16) & 0xff;
seq[5] = (iv32 >> 24) & 0xff;
params.seq = seq;
params.seq_len = 6;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
BUILD_BUG_ON(offsetof(typeof(kseq), ccmp) !=
offsetof(typeof(kseq), aes_cmac));
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
BUILD_BUG_ON(offsetof(typeof(kseq), ccmp) !=
offsetof(typeof(kseq), aes_gmac));
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
BUILD_BUG_ON(offsetof(typeof(kseq), ccmp) !=
offsetof(typeof(kseq), gcmp));
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) {
drv_get_key_seq(sdata->local, key, &kseq);
memcpy(seq, kseq.ccmp.pn, 6);
} else {
pn64 = atomic64_read(&key->conf.tx_pn);
seq[0] = pn64;
seq[1] = pn64 >> 8;
seq[2] = pn64 >> 16;
seq[3] = pn64 >> 24;
seq[4] = pn64 >> 32;
seq[5] = pn64 >> 40;
}
params.seq = seq;
params.seq_len = 6;
break;
default:
if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
break;
if (WARN_ON(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV))
break;
drv_get_key_seq(sdata->local, key, &kseq);
params.seq = kseq.hw.seq;
params.seq_len = kseq.hw.seq_len;
break;
}
params.key = key->conf.key;
params.key_len = key->conf.keylen;
callback(cookie, &params);
err = 0;
out:
rcu_read_unlock();
return err;
}
static int ieee80211_config_default_key(struct wiphy *wiphy,
struct net_device *dev,
u8 key_idx, bool uni,
bool multi)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_set_default_key(sdata, key_idx, uni, multi);
return 0;
}
static int ieee80211_config_default_mgmt_key(struct wiphy *wiphy,
struct net_device *dev,
u8 key_idx)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_set_default_mgmt_key(sdata, key_idx);
return 0;
}
void sta_set_rate_info_tx(struct sta_info *sta,
const struct ieee80211_tx_rate *rate,
struct rate_info *rinfo)
{
rinfo->flags = 0;
if (rate->flags & IEEE80211_TX_RC_MCS) {
rinfo->flags |= RATE_INFO_FLAGS_MCS;
rinfo->mcs = rate->idx;
} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS;
rinfo->mcs = ieee80211_rate_get_vht_mcs(rate);
rinfo->nss = ieee80211_rate_get_vht_nss(rate);
} else {
struct ieee80211_supported_band *sband;
int shift = ieee80211_vif_get_shift(&sta->sdata->vif);
u16 brate;
sband = sta->local->hw.wiphy->bands[
ieee80211_get_sdata_band(sta->sdata)];
brate = sband->bitrates[rate->idx].bitrate;
rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
}
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
rinfo->bw = RATE_INFO_BW_40;
else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
rinfo->bw = RATE_INFO_BW_80;
else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
rinfo->bw = RATE_INFO_BW_160;
else
rinfo->bw = RATE_INFO_BW_20;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
}
static int ieee80211_dump_station(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *mac, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
int ret = -ENOENT;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_by_idx(sdata, idx);
if (sta) {
ret = 0;
memcpy(mac, sta->sta.addr, ETH_ALEN);
sta_set_sinfo(sta, sinfo);
}
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_dump_survey(struct wiphy *wiphy, struct net_device *dev,
int idx, struct survey_info *survey)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
return drv_get_survey(local, idx, survey);
}
static int ieee80211_get_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac, struct station_info *sinfo)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
int ret = -ENOENT;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mac);
if (sta) {
ret = 0;
sta_set_sinfo(sta, sinfo);
}
mutex_unlock(&local->sta_mtx);
return ret;
}
static int ieee80211_set_monitor_channel(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata;
int ret = 0;
if (cfg80211_chandef_identical(&local->monitor_chandef, chandef))
return 0;
mutex_lock(&local->mtx);
mutex_lock(&local->iflist_mtx);
if (local->use_chanctx) {
sdata = rcu_dereference_protected(
local->monitor_sdata,
lockdep_is_held(&local->iflist_mtx));
if (sdata) {
ieee80211_vif_release_channel(sdata);
ret = ieee80211_vif_use_channel(sdata, chandef,
IEEE80211_CHANCTX_EXCLUSIVE);
}
} else if (local->open_count == local->monitors) {
local->_oper_chandef = *chandef;
ieee80211_hw_config(local, 0);
}
if (ret == 0)
local->monitor_chandef = *chandef;
mutex_unlock(&local->iflist_mtx);
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_set_probe_resp(struct ieee80211_sub_if_data *sdata,
const u8 *resp, size_t resp_len,
const struct ieee80211_csa_settings *csa)
{
struct probe_resp *new, *old;
if (!resp || !resp_len)
return 1;
old = sdata_dereference(sdata->u.ap.probe_resp, sdata);
new = kzalloc(sizeof(struct probe_resp) + resp_len, GFP_KERNEL);
if (!new)
return -ENOMEM;
new->len = resp_len;
memcpy(new->data, resp, resp_len);
if (csa)
memcpy(new->csa_counter_offsets, csa->counter_offsets_presp,
csa->n_counter_offsets_presp *
sizeof(new->csa_counter_offsets[0]));
rcu_assign_pointer(sdata->u.ap.probe_resp, new);
if (old)
kfree_rcu(old, rcu_head);
return 0;
}
static int ieee80211_assign_beacon(struct ieee80211_sub_if_data *sdata,
struct cfg80211_beacon_data *params,
const struct ieee80211_csa_settings *csa)
{
struct beacon_data *new, *old;
int new_head_len, new_tail_len;
int size, err;
u32 changed = BSS_CHANGED_BEACON;
old = sdata_dereference(sdata->u.ap.beacon, sdata);
/* Need to have a beacon head if we don't have one yet */
if (!params->head && !old)
return -EINVAL;
/* new or old head? */
if (params->head)
new_head_len = params->head_len;
else
new_head_len = old->head_len;
/* new or old tail? */
if (params->tail || !old)
/* params->tail_len will be zero for !params->tail */
new_tail_len = params->tail_len;
else
new_tail_len = old->tail_len;
size = sizeof(*new) + new_head_len + new_tail_len;
new = kzalloc(size, GFP_KERNEL);
if (!new)
return -ENOMEM;
/* start filling the new info now */
/*
* pointers go into the block we allocated,
* memory is | beacon_data | head | tail |
*/
new->head = ((u8 *) new) + sizeof(*new);
new->tail = new->head + new_head_len;
new->head_len = new_head_len;
new->tail_len = new_tail_len;
if (csa) {
new->csa_current_counter = csa->count;
memcpy(new->csa_counter_offsets, csa->counter_offsets_beacon,
csa->n_counter_offsets_beacon *
sizeof(new->csa_counter_offsets[0]));
}
/* copy in head */
if (params->head)
memcpy(new->head, params->head, new_head_len);
else
memcpy(new->head, old->head, new_head_len);
/* copy in optional tail */
if (params->tail)
memcpy(new->tail, params->tail, new_tail_len);
else
if (old)
memcpy(new->tail, old->tail, new_tail_len);
err = ieee80211_set_probe_resp(sdata, params->probe_resp,
params->probe_resp_len, csa);
if (err < 0)
return err;
if (err == 0)
changed |= BSS_CHANGED_AP_PROBE_RESP;
rcu_assign_pointer(sdata->u.ap.beacon, new);
if (old)
kfree_rcu(old, rcu_head);
return changed;
}
static int ieee80211_start_ap(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ap_settings *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct beacon_data *old;
struct ieee80211_sub_if_data *vlan;
u32 changed = BSS_CHANGED_BEACON_INT |
BSS_CHANGED_BEACON_ENABLED |
BSS_CHANGED_BEACON |
BSS_CHANGED_SSID |
BSS_CHANGED_P2P_PS |
BSS_CHANGED_TXPOWER;
int err;
old = sdata_dereference(sdata->u.ap.beacon, sdata);
if (old)
return -EALREADY;
switch (params->smps_mode) {
case NL80211_SMPS_OFF:
sdata->smps_mode = IEEE80211_SMPS_OFF;
break;
case NL80211_SMPS_STATIC:
sdata->smps_mode = IEEE80211_SMPS_STATIC;
break;
case NL80211_SMPS_DYNAMIC:
sdata->smps_mode = IEEE80211_SMPS_DYNAMIC;
break;
default:
return -EINVAL;
}
sdata->needed_rx_chains = sdata->local->rx_chains;
mutex_lock(&local->mtx);
err = ieee80211_vif_use_channel(sdata, &params->chandef,
IEEE80211_CHANCTX_SHARED);
if (!err)
ieee80211_vif_copy_chanctx_to_vlans(sdata, false);
mutex_unlock(&local->mtx);
if (err)
return err;
/*
* Apply control port protocol, this allows us to
* not encrypt dynamic WEP control frames.
*/
sdata->control_port_protocol = params->crypto.control_port_ethertype;
sdata->control_port_no_encrypt = params->crypto.control_port_no_encrypt;
sdata->encrypt_headroom = ieee80211_cs_headroom(sdata->local,
&params->crypto,
sdata->vif.type);
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
vlan->control_port_protocol =
params->crypto.control_port_ethertype;
vlan->control_port_no_encrypt =
params->crypto.control_port_no_encrypt;
vlan->encrypt_headroom =
ieee80211_cs_headroom(sdata->local,
&params->crypto,
vlan->vif.type);
}
sdata->vif.bss_conf.beacon_int = params->beacon_interval;
sdata->vif.bss_conf.dtim_period = params->dtim_period;
sdata->vif.bss_conf.enable_beacon = true;
sdata->vif.bss_conf.ssid_len = params->ssid_len;
if (params->ssid_len)
memcpy(sdata->vif.bss_conf.ssid, params->ssid,
params->ssid_len);
sdata->vif.bss_conf.hidden_ssid =
(params->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE);
memset(&sdata->vif.bss_conf.p2p_noa_attr, 0,
sizeof(sdata->vif.bss_conf.p2p_noa_attr));
sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow =
params->p2p_ctwindow & IEEE80211_P2P_OPPPS_CTWINDOW_MASK;
if (params->p2p_opp_ps)
sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow |=
IEEE80211_P2P_OPPPS_ENABLE_BIT;
err = ieee80211_assign_beacon(sdata, &params->beacon, NULL);
if (err < 0) {
ieee80211_vif_release_channel(sdata);
return err;
}
changed |= err;
err = drv_start_ap(sdata->local, sdata);
if (err) {
old = sdata_dereference(sdata->u.ap.beacon, sdata);
if (old)
kfree_rcu(old, rcu_head);
RCU_INIT_POINTER(sdata->u.ap.beacon, NULL);
ieee80211_vif_release_channel(sdata);
return err;
}
ieee80211_recalc_dtim(local, sdata);
ieee80211_bss_info_change_notify(sdata, changed);
netif_carrier_on(dev);
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
netif_carrier_on(vlan->dev);
return 0;
}
static int ieee80211_change_beacon(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_beacon_data *params)
{
struct ieee80211_sub_if_data *sdata;
struct beacon_data *old;
int err;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
sdata_assert_lock(sdata);
/* don't allow changing the beacon while CSA is in place - offset
* of channel switch counter may change
*/
if (sdata->vif.csa_active)
return -EBUSY;
old = sdata_dereference(sdata->u.ap.beacon, sdata);
if (!old)
return -ENOENT;
err = ieee80211_assign_beacon(sdata, params, NULL);
if (err < 0)
return err;
ieee80211_bss_info_change_notify(sdata, err);
return 0;
}
static int ieee80211_stop_ap(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_sub_if_data *vlan;
struct ieee80211_local *local = sdata->local;
struct beacon_data *old_beacon;
struct probe_resp *old_probe_resp;
struct cfg80211_chan_def chandef;
sdata_assert_lock(sdata);
old_beacon = sdata_dereference(sdata->u.ap.beacon, sdata);
if (!old_beacon)
return -ENOENT;
old_probe_resp = sdata_dereference(sdata->u.ap.probe_resp, sdata);
/* abort any running channel switch */
mutex_lock(&local->mtx);
sdata->vif.csa_active = false;
if (sdata->csa_block_tx) {
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
sdata->csa_block_tx = false;
}
mutex_unlock(&local->mtx);
kfree(sdata->u.ap.next_beacon);
sdata->u.ap.next_beacon = NULL;
/* turn off carrier for this interface and dependent VLANs */
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
netif_carrier_off(vlan->dev);
netif_carrier_off(dev);
/* remove beacon and probe response */
RCU_INIT_POINTER(sdata->u.ap.beacon, NULL);
RCU_INIT_POINTER(sdata->u.ap.probe_resp, NULL);
kfree_rcu(old_beacon, rcu_head);
if (old_probe_resp)
kfree_rcu(old_probe_resp, rcu_head);
mac80211: avoid deadlock revealed by lockdep sdata->u.ap.request_smps_work can’t be flushed synchronously under wdev_lock(wdev) since ieee80211_request_smps_ap_work itself locks the same lock. While at it, reset the driver_smps_mode when the ap is stopped to its default: OFF. This solves: ====================================================== [ INFO: possible circular locking dependency detected ] 3.12.0-ipeer+ #2 Tainted: G O ------------------------------------------------------- rmmod/2867 is trying to acquire lock: ((&sdata->u.ap.request_smps_work)){+.+...}, at: [<c105b8d0>] flush_work+0x0/0x90 but task is already holding lock: (&wdev->mtx){+.+.+.}, at: [<f9b32626>] cfg80211_stop_ap+0x26/0x230 [cfg80211] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&wdev->mtx){+.+.+.}: [<c10aefa9>] lock_acquire+0x79/0xe0 [<c1607a1a>] mutex_lock_nested+0x4a/0x360 [<fb06288b>] ieee80211_request_smps_ap_work+0x2b/0x50 [mac80211] [<c105cdd8>] process_one_work+0x198/0x450 [<c105d469>] worker_thread+0xf9/0x320 [<c10669ff>] kthread+0x9f/0xb0 [<c1613397>] ret_from_kernel_thread+0x1b/0x28 -> #0 ((&sdata->u.ap.request_smps_work)){+.+...}: [<c10ae9df>] __lock_acquire+0x183f/0x1910 [<c10aefa9>] lock_acquire+0x79/0xe0 [<c105b917>] flush_work+0x47/0x90 [<c105d867>] __cancel_work_timer+0x67/0xe0 [<c105d90f>] cancel_work_sync+0xf/0x20 [<fb0765cc>] ieee80211_stop_ap+0x8c/0x340 [mac80211] [<f9b3268c>] cfg80211_stop_ap+0x8c/0x230 [cfg80211] [<f9b0d8f9>] cfg80211_leave+0x79/0x100 [cfg80211] [<f9b0da72>] cfg80211_netdev_notifier_call+0xf2/0x4f0 [cfg80211] [<c160f2c9>] notifier_call_chain+0x59/0x130 [<c106c6de>] __raw_notifier_call_chain+0x1e/0x30 [<c106c70f>] raw_notifier_call_chain+0x1f/0x30 [<c14f8213>] call_netdevice_notifiers_info+0x33/0x70 [<c14f8263>] call_netdevice_notifiers+0x13/0x20 [<c14f82a4>] __dev_close_many+0x34/0xb0 [<c14f83fe>] dev_close_many+0x6e/0xc0 [<c14f9c77>] rollback_registered_many+0xa7/0x1f0 [<c14f9dd4>] unregister_netdevice_many+0x14/0x60 [<fb06f4d9>] ieee80211_remove_interfaces+0xe9/0x170 [mac80211] [<fb055116>] ieee80211_unregister_hw+0x56/0x110 [mac80211] [<fa3e9396>] iwl_op_mode_mvm_stop+0x26/0xe0 [iwlmvm] [<f9b9d8ca>] _iwl_op_mode_stop+0x3a/0x70 [iwlwifi] [<f9b9d96f>] iwl_opmode_deregister+0x6f/0x90 [iwlwifi] [<fa405179>] __exit_compat+0xd/0x19 [iwlmvm] [<c10b8bf9>] SyS_delete_module+0x179/0x2b0 [<c1613421>] sysenter_do_call+0x12/0x32 Fixes: 687da132234f ("mac80211: implement SMPS for AP") Cc: <stable@vger.kernel.org> [3.13] Reported-by: Ilan Peer <ilan.peer@intel.com> Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2014-01-23 16:28:16 +04:00
sdata->u.ap.driver_smps_mode = IEEE80211_SMPS_OFF;
__sta_info_flush(sdata, true);
ieee80211_free_keys(sdata, true);
sdata->vif.bss_conf.enable_beacon = false;
sdata->vif.bss_conf.ssid_len = 0;
clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state);
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON_ENABLED);
if (sdata->wdev.cac_started) {
chandef = sdata->vif.bss_conf.chandef;
cancel_delayed_work_sync(&sdata->dfs_cac_timer_work);
cfg80211_cac_event(sdata->dev, &chandef,
NL80211_RADAR_CAC_ABORTED,
GFP_KERNEL);
}
drv_stop_ap(sdata->local, sdata);
/* free all potentially still buffered bcast frames */
local->total_ps_buffered -= skb_queue_len(&sdata->u.ap.ps.bc_buf);
skb_queue_purge(&sdata->u.ap.ps.bc_buf);
mutex_lock(&local->mtx);
ieee80211_vif_copy_chanctx_to_vlans(sdata, true);
ieee80211_vif_release_channel(sdata);
mutex_unlock(&local->mtx);
return 0;
}
/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
struct iapp_layer2_update {
u8 da[ETH_ALEN]; /* broadcast */
u8 sa[ETH_ALEN]; /* STA addr */
__be16 len; /* 6 */
u8 dsap; /* 0 */
u8 ssap; /* 0 */
u8 control;
u8 xid_info[3];
} __packed;
static void ieee80211_send_layer2_update(struct sta_info *sta)
{
struct iapp_layer2_update *msg;
struct sk_buff *skb;
/* Send Level 2 Update Frame to update forwarding tables in layer 2
* bridge devices */
skb = dev_alloc_skb(sizeof(*msg));
if (!skb)
return;
msg = (struct iapp_layer2_update *)skb_put(skb, sizeof(*msg));
/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
* Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
eth_broadcast_addr(msg->da);
memcpy(msg->sa, sta->sta.addr, ETH_ALEN);
msg->len = htons(6);
msg->dsap = 0;
msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
msg->control = 0xaf; /* XID response lsb.1111F101.
* F=0 (no poll command; unsolicited frame) */
msg->xid_info[0] = 0x81; /* XID format identifier */
msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
skb->dev = sta->sdata->dev;
skb->protocol = eth_type_trans(skb, sta->sdata->dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx_ni(skb);
}
static int sta_apply_auth_flags(struct ieee80211_local *local,
struct sta_info *sta,
u32 mask, u32 set)
{
int ret;
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
set & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
!test_sta_flag(sta, WLAN_STA_AUTH)) {
ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) &&
set & BIT(NL80211_STA_FLAG_ASSOCIATED) &&
!test_sta_flag(sta, WLAN_STA_ASSOC)) {
/*
* When peer becomes associated, init rate control as
* well. Some drivers require rate control initialized
* before drv_sta_state() is called.
*/
if (!test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
rate_control_rate_init(sta);
ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
if (set & BIT(NL80211_STA_FLAG_AUTHORIZED))
ret = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED);
else if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
else
ret = 0;
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) &&
!(set & BIT(NL80211_STA_FLAG_ASSOCIATED)) &&
test_sta_flag(sta, WLAN_STA_ASSOC)) {
ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
!(set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) &&
test_sta_flag(sta, WLAN_STA_AUTH)) {
ret = sta_info_move_state(sta, IEEE80211_STA_NONE);
if (ret)
return ret;
}
return 0;
}
static void sta_apply_mesh_params(struct ieee80211_local *local,
struct sta_info *sta,
struct station_parameters *params)
{
#ifdef CONFIG_MAC80211_MESH
struct ieee80211_sub_if_data *sdata = sta->sdata;
u32 changed = 0;
if (params->sta_modify_mask & STATION_PARAM_APPLY_PLINK_STATE) {
switch (params->plink_state) {
case NL80211_PLINK_ESTAB:
if (sta->mesh->plink_state != NL80211_PLINK_ESTAB)
changed = mesh_plink_inc_estab_count(sdata);
sta->mesh->plink_state = params->plink_state;
ieee80211_mps_sta_status_update(sta);
changed |= ieee80211_mps_set_sta_local_pm(sta,
sdata->u.mesh.mshcfg.power_mode);
break;
case NL80211_PLINK_LISTEN:
case NL80211_PLINK_BLOCKED:
case NL80211_PLINK_OPN_SNT:
case NL80211_PLINK_OPN_RCVD:
case NL80211_PLINK_CNF_RCVD:
case NL80211_PLINK_HOLDING:
if (sta->mesh->plink_state == NL80211_PLINK_ESTAB)
changed = mesh_plink_dec_estab_count(sdata);
sta->mesh->plink_state = params->plink_state;
ieee80211_mps_sta_status_update(sta);
changed |= ieee80211_mps_set_sta_local_pm(sta,
NL80211_MESH_POWER_UNKNOWN);
break;
default:
/* nothing */
break;
}
}
switch (params->plink_action) {
case NL80211_PLINK_ACTION_NO_ACTION:
/* nothing */
break;
case NL80211_PLINK_ACTION_OPEN:
changed |= mesh_plink_open(sta);
break;
case NL80211_PLINK_ACTION_BLOCK:
changed |= mesh_plink_block(sta);
break;
}
if (params->local_pm)
changed |= ieee80211_mps_set_sta_local_pm(sta,
params->local_pm);
ieee80211_mbss_info_change_notify(sdata, changed);
#endif
}
static int sta_apply_parameters(struct ieee80211_local *local,
struct sta_info *sta,
struct station_parameters *params)
{
int ret = 0;
struct ieee80211_supported_band *sband;
struct ieee80211_sub_if_data *sdata = sta->sdata;
enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
u32 mask, set;
sband = local->hw.wiphy->bands[band];
mask = params->sta_flags_mask;
set = params->sta_flags_set;
if (ieee80211_vif_is_mesh(&sdata->vif)) {
/*
* In mesh mode, ASSOCIATED isn't part of the nl80211
* API but must follow AUTHENTICATED for driver state.
*/
if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED))
mask |= BIT(NL80211_STA_FLAG_ASSOCIATED);
if (set & BIT(NL80211_STA_FLAG_AUTHENTICATED))
set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
} else if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
/*
* TDLS -- everything follows authorized, but
* only becoming authorized is possible, not
* going back
*/
if (set & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
set |= BIT(NL80211_STA_FLAG_AUTHENTICATED) |
BIT(NL80211_STA_FLAG_ASSOCIATED);
mask |= BIT(NL80211_STA_FLAG_AUTHENTICATED) |
BIT(NL80211_STA_FLAG_ASSOCIATED);
}
}
if (mask & BIT(NL80211_STA_FLAG_WME) &&
local->hw.queues >= IEEE80211_NUM_ACS)
sta->sta.wme = set & BIT(NL80211_STA_FLAG_WME);
/* auth flags will be set later for TDLS,
* and for unassociated stations that move to assocaited */
if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER) &&
!((mask & BIT(NL80211_STA_FLAG_ASSOCIATED)) &&
(set & BIT(NL80211_STA_FLAG_ASSOCIATED)))) {
ret = sta_apply_auth_flags(local, sta, mask, set);
if (ret)
return ret;
}
if (mask & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) {
if (set & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE))
set_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
else
clear_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
}
if (mask & BIT(NL80211_STA_FLAG_MFP)) {
sta->sta.mfp = !!(set & BIT(NL80211_STA_FLAG_MFP));
if (set & BIT(NL80211_STA_FLAG_MFP))
set_sta_flag(sta, WLAN_STA_MFP);
else
clear_sta_flag(sta, WLAN_STA_MFP);
}
if (mask & BIT(NL80211_STA_FLAG_TDLS_PEER)) {
if (set & BIT(NL80211_STA_FLAG_TDLS_PEER))
set_sta_flag(sta, WLAN_STA_TDLS_PEER);
else
clear_sta_flag(sta, WLAN_STA_TDLS_PEER);
}
/* mark TDLS channel switch support, if the AP allows it */
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) &&
!sdata->u.mgd.tdls_chan_switch_prohibited &&
params->ext_capab_len >= 4 &&
params->ext_capab[3] & WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH)
set_sta_flag(sta, WLAN_STA_TDLS_CHAN_SWITCH);
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) &&
!sdata->u.mgd.tdls_wider_bw_prohibited &&
ieee80211_hw_check(&local->hw, TDLS_WIDER_BW) &&
params->ext_capab_len >= 8 &&
params->ext_capab[7] & WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED)
set_sta_flag(sta, WLAN_STA_TDLS_WIDER_BW);
if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD) {
sta->sta.uapsd_queues = params->uapsd_queues;
sta->sta.max_sp = params->max_sp;
}
/*
* cfg80211 validates this (1-2007) and allows setting the AID
* only when creating a new station entry
*/
if (params->aid)
sta->sta.aid = params->aid;
/*
* Some of the following updates would be racy if called on an
* existing station, via ieee80211_change_station(). However,
* all such changes are rejected by cfg80211 except for updates
* changing the supported rates on an existing but not yet used
* TDLS peer.
*/
if (params->listen_interval >= 0)
sta->listen_interval = params->listen_interval;
if (params->supported_rates) {
ieee80211_parse_bitrates(&sdata->vif.bss_conf.chandef,
sband, params->supported_rates,
params->supported_rates_len,
&sta->sta.supp_rates[band]);
}
if (params->ht_capa)
ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband,
params->ht_capa, sta);
if (params->vht_capa)
ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband,
params->vht_capa, sta);
if (params->opmode_notif_used) {
/* returned value is only needed for rc update, but the
* rc isn't initialized here yet, so ignore it
*/
__ieee80211_vht_handle_opmode(sdata, sta,
params->opmode_notif,
band, false);
}
if (ieee80211_vif_is_mesh(&sdata->vif))
sta_apply_mesh_params(local, sta, params);
/* set the STA state after all sta info from usermode has been set */
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) ||
set & BIT(NL80211_STA_FLAG_ASSOCIATED)) {
ret = sta_apply_auth_flags(local, sta, mask, set);
if (ret)
return ret;
}
return 0;
}
static int ieee80211_add_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac,
struct station_parameters *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata;
int err;
int layer2_update;
if (params->vlan) {
sdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP)
return -EINVAL;
} else
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (ether_addr_equal(mac, sdata->vif.addr))
return -EINVAL;
if (is_multicast_ether_addr(mac))
return -EINVAL;
sta = sta_info_alloc(sdata, mac, GFP_KERNEL);
if (!sta)
return -ENOMEM;
/*
* defaults -- if userspace wants something else we'll
* change it accordingly in sta_apply_parameters()
*/
if (!(params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER)) &&
!(params->sta_flags_set & (BIT(NL80211_STA_FLAG_AUTHENTICATED) |
BIT(NL80211_STA_FLAG_ASSOCIATED)))) {
sta_info_pre_move_state(sta, IEEE80211_STA_AUTH);
sta_info_pre_move_state(sta, IEEE80211_STA_ASSOC);
}
if (params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER))
sta->sta.tdls = true;
err = sta_apply_parameters(local, sta, params);
if (err) {
sta_info_free(local, sta);
return err;
}
/*
* for TDLS and for unassociated station, rate control should be
* initialized only when rates are known and station is marked
* authorized/associated
*/
if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER) &&
test_sta_flag(sta, WLAN_STA_ASSOC))
rate_control_rate_init(sta);
layer2_update = sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
sdata->vif.type == NL80211_IFTYPE_AP;
err = sta_info_insert_rcu(sta);
if (err) {
rcu_read_unlock();
return err;
}
if (layer2_update)
ieee80211_send_layer2_update(sta);
rcu_read_unlock();
return 0;
}
static int ieee80211_del_station(struct wiphy *wiphy, struct net_device *dev,
struct station_del_parameters *params)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (params->mac)
return sta_info_destroy_addr_bss(sdata, params->mac);
sta_info_flush(sdata);
return 0;
}
static int ieee80211_change_station(struct wiphy *wiphy,
struct net_device *dev, const u8 *mac,
struct station_parameters *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wiphy_priv(wiphy);
struct sta_info *sta;
struct ieee80211_sub_if_data *vlansdata;
enum cfg80211_station_type statype;
int err;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mac);
if (!sta) {
err = -ENOENT;
goto out_err;
}
switch (sdata->vif.type) {
case NL80211_IFTYPE_MESH_POINT:
if (sdata->u.mesh.user_mpm)
statype = CFG80211_STA_MESH_PEER_USER;
else
statype = CFG80211_STA_MESH_PEER_KERNEL;
break;
case NL80211_IFTYPE_ADHOC:
statype = CFG80211_STA_IBSS;
break;
case NL80211_IFTYPE_STATION:
if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
statype = CFG80211_STA_AP_STA;
break;
}
if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
statype = CFG80211_STA_TDLS_PEER_ACTIVE;
else
statype = CFG80211_STA_TDLS_PEER_SETUP;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
if (test_sta_flag(sta, WLAN_STA_ASSOC))
statype = CFG80211_STA_AP_CLIENT;
else
statype = CFG80211_STA_AP_CLIENT_UNASSOC;
break;
default:
err = -EOPNOTSUPP;
goto out_err;
}
err = cfg80211_check_station_change(wiphy, params, statype);
if (err)
goto out_err;
if (params->vlan && params->vlan != sta->sdata->dev) {
bool prev_4addr = false;
bool new_4addr = false;
vlansdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
if (params->vlan->ieee80211_ptr->use_4addr) {
if (vlansdata->u.vlan.sta) {
err = -EBUSY;
goto out_err;
}
rcu_assign_pointer(vlansdata->u.vlan.sta, sta);
new_4addr = true;
}
if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
sta->sdata->u.vlan.sta) {
RCU_INIT_POINTER(sta->sdata->u.vlan.sta, NULL);
prev_4addr = true;
}
sta->sdata = vlansdata;
ieee80211_check_fast_xmit(sta);
if (sta->sta_state == IEEE80211_STA_AUTHORIZED &&
prev_4addr != new_4addr) {
if (new_4addr)
atomic_dec(&sta->sdata->bss->num_mcast_sta);
else
atomic_inc(&sta->sdata->bss->num_mcast_sta);
}
ieee80211_send_layer2_update(sta);
}
err = sta_apply_parameters(local, sta, params);
if (err)
goto out_err;
mutex_unlock(&local->sta_mtx);
if ((sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
sta->known_smps_mode != sta->sdata->bss->req_smps &&
test_sta_flag(sta, WLAN_STA_AUTHORIZED) &&
sta_info_tx_streams(sta) != 1) {
ht_dbg(sta->sdata,
"%pM just authorized and MIMO capable - update SMPS\n",
sta->sta.addr);
ieee80211_send_smps_action(sta->sdata,
sta->sdata->bss->req_smps,
sta->sta.addr,
sta->sdata->vif.bss_conf.bssid);
}
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
ieee80211_recalc_ps(local);
ieee80211_recalc_ps_vif(sdata);
}
return 0;
out_err:
mutex_unlock(&local->sta_mtx);
return err;
}
#ifdef CONFIG_MAC80211_MESH
static int ieee80211_add_mpath(struct wiphy *wiphy, struct net_device *dev,
const u8 *dst, const u8 *next_hop)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
struct sta_info *sta;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
sta = sta_info_get(sdata, next_hop);
if (!sta) {
rcu_read_unlock();
return -ENOENT;
}
mpath = mesh_path_add(sdata, dst);
if (IS_ERR(mpath)) {
rcu_read_unlock();
return PTR_ERR(mpath);
}
mesh_path_fix_nexthop(mpath, sta);
rcu_read_unlock();
return 0;
}
static int ieee80211_del_mpath(struct wiphy *wiphy, struct net_device *dev,
const u8 *dst)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (dst)
return mesh_path_del(sdata, dst);
mesh_path_flush_by_iface(sdata);
return 0;
}
static int ieee80211_change_mpath(struct wiphy *wiphy, struct net_device *dev,
const u8 *dst, const u8 *next_hop)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
struct sta_info *sta;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
sta = sta_info_get(sdata, next_hop);
if (!sta) {
rcu_read_unlock();
return -ENOENT;
}
mpath = mesh_path_lookup(sdata, dst);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
mesh_path_fix_nexthop(mpath, sta);
rcu_read_unlock();
return 0;
}
static void mpath_set_pinfo(struct mesh_path *mpath, u8 *next_hop,
struct mpath_info *pinfo)
{
struct sta_info *next_hop_sta = rcu_dereference(mpath->next_hop);
if (next_hop_sta)
memcpy(next_hop, next_hop_sta->sta.addr, ETH_ALEN);
else
eth_zero_addr(next_hop);
memset(pinfo, 0, sizeof(*pinfo));
pinfo->generation = mesh_paths_generation;
pinfo->filled = MPATH_INFO_FRAME_QLEN |
MPATH_INFO_SN |
MPATH_INFO_METRIC |
MPATH_INFO_EXPTIME |
MPATH_INFO_DISCOVERY_TIMEOUT |
MPATH_INFO_DISCOVERY_RETRIES |
MPATH_INFO_FLAGS;
pinfo->frame_qlen = mpath->frame_queue.qlen;
pinfo->sn = mpath->sn;
pinfo->metric = mpath->metric;
if (time_before(jiffies, mpath->exp_time))
pinfo->exptime = jiffies_to_msecs(mpath->exp_time - jiffies);
pinfo->discovery_timeout =
jiffies_to_msecs(mpath->discovery_timeout);
pinfo->discovery_retries = mpath->discovery_retries;
if (mpath->flags & MESH_PATH_ACTIVE)
pinfo->flags |= NL80211_MPATH_FLAG_ACTIVE;
if (mpath->flags & MESH_PATH_RESOLVING)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVING;
if (mpath->flags & MESH_PATH_SN_VALID)
pinfo->flags |= NL80211_MPATH_FLAG_SN_VALID;
if (mpath->flags & MESH_PATH_FIXED)
pinfo->flags |= NL80211_MPATH_FLAG_FIXED;
if (mpath->flags & MESH_PATH_RESOLVED)
pinfo->flags |= NL80211_MPATH_FLAG_RESOLVED;
}
static int ieee80211_get_mpath(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *next_hop, struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mesh_path_lookup(sdata, dst);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpath_set_pinfo(mpath, next_hop, pinfo);
rcu_read_unlock();
return 0;
}
static int ieee80211_dump_mpath(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *dst, u8 *next_hop,
struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mesh_path_lookup_by_idx(sdata, idx);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpath_set_pinfo(mpath, next_hop, pinfo);
rcu_read_unlock();
return 0;
}
static void mpp_set_pinfo(struct mesh_path *mpath, u8 *mpp,
struct mpath_info *pinfo)
{
memset(pinfo, 0, sizeof(*pinfo));
memcpy(mpp, mpath->mpp, ETH_ALEN);
pinfo->generation = mpp_paths_generation;
}
static int ieee80211_get_mpp(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *mpp, struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mpp_path_lookup(sdata, dst);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpp_set_pinfo(mpath, mpp, pinfo);
rcu_read_unlock();
return 0;
}
static int ieee80211_dump_mpp(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *dst, u8 *mpp,
struct mpath_info *pinfo)
{
struct ieee80211_sub_if_data *sdata;
struct mesh_path *mpath;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
mpath = mpp_path_lookup_by_idx(sdata, idx);
if (!mpath) {
rcu_read_unlock();
return -ENOENT;
}
memcpy(dst, mpath->dst, ETH_ALEN);
mpp_set_pinfo(mpath, mpp, pinfo);
rcu_read_unlock();
return 0;
}
static int ieee80211_get_mesh_config(struct wiphy *wiphy,
struct net_device *dev,
struct mesh_config *conf)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(conf, &(sdata->u.mesh.mshcfg), sizeof(struct mesh_config));
return 0;
}
static inline bool _chg_mesh_attr(enum nl80211_meshconf_params parm, u32 mask)
{
return (mask >> (parm-1)) & 0x1;
}
static int copy_mesh_setup(struct ieee80211_if_mesh *ifmsh,
const struct mesh_setup *setup)
{
u8 *new_ie;
const u8 *old_ie;
struct ieee80211_sub_if_data *sdata = container_of(ifmsh,
struct ieee80211_sub_if_data, u.mesh);
/* allocate information elements */
new_ie = NULL;
old_ie = ifmsh->ie;
if (setup->ie_len) {
new_ie = kmemdup(setup->ie, setup->ie_len,
GFP_KERNEL);
if (!new_ie)
return -ENOMEM;
}
ifmsh->ie_len = setup->ie_len;
ifmsh->ie = new_ie;
kfree(old_ie);
/* now copy the rest of the setup parameters */
ifmsh->mesh_id_len = setup->mesh_id_len;
memcpy(ifmsh->mesh_id, setup->mesh_id, ifmsh->mesh_id_len);
ifmsh->mesh_sp_id = setup->sync_method;
ifmsh->mesh_pp_id = setup->path_sel_proto;
ifmsh->mesh_pm_id = setup->path_metric;
ifmsh->user_mpm = setup->user_mpm;
ifmsh->mesh_auth_id = setup->auth_id;
ifmsh->security = IEEE80211_MESH_SEC_NONE;
if (setup->is_authenticated)
ifmsh->security |= IEEE80211_MESH_SEC_AUTHED;
if (setup->is_secure)
ifmsh->security |= IEEE80211_MESH_SEC_SECURED;
/* mcast rate setting in Mesh Node */
memcpy(sdata->vif.bss_conf.mcast_rate, setup->mcast_rate,
sizeof(setup->mcast_rate));
sdata->vif.bss_conf.basic_rates = setup->basic_rates;
sdata->vif.bss_conf.beacon_int = setup->beacon_interval;
sdata->vif.bss_conf.dtim_period = setup->dtim_period;
return 0;
}
static int ieee80211_update_mesh_config(struct wiphy *wiphy,
struct net_device *dev, u32 mask,
const struct mesh_config *nconf)
{
struct mesh_config *conf;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_mesh *ifmsh;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifmsh = &sdata->u.mesh;
/* Set the config options which we are interested in setting */
conf = &(sdata->u.mesh.mshcfg);
if (_chg_mesh_attr(NL80211_MESHCONF_RETRY_TIMEOUT, mask))
conf->dot11MeshRetryTimeout = nconf->dot11MeshRetryTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_CONFIRM_TIMEOUT, mask))
conf->dot11MeshConfirmTimeout = nconf->dot11MeshConfirmTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HOLDING_TIMEOUT, mask))
conf->dot11MeshHoldingTimeout = nconf->dot11MeshHoldingTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_MAX_PEER_LINKS, mask))
conf->dot11MeshMaxPeerLinks = nconf->dot11MeshMaxPeerLinks;
if (_chg_mesh_attr(NL80211_MESHCONF_MAX_RETRIES, mask))
conf->dot11MeshMaxRetries = nconf->dot11MeshMaxRetries;
if (_chg_mesh_attr(NL80211_MESHCONF_TTL, mask))
conf->dot11MeshTTL = nconf->dot11MeshTTL;
if (_chg_mesh_attr(NL80211_MESHCONF_ELEMENT_TTL, mask))
conf->element_ttl = nconf->element_ttl;
if (_chg_mesh_attr(NL80211_MESHCONF_AUTO_OPEN_PLINKS, mask)) {
if (ifmsh->user_mpm)
return -EBUSY;
conf->auto_open_plinks = nconf->auto_open_plinks;
}
if (_chg_mesh_attr(NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, mask))
conf->dot11MeshNbrOffsetMaxNeighbor =
nconf->dot11MeshNbrOffsetMaxNeighbor;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, mask))
conf->dot11MeshHWMPmaxPREQretries =
nconf->dot11MeshHWMPmaxPREQretries;
if (_chg_mesh_attr(NL80211_MESHCONF_PATH_REFRESH_TIME, mask))
conf->path_refresh_time = nconf->path_refresh_time;
if (_chg_mesh_attr(NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, mask))
conf->min_discovery_timeout = nconf->min_discovery_timeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, mask))
conf->dot11MeshHWMPactivePathTimeout =
nconf->dot11MeshHWMPactivePathTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, mask))
conf->dot11MeshHWMPpreqMinInterval =
nconf->dot11MeshHWMPpreqMinInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, mask))
conf->dot11MeshHWMPperrMinInterval =
nconf->dot11MeshHWMPperrMinInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME,
mask))
conf->dot11MeshHWMPnetDiameterTraversalTime =
nconf->dot11MeshHWMPnetDiameterTraversalTime;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOTMODE, mask)) {
conf->dot11MeshHWMPRootMode = nconf->dot11MeshHWMPRootMode;
ieee80211_mesh_root_setup(ifmsh);
}
if (_chg_mesh_attr(NL80211_MESHCONF_GATE_ANNOUNCEMENTS, mask)) {
/* our current gate announcement implementation rides on root
* announcements, so require this ifmsh to also be a root node
* */
if (nconf->dot11MeshGateAnnouncementProtocol &&
!(conf->dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT)) {
conf->dot11MeshHWMPRootMode = IEEE80211_PROACTIVE_RANN;
ieee80211_mesh_root_setup(ifmsh);
}
conf->dot11MeshGateAnnouncementProtocol =
nconf->dot11MeshGateAnnouncementProtocol;
}
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_RANN_INTERVAL, mask))
conf->dot11MeshHWMPRannInterval =
nconf->dot11MeshHWMPRannInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_FORWARDING, mask))
conf->dot11MeshForwarding = nconf->dot11MeshForwarding;
if (_chg_mesh_attr(NL80211_MESHCONF_RSSI_THRESHOLD, mask)) {
/* our RSSI threshold implementation is supported only for
* devices that report signal in dBm.
*/
if (!ieee80211_hw_check(&sdata->local->hw, SIGNAL_DBM))
return -ENOTSUPP;
conf->rssi_threshold = nconf->rssi_threshold;
}
if (_chg_mesh_attr(NL80211_MESHCONF_HT_OPMODE, mask)) {
conf->ht_opmode = nconf->ht_opmode;
sdata->vif.bss_conf.ht_operation_mode = nconf->ht_opmode;
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_HT);
}
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, mask))
conf->dot11MeshHWMPactivePathToRootTimeout =
nconf->dot11MeshHWMPactivePathToRootTimeout;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOT_INTERVAL, mask))
conf->dot11MeshHWMProotInterval =
nconf->dot11MeshHWMProotInterval;
if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, mask))
conf->dot11MeshHWMPconfirmationInterval =
nconf->dot11MeshHWMPconfirmationInterval;
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-30 21:14:08 +04:00
if (_chg_mesh_attr(NL80211_MESHCONF_POWER_MODE, mask)) {
conf->power_mode = nconf->power_mode;
ieee80211_mps_local_status_update(sdata);
}
if (_chg_mesh_attr(NL80211_MESHCONF_AWAKE_WINDOW, mask))
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-30 21:14:08 +04:00
conf->dot11MeshAwakeWindowDuration =
nconf->dot11MeshAwakeWindowDuration;
if (_chg_mesh_attr(NL80211_MESHCONF_PLINK_TIMEOUT, mask))
conf->plink_timeout = nconf->plink_timeout;
ieee80211_mbss_info_change_notify(sdata, BSS_CHANGED_BEACON);
return 0;
}
static int ieee80211_join_mesh(struct wiphy *wiphy, struct net_device *dev,
const struct mesh_config *conf,
const struct mesh_setup *setup)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
int err;
memcpy(&ifmsh->mshcfg, conf, sizeof(struct mesh_config));
err = copy_mesh_setup(ifmsh, setup);
if (err)
return err;
/* can mesh use other SMPS modes? */
sdata->smps_mode = IEEE80211_SMPS_OFF;
sdata->needed_rx_chains = sdata->local->rx_chains;
mutex_lock(&sdata->local->mtx);
err = ieee80211_vif_use_channel(sdata, &setup->chandef,
IEEE80211_CHANCTX_SHARED);
mutex_unlock(&sdata->local->mtx);
if (err)
return err;
return ieee80211_start_mesh(sdata);
}
static int ieee80211_leave_mesh(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ieee80211_stop_mesh(sdata);
mutex_lock(&sdata->local->mtx);
ieee80211_vif_release_channel(sdata);
mutex_unlock(&sdata->local->mtx);
return 0;
}
#endif
static int ieee80211_change_bss(struct wiphy *wiphy,
struct net_device *dev,
struct bss_parameters *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
enum ieee80211_band band;
u32 changed = 0;
if (!sdata_dereference(sdata->u.ap.beacon, sdata))
return -ENOENT;
band = ieee80211_get_sdata_band(sdata);
if (params->use_cts_prot >= 0) {
sdata->vif.bss_conf.use_cts_prot = params->use_cts_prot;
changed |= BSS_CHANGED_ERP_CTS_PROT;
}
if (params->use_short_preamble >= 0) {
sdata->vif.bss_conf.use_short_preamble =
params->use_short_preamble;
changed |= BSS_CHANGED_ERP_PREAMBLE;
}
if (!sdata->vif.bss_conf.use_short_slot &&
band == IEEE80211_BAND_5GHZ) {
sdata->vif.bss_conf.use_short_slot = true;
changed |= BSS_CHANGED_ERP_SLOT;
}
if (params->use_short_slot_time >= 0) {
sdata->vif.bss_conf.use_short_slot =
params->use_short_slot_time;
changed |= BSS_CHANGED_ERP_SLOT;
}
if (params->basic_rates) {
ieee80211_parse_bitrates(&sdata->vif.bss_conf.chandef,
wiphy->bands[band],
params->basic_rates,
params->basic_rates_len,
&sdata->vif.bss_conf.basic_rates);
changed |= BSS_CHANGED_BASIC_RATES;
}
if (params->ap_isolate >= 0) {
if (params->ap_isolate)
sdata->flags |= IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
else
sdata->flags &= ~IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
}
if (params->ht_opmode >= 0) {
sdata->vif.bss_conf.ht_operation_mode =
(u16) params->ht_opmode;
changed |= BSS_CHANGED_HT;
}
if (params->p2p_ctwindow >= 0) {
sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow &=
~IEEE80211_P2P_OPPPS_CTWINDOW_MASK;
sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow |=
params->p2p_ctwindow & IEEE80211_P2P_OPPPS_CTWINDOW_MASK;
changed |= BSS_CHANGED_P2P_PS;
}
if (params->p2p_opp_ps > 0) {
sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow |=
IEEE80211_P2P_OPPPS_ENABLE_BIT;
changed |= BSS_CHANGED_P2P_PS;
} else if (params->p2p_opp_ps == 0) {
sdata->vif.bss_conf.p2p_noa_attr.oppps_ctwindow &=
~IEEE80211_P2P_OPPPS_ENABLE_BIT;
changed |= BSS_CHANGED_P2P_PS;
}
ieee80211_bss_info_change_notify(sdata, changed);
return 0;
}
static int ieee80211_set_txq_params(struct wiphy *wiphy,
struct net_device *dev,
struct ieee80211_txq_params *params)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_tx_queue_params p;
if (!local->ops->conf_tx)
return -EOPNOTSUPP;
if (local->hw.queues < IEEE80211_NUM_ACS)
return -EOPNOTSUPP;
memset(&p, 0, sizeof(p));
p.aifs = params->aifs;
p.cw_max = params->cwmax;
p.cw_min = params->cwmin;
p.txop = params->txop;
/*
* Setting tx queue params disables u-apsd because it's only
* called in master mode.
*/
p.uapsd = false;
sdata->tx_conf[params->ac] = p;
if (drv_conf_tx(local, sdata, params->ac, &p)) {
wiphy_debug(local->hw.wiphy,
"failed to set TX queue parameters for AC %d\n",
params->ac);
return -EINVAL;
}
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_QOS);
return 0;
}
#ifdef CONFIG_PM
static int ieee80211_suspend(struct wiphy *wiphy,
struct cfg80211_wowlan *wowlan)
{
return __ieee80211_suspend(wiphy_priv(wiphy), wowlan);
}
static int ieee80211_resume(struct wiphy *wiphy)
{
return __ieee80211_resume(wiphy_priv(wiphy));
}
#else
#define ieee80211_suspend NULL
#define ieee80211_resume NULL
#endif
static int ieee80211_scan(struct wiphy *wiphy,
struct cfg80211_scan_request *req)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_WDEV_TO_SUB_IF(req->wdev);
switch (ieee80211_vif_type_p2p(&sdata->vif)) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_DEVICE:
break;
case NL80211_IFTYPE_P2P_GO:
if (sdata->local->ops->hw_scan)
break;
/*
* FIXME: implement NoA while scanning in software,
* for now fall through to allow scanning only when
* beaconing hasn't been configured yet
*/
case NL80211_IFTYPE_AP:
/*
* If the scan has been forced (and the driver supports
* forcing), don't care about being beaconing already.
* This will create problems to the attached stations (e.g. all
* the frames sent while scanning on other channel will be
* lost)
*/
if (sdata->u.ap.beacon &&
(!(wiphy->features & NL80211_FEATURE_AP_SCAN) ||
!(req->flags & NL80211_SCAN_FLAG_AP)))
return -EOPNOTSUPP;
break;
default:
return -EOPNOTSUPP;
}
return ieee80211_request_scan(sdata, req);
}
static int
ieee80211_sched_scan_start(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_sched_scan_request *req)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata->local->ops->sched_scan_start)
return -EOPNOTSUPP;
return ieee80211_request_sched_scan_start(sdata, req);
}
static int
ieee80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (!local->ops->sched_scan_stop)
return -EOPNOTSUPP;
return ieee80211_request_sched_scan_stop(local);
}
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
static int ieee80211_auth(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_auth_request *req)
{
return ieee80211_mgd_auth(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
}
static int ieee80211_assoc(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_assoc_request *req)
{
return ieee80211_mgd_assoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
}
static int ieee80211_deauth(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_deauth_request *req)
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
{
return ieee80211_mgd_deauth(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
}
static int ieee80211_disassoc(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_disassoc_request *req)
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
{
return ieee80211_mgd_disassoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
}
static int ieee80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params)
{
return ieee80211_ibss_join(IEEE80211_DEV_TO_SUB_IF(dev), params);
}
static int ieee80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
{
return ieee80211_ibss_leave(IEEE80211_DEV_TO_SUB_IF(dev));
}
static int ieee80211_join_ocb(struct wiphy *wiphy, struct net_device *dev,
struct ocb_setup *setup)
{
return ieee80211_ocb_join(IEEE80211_DEV_TO_SUB_IF(dev), setup);
}
static int ieee80211_leave_ocb(struct wiphy *wiphy, struct net_device *dev)
{
return ieee80211_ocb_leave(IEEE80211_DEV_TO_SUB_IF(dev));
}
static int ieee80211_set_mcast_rate(struct wiphy *wiphy, struct net_device *dev,
int rate[IEEE80211_NUM_BANDS])
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(sdata->vif.bss_conf.mcast_rate, rate,
sizeof(int) * IEEE80211_NUM_BANDS);
return 0;
}
static int ieee80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
int err;
if (changed & WIPHY_PARAM_FRAG_THRESHOLD) {
ieee80211_check_fast_xmit_all(local);
err = drv_set_frag_threshold(local, wiphy->frag_threshold);
if (err) {
ieee80211_check_fast_xmit_all(local);
return err;
}
}
if ((changed & WIPHY_PARAM_COVERAGE_CLASS) ||
(changed & WIPHY_PARAM_DYN_ACK)) {
s16 coverage_class;
coverage_class = changed & WIPHY_PARAM_COVERAGE_CLASS ?
wiphy->coverage_class : -1;
err = drv_set_coverage_class(local, coverage_class);
if (err)
return err;
}
if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
err = drv_set_rts_threshold(local, wiphy->rts_threshold);
if (err)
return err;
}
if (changed & WIPHY_PARAM_RETRY_SHORT) {
if (wiphy->retry_short > IEEE80211_MAX_TX_RETRY)
return -EINVAL;
local->hw.conf.short_frame_max_tx_count = wiphy->retry_short;
}
if (changed & WIPHY_PARAM_RETRY_LONG) {
if (wiphy->retry_long > IEEE80211_MAX_TX_RETRY)
return -EINVAL;
local->hw.conf.long_frame_max_tx_count = wiphy->retry_long;
}
if (changed &
(WIPHY_PARAM_RETRY_SHORT | WIPHY_PARAM_RETRY_LONG))
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_RETRY_LIMITS);
return 0;
}
static int ieee80211_set_tx_power(struct wiphy *wiphy,
struct wireless_dev *wdev,
enum nl80211_tx_power_setting type, int mbm)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata;
enum nl80211_tx_power_setting txp_type = type;
bool update_txp_type = false;
if (wdev) {
sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
sdata->user_power_level = IEEE80211_UNSET_POWER_LEVEL;
txp_type = NL80211_TX_POWER_LIMITED;
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (mbm < 0 || (mbm % 100))
return -EOPNOTSUPP;
sdata->user_power_level = MBM_TO_DBM(mbm);
break;
}
if (txp_type != sdata->vif.bss_conf.txpower_type) {
update_txp_type = true;
sdata->vif.bss_conf.txpower_type = txp_type;
}
ieee80211_recalc_txpower(sdata, update_txp_type);
return 0;
}
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
local->user_power_level = IEEE80211_UNSET_POWER_LEVEL;
txp_type = NL80211_TX_POWER_LIMITED;
break;
case NL80211_TX_POWER_LIMITED:
case NL80211_TX_POWER_FIXED:
if (mbm < 0 || (mbm % 100))
return -EOPNOTSUPP;
local->user_power_level = MBM_TO_DBM(mbm);
break;
}
mutex_lock(&local->iflist_mtx);
list_for_each_entry(sdata, &local->interfaces, list) {
sdata->user_power_level = local->user_power_level;
if (txp_type != sdata->vif.bss_conf.txpower_type)
update_txp_type = true;
sdata->vif.bss_conf.txpower_type = txp_type;
}
list_for_each_entry(sdata, &local->interfaces, list)
ieee80211_recalc_txpower(sdata, update_txp_type);
mutex_unlock(&local->iflist_mtx);
return 0;
}
static int ieee80211_get_tx_power(struct wiphy *wiphy,
struct wireless_dev *wdev,
int *dbm)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
if (local->ops->get_txpower)
return drv_get_txpower(local, sdata, dbm);
if (!local->use_chanctx)
*dbm = local->hw.conf.power_level;
else
*dbm = sdata->vif.bss_conf.txpower;
return 0;
}
static int ieee80211_set_wds_peer(struct wiphy *wiphy, struct net_device *dev,
const u8 *addr)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(&sdata->u.wds.remote_addr, addr, ETH_ALEN);
return 0;
}
static void ieee80211_rfkill_poll(struct wiphy *wiphy)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
drv_rfkill_poll(local);
}
#ifdef CONFIG_NL80211_TESTMODE
static int ieee80211_testmode_cmd(struct wiphy *wiphy,
struct wireless_dev *wdev,
void *data, int len)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_vif *vif = NULL;
if (!local->ops->testmode_cmd)
return -EOPNOTSUPP;
if (wdev) {
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
if (sdata->flags & IEEE80211_SDATA_IN_DRIVER)
vif = &sdata->vif;
}
return local->ops->testmode_cmd(&local->hw, vif, data, len);
}
static int ieee80211_testmode_dump(struct wiphy *wiphy,
struct sk_buff *skb,
struct netlink_callback *cb,
void *data, int len)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (!local->ops->testmode_dump)
return -EOPNOTSUPP;
return local->ops->testmode_dump(&local->hw, skb, cb, data, len);
}
#endif
int __ieee80211_request_smps_ap(struct ieee80211_sub_if_data *sdata,
enum ieee80211_smps_mode smps_mode)
{
struct sta_info *sta;
enum ieee80211_smps_mode old_req;
if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_AP))
return -EINVAL;
if (sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT)
return 0;
old_req = sdata->u.ap.req_smps;
sdata->u.ap.req_smps = smps_mode;
/* AUTOMATIC doesn't mean much for AP - don't allow it */
if (old_req == smps_mode ||
smps_mode == IEEE80211_SMPS_AUTOMATIC)
return 0;
/* If no associated stations, there's no need to do anything */
if (!atomic_read(&sdata->u.ap.num_mcast_sta)) {
sdata->smps_mode = smps_mode;
ieee80211_queue_work(&sdata->local->hw, &sdata->recalc_smps);
return 0;
}
ht_dbg(sdata,
"SMPS %d requested in AP mode, sending Action frame to %d stations\n",
smps_mode, atomic_read(&sdata->u.ap.num_mcast_sta));
mutex_lock(&sdata->local->sta_mtx);
list_for_each_entry(sta, &sdata->local->sta_list, list) {
/*
* Only stations associated to our AP and
* associated VLANs
*/
if (sta->sdata->bss != &sdata->u.ap)
continue;
/* This station doesn't support MIMO - skip it */
if (sta_info_tx_streams(sta) == 1)
continue;
/*
* Don't wake up a STA just to send the action frame
* unless we are getting more restrictive.
*/
if (test_sta_flag(sta, WLAN_STA_PS_STA) &&
!ieee80211_smps_is_restrictive(sta->known_smps_mode,
smps_mode)) {
ht_dbg(sdata, "Won't send SMPS to sleeping STA %pM\n",
sta->sta.addr);
continue;
}
/*
* If the STA is not authorized, wait until it gets
* authorized and the action frame will be sent then.
*/
if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
continue;
ht_dbg(sdata, "Sending SMPS to %pM\n", sta->sta.addr);
ieee80211_send_smps_action(sdata, smps_mode, sta->sta.addr,
sdata->vif.bss_conf.bssid);
}
mutex_unlock(&sdata->local->sta_mtx);
sdata->smps_mode = smps_mode;
ieee80211_queue_work(&sdata->local->hw, &sdata->recalc_smps);
return 0;
}
int __ieee80211_request_smps_mgd(struct ieee80211_sub_if_data *sdata,
enum ieee80211_smps_mode smps_mode)
{
const u8 *ap;
enum ieee80211_smps_mode old_req;
int err;
struct sta_info *sta;
bool tdls_peer_found = false;
lockdep_assert_held(&sdata->wdev.mtx);
if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION))
return -EINVAL;
old_req = sdata->u.mgd.req_smps;
sdata->u.mgd.req_smps = smps_mode;
if (old_req == smps_mode &&
smps_mode != IEEE80211_SMPS_AUTOMATIC)
return 0;
/*
* If not associated, or current association is not an HT
* association, there's no need to do anything, just store
* the new value until we associate.
*/
if (!sdata->u.mgd.associated ||
sdata->vif.bss_conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT)
return 0;
ap = sdata->u.mgd.associated->bssid;
rcu_read_lock();
list_for_each_entry_rcu(sta, &sdata->local->sta_list, list) {
if (!sta->sta.tdls || sta->sdata != sdata || !sta->uploaded ||
!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
continue;
tdls_peer_found = true;
break;
}
rcu_read_unlock();
if (smps_mode == IEEE80211_SMPS_AUTOMATIC) {
if (tdls_peer_found || !sdata->u.mgd.powersave)
smps_mode = IEEE80211_SMPS_OFF;
else
smps_mode = IEEE80211_SMPS_DYNAMIC;
}
/* send SM PS frame to AP */
err = ieee80211_send_smps_action(sdata, smps_mode,
ap, ap);
if (err)
sdata->u.mgd.req_smps = old_req;
else if (smps_mode != IEEE80211_SMPS_OFF && tdls_peer_found)
ieee80211_teardown_tdls_peers(sdata);
return err;
}
static int ieee80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
bool enabled, int timeout)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return -EOPNOTSUPP;
if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS))
return -EOPNOTSUPP;
if (enabled == sdata->u.mgd.powersave &&
timeout == local->dynamic_ps_forced_timeout)
return 0;
sdata->u.mgd.powersave = enabled;
local->dynamic_ps_forced_timeout = timeout;
/* no change, but if automatic follow powersave */
sdata_lock(sdata);
__ieee80211_request_smps_mgd(sdata, sdata->u.mgd.req_smps);
sdata_unlock(sdata);
if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
ieee80211_recalc_ps(local);
ieee80211_recalc_ps_vif(sdata);
return 0;
}
static int ieee80211_set_cqm_rssi_config(struct wiphy *wiphy,
struct net_device *dev,
s32 rssi_thold, u32 rssi_hyst)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_vif *vif = &sdata->vif;
struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
if (rssi_thold == bss_conf->cqm_rssi_thold &&
rssi_hyst == bss_conf->cqm_rssi_hyst)
return 0;
if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER &&
!(sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI))
return -EOPNOTSUPP;
bss_conf->cqm_rssi_thold = rssi_thold;
bss_conf->cqm_rssi_hyst = rssi_hyst;
sdata->u.mgd.last_cqm_event_signal = 0;
/* tell the driver upon association, unless already associated */
if (sdata->u.mgd.associated &&
sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_CQM);
return 0;
}
static int ieee80211_set_bitrate_mask(struct wiphy *wiphy,
struct net_device *dev,
const u8 *addr,
const struct cfg80211_bitrate_mask *mask)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int i, ret;
mac80211: check sdata_running on ieee80211_set_bitrate_mask Otherwise, we might call the driver callback before the interface was uploaded. Solves the following warning: WARNING: at net/mac80211/driver-ops.h:12 ieee80211_set_bitrate_mask+0xbc/0x18c [mac80211]() wlan0: Failed check-sdata-in-driver check, flags: 0x0 Modules linked in: wlcore_sdio wl12xx wl18xx wlcore mac80211 cfg80211 [last unloaded: cfg80211] [<c001b964>] (unwind_backtrace+0x0/0x12c) from [<c0495550>] (dump_stack+0x20/0x24) [<c0495550>] (dump_stack+0x20/0x24) from [<c003ee28>] (warn_slowpath_common+0x5c/0x74) [<c003ee28>] (warn_slowpath_common+0x5c/0x74) from [<c003eefc>] (warn_slowpath_fmt+0x40/0x48) [<c003eefc>] (warn_slowpath_fmt+0x40/0x48) from [<bf5c1ad0>] (ieee80211_set_bitrate_mask+0xbc/0x18c [mac80211]) [<bf5c1ad0>] (ieee80211_set_bitrate_mask+0xbc/0x18c [mac80211]) from [<bf575960>] (nl80211_set_tx_bitrate_mask+0x350/0x358 [cfg80211]) [<bf575960>] (nl80211_set_tx_bitrate_mask+0x350/0x358 [cfg80211]) from [<c03e9e94>] (genl_rcv_msg+0x1a8/0x1e8) [<c03e9e94>] (genl_rcv_msg+0x1a8/0x1e8) from [<c03e9164>] (netlink_rcv_skb+0x5c/0xc0) [<c03e9164>] (netlink_rcv_skb+0x5c/0xc0) from [<c03e9ce0>] (genl_rcv+0x28/0x34) [<c03e9ce0>] (genl_rcv+0x28/0x34) from [<c03e8e74>] (netlink_unicast+0x158/0x234) [<c03e8e74>] (netlink_unicast+0x158/0x234) from [<c03e93e0>] (netlink_sendmsg+0x218/0x298) [<c03e93e0>] (netlink_sendmsg+0x218/0x298) from [<c03b4e5c>] (sock_sendmsg+0xa4/0xc0) [<c03b4e5c>] (sock_sendmsg+0xa4/0xc0) from [<c03b5af4>] (__sys_sendmsg+0x1d8/0x254) [<c03b5af4>] (__sys_sendmsg+0x1d8/0x254) from [<c03b5ca8>] (sys_sendmsg+0x4c/0x70) [<c03b5ca8>] (sys_sendmsg+0x4c/0x70) from [<c0013980>] (ret_fast_syscall+0x0/0x3c) Note that calling the driver can also result in undefined behaviour since it doesn't have to deal with calls while down. Signed-off-by: Eliad Peller <eliad@wizery.com> [removed timestamps, added note - Johannes] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2012-06-12 13:41:15 +04:00
if (!ieee80211_sdata_running(sdata))
return -ENETDOWN;
if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) {
ret = drv_set_bitrate_mask(local, sdata, mask);
if (ret)
return ret;
}
for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
struct ieee80211_supported_band *sband = wiphy->bands[i];
int j;
sdata->rc_rateidx_mask[i] = mask->control[i].legacy;
memcpy(sdata->rc_rateidx_mcs_mask[i], mask->control[i].ht_mcs,
sizeof(mask->control[i].ht_mcs));
memcpy(sdata->rc_rateidx_vht_mcs_mask[i],
mask->control[i].vht_mcs,
sizeof(mask->control[i].vht_mcs));
sdata->rc_has_mcs_mask[i] = false;
sdata->rc_has_vht_mcs_mask[i] = false;
if (!sband)
continue;
for (j = 0; j < IEEE80211_HT_MCS_MASK_LEN; j++) {
if (~sdata->rc_rateidx_mcs_mask[i][j]) {
sdata->rc_has_mcs_mask[i] = true;
break;
}
}
for (j = 0; j < NL80211_VHT_NSS_MAX; j++) {
if (~sdata->rc_rateidx_vht_mcs_mask[i][j]) {
sdata->rc_has_vht_mcs_mask[i] = true;
break;
}
}
}
return 0;
}
static bool ieee80211_coalesce_started_roc(struct ieee80211_local *local,
struct ieee80211_roc_work *new_roc,
struct ieee80211_roc_work *cur_roc)
{
unsigned long now = jiffies;
unsigned long remaining = cur_roc->hw_start_time +
msecs_to_jiffies(cur_roc->duration) -
now;
if (WARN_ON(!cur_roc->started || !cur_roc->hw_begun))
return false;
/* if it doesn't fit entirely, schedule a new one */
if (new_roc->duration > jiffies_to_msecs(remaining))
return false;
ieee80211_handle_roc_started(new_roc);
/* add to dependents so we send the expired event properly */
list_add_tail(&new_roc->list, &cur_roc->dependents);
return true;
}
static u64 ieee80211_mgmt_tx_cookie(struct ieee80211_local *local)
{
lockdep_assert_held(&local->mtx);
local->roc_cookie_counter++;
/* wow, you wrapped 64 bits ... more likely a bug */
if (WARN_ON(local->roc_cookie_counter == 0))
local->roc_cookie_counter++;
return local->roc_cookie_counter;
}
static int ieee80211_start_roc_work(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct ieee80211_channel *channel,
unsigned int duration, u64 *cookie,
struct sk_buff *txskb,
enum ieee80211_roc_type type)
{
struct ieee80211_roc_work *roc, *tmp;
bool queued = false;
int ret;
lockdep_assert_held(&local->mtx);
if (local->use_chanctx && !local->ops->remain_on_channel)
return -EOPNOTSUPP;
roc = kzalloc(sizeof(*roc), GFP_KERNEL);
if (!roc)
return -ENOMEM;
/*
* If the duration is zero, then the driver
* wouldn't actually do anything. Set it to
* 10 for now.
*
* TODO: cancel the off-channel operation
* when we get the SKB's TX status and
* the wait time was zero before.
*/
if (!duration)
duration = 10;
roc->chan = channel;
roc->duration = duration;
roc->req_duration = duration;
roc->frame = txskb;
roc->type = type;
roc->sdata = sdata;
INIT_DELAYED_WORK(&roc->work, ieee80211_sw_roc_work);
INIT_LIST_HEAD(&roc->dependents);
/*
* cookie is either the roc cookie (for normal roc)
* or the SKB (for mgmt TX)
*/
if (!txskb) {
roc->cookie = ieee80211_mgmt_tx_cookie(local);
*cookie = roc->cookie;
} else {
roc->mgmt_tx_cookie = *cookie;
}
/* if there's one pending or we're scanning, queue this one */
if (!list_empty(&local->roc_list) ||
local->scanning || ieee80211_is_radar_required(local))
goto out_check_combine;
/* if not HW assist, just queue & schedule work */
if (!local->ops->remain_on_channel) {
ieee80211_queue_delayed_work(&local->hw, &roc->work, 0);
goto out_queue;
}
/* otherwise actually kick it off here (for error handling) */
ret = drv_remain_on_channel(local, sdata, channel, duration, type);
if (ret) {
kfree(roc);
return ret;
}
roc->started = true;
goto out_queue;
out_check_combine:
list_for_each_entry(tmp, &local->roc_list, list) {
if (tmp->chan != channel || tmp->sdata != sdata)
continue;
/*
* Extend this ROC if possible:
*
* If it hasn't started yet, just increase the duration
* and add the new one to the list of dependents.
* If the type of the new ROC has higher priority, modify the
* type of the previous one to match that of the new one.
*/
if (!tmp->started) {
list_add_tail(&roc->list, &tmp->dependents);
tmp->duration = max(tmp->duration, roc->duration);
tmp->type = max(tmp->type, roc->type);
queued = true;
break;
}
/* If it has already started, it's more difficult ... */
if (local->ops->remain_on_channel) {
/*
* In the offloaded ROC case, if it hasn't begun, add
* this new one to the dependent list to be handled
* when the master one begins. If it has begun,
* check if it fits entirely within the existing one,
* in which case it will just be dependent as well.
* Otherwise, schedule it by itself.
*/
if (!tmp->hw_begun) {
list_add_tail(&roc->list, &tmp->dependents);
queued = true;
break;
}
if (ieee80211_coalesce_started_roc(local, roc, tmp))
queued = true;
} else if (del_timer_sync(&tmp->work.timer)) {
unsigned long new_end;
/*
* In the software ROC case, cancel the timer, if
* that fails then the finish work is already
* queued/pending and thus we queue the new ROC
* normally, if that succeeds then we can extend
* the timer duration and TX the frame (if any.)
*/
list_add_tail(&roc->list, &tmp->dependents);
queued = true;
new_end = jiffies + msecs_to_jiffies(roc->duration);
/* ok, it was started & we canceled timer */
if (time_after(new_end, tmp->work.timer.expires))
mod_timer(&tmp->work.timer, new_end);
else
add_timer(&tmp->work.timer);
ieee80211_handle_roc_started(roc);
}
break;
}
out_queue:
if (!queued)
list_add_tail(&roc->list, &local->roc_list);
return 0;
}
static int ieee80211_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct ieee80211_channel *chan,
unsigned int duration,
u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
int ret;
mutex_lock(&local->mtx);
ret = ieee80211_start_roc_work(local, sdata, chan,
duration, cookie, NULL,
IEEE80211_ROC_TYPE_NORMAL);
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_cancel_roc(struct ieee80211_local *local,
u64 cookie, bool mgmt_tx)
{
struct ieee80211_roc_work *roc, *tmp, *found = NULL;
int ret;
mutex_lock(&local->mtx);
list_for_each_entry_safe(roc, tmp, &local->roc_list, list) {
struct ieee80211_roc_work *dep, *tmp2;
list_for_each_entry_safe(dep, tmp2, &roc->dependents, list) {
if (!mgmt_tx && dep->cookie != cookie)
continue;
else if (mgmt_tx && dep->mgmt_tx_cookie != cookie)
continue;
/* found dependent item -- just remove it */
list_del(&dep->list);
mutex_unlock(&local->mtx);
ieee80211_roc_notify_destroy(dep, true);
return 0;
}
if (!mgmt_tx && roc->cookie != cookie)
continue;
else if (mgmt_tx && roc->mgmt_tx_cookie != cookie)
continue;
found = roc;
break;
}
if (!found) {
mutex_unlock(&local->mtx);
return -ENOENT;
}
/*
* We found the item to cancel, so do that. Note that it
* may have dependents, which we also cancel (and send
* the expired signal for.) Not doing so would be quite
* tricky here, but we may need to fix it later.
*/
if (local->ops->remain_on_channel) {
if (found->started) {
ret = drv_cancel_remain_on_channel(local);
if (WARN_ON_ONCE(ret)) {
mutex_unlock(&local->mtx);
return ret;
}
}
list_del(&found->list);
if (found->started)
ieee80211_start_next_roc(local);
mutex_unlock(&local->mtx);
ieee80211_roc_notify_destroy(found, true);
} else {
/* work may be pending so use it all the time */
found->abort = true;
ieee80211_queue_delayed_work(&local->hw, &found->work, 0);
mutex_unlock(&local->mtx);
/* work will clean up etc */
flush_delayed_work(&found->work);
WARN_ON(!found->to_be_freed);
kfree(found);
}
return 0;
}
static int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
return ieee80211_cancel_roc(local, cookie, false);
}
static int ieee80211_start_radar_detection(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_chan_def *chandef,
u32 cac_time_ms)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
int err;
mutex_lock(&local->mtx);
if (!list_empty(&local->roc_list) || local->scanning) {
err = -EBUSY;
goto out_unlock;
}
/* whatever, but channel contexts should not complain about that one */
sdata->smps_mode = IEEE80211_SMPS_OFF;
sdata->needed_rx_chains = local->rx_chains;
err = ieee80211_vif_use_channel(sdata, chandef,
IEEE80211_CHANCTX_SHARED);
if (err)
goto out_unlock;
ieee80211_queue_delayed_work(&sdata->local->hw,
&sdata->dfs_cac_timer_work,
msecs_to_jiffies(cac_time_ms));
out_unlock:
mutex_unlock(&local->mtx);
return err;
}
static struct cfg80211_beacon_data *
cfg80211_beacon_dup(struct cfg80211_beacon_data *beacon)
{
struct cfg80211_beacon_data *new_beacon;
u8 *pos;
int len;
len = beacon->head_len + beacon->tail_len + beacon->beacon_ies_len +
beacon->proberesp_ies_len + beacon->assocresp_ies_len +
beacon->probe_resp_len;
new_beacon = kzalloc(sizeof(*new_beacon) + len, GFP_KERNEL);
if (!new_beacon)
return NULL;
pos = (u8 *)(new_beacon + 1);
if (beacon->head_len) {
new_beacon->head_len = beacon->head_len;
new_beacon->head = pos;
memcpy(pos, beacon->head, beacon->head_len);
pos += beacon->head_len;
}
if (beacon->tail_len) {
new_beacon->tail_len = beacon->tail_len;
new_beacon->tail = pos;
memcpy(pos, beacon->tail, beacon->tail_len);
pos += beacon->tail_len;
}
if (beacon->beacon_ies_len) {
new_beacon->beacon_ies_len = beacon->beacon_ies_len;
new_beacon->beacon_ies = pos;
memcpy(pos, beacon->beacon_ies, beacon->beacon_ies_len);
pos += beacon->beacon_ies_len;
}
if (beacon->proberesp_ies_len) {
new_beacon->proberesp_ies_len = beacon->proberesp_ies_len;
new_beacon->proberesp_ies = pos;
memcpy(pos, beacon->proberesp_ies, beacon->proberesp_ies_len);
pos += beacon->proberesp_ies_len;
}
if (beacon->assocresp_ies_len) {
new_beacon->assocresp_ies_len = beacon->assocresp_ies_len;
new_beacon->assocresp_ies = pos;
memcpy(pos, beacon->assocresp_ies, beacon->assocresp_ies_len);
pos += beacon->assocresp_ies_len;
}
if (beacon->probe_resp_len) {
new_beacon->probe_resp_len = beacon->probe_resp_len;
beacon->probe_resp = pos;
memcpy(pos, beacon->probe_resp, beacon->probe_resp_len);
pos += beacon->probe_resp_len;
}
return new_beacon;
}
void ieee80211_csa_finish(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
ieee80211_queue_work(&sdata->local->hw,
&sdata->csa_finalize_work);
}
EXPORT_SYMBOL(ieee80211_csa_finish);
static int ieee80211_set_after_csa_beacon(struct ieee80211_sub_if_data *sdata,
u32 *changed)
{
int err;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP:
err = ieee80211_assign_beacon(sdata, sdata->u.ap.next_beacon,
NULL);
kfree(sdata->u.ap.next_beacon);
sdata->u.ap.next_beacon = NULL;
if (err < 0)
return err;
*changed |= err;
break;
case NL80211_IFTYPE_ADHOC:
err = ieee80211_ibss_finish_csa(sdata);
if (err < 0)
return err;
*changed |= err;
break;
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT:
err = ieee80211_mesh_finish_csa(sdata);
if (err < 0)
return err;
*changed |= err;
break;
#endif
default:
WARN_ON(1);
return -EINVAL;
}
return 0;
}
static int __ieee80211_csa_finalize(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
u32 changed = 0;
int err;
sdata_assert_lock(sdata);
lockdep_assert_held(&local->mtx);
lockdep_assert_held(&local->chanctx_mtx);
/*
* using reservation isn't immediate as it may be deferred until later
* with multi-vif. once reservation is complete it will re-schedule the
* work with no reserved_chanctx so verify chandef to check if it
* completed successfully
*/
if (sdata->reserved_chanctx) {
/*
* with multi-vif csa driver may call ieee80211_csa_finish()
* many times while waiting for other interfaces to use their
* reservations
*/
if (sdata->reserved_ready)
return 0;
return ieee80211_vif_use_reserved_context(sdata);
}
if (!cfg80211_chandef_identical(&sdata->vif.bss_conf.chandef,
&sdata->csa_chandef))
return -EINVAL;
sdata->vif.csa_active = false;
err = ieee80211_set_after_csa_beacon(sdata, &changed);
if (err)
return err;
ieee80211_bss_info_change_notify(sdata, changed);
if (sdata->csa_block_tx) {
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
sdata->csa_block_tx = false;
}
err = drv_post_channel_switch(sdata);
if (err)
return err;
cfg80211_ch_switch_notify(sdata->dev, &sdata->csa_chandef);
return 0;
}
static void ieee80211_csa_finalize(struct ieee80211_sub_if_data *sdata)
{
if (__ieee80211_csa_finalize(sdata)) {
sdata_info(sdata, "failed to finalize CSA, disconnecting\n");
cfg80211_stop_iface(sdata->local->hw.wiphy, &sdata->wdev,
GFP_KERNEL);
}
}
void ieee80211_csa_finalize_work(struct work_struct *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data,
csa_finalize_work);
struct ieee80211_local *local = sdata->local;
sdata_lock(sdata);
mutex_lock(&local->mtx);
mutex_lock(&local->chanctx_mtx);
/* AP might have been stopped while waiting for the lock. */
if (!sdata->vif.csa_active)
goto unlock;
if (!ieee80211_sdata_running(sdata))
goto unlock;
ieee80211_csa_finalize(sdata);
unlock:
mutex_unlock(&local->chanctx_mtx);
mutex_unlock(&local->mtx);
sdata_unlock(sdata);
}
static int ieee80211_set_csa_beacon(struct ieee80211_sub_if_data *sdata,
struct cfg80211_csa_settings *params,
u32 *changed)
{
struct ieee80211_csa_settings csa = {};
int err;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP:
sdata->u.ap.next_beacon =
cfg80211_beacon_dup(&params->beacon_after);
if (!sdata->u.ap.next_beacon)
return -ENOMEM;
/*
* With a count of 0, we don't have to wait for any
* TBTT before switching, so complete the CSA
* immediately. In theory, with a count == 1 we
* should delay the switch until just before the next
* TBTT, but that would complicate things so we switch
* immediately too. If we would delay the switch
* until the next TBTT, we would have to set the probe
* response here.
*
* TODO: A channel switch with count <= 1 without
* sending a CSA action frame is kind of useless,
* because the clients won't know we're changing
* channels. The action frame must be implemented
* either here or in the userspace.
*/
if (params->count <= 1)
break;
if ((params->n_counter_offsets_beacon >
IEEE80211_MAX_CSA_COUNTERS_NUM) ||
(params->n_counter_offsets_presp >
IEEE80211_MAX_CSA_COUNTERS_NUM))
return -EINVAL;
csa.counter_offsets_beacon = params->counter_offsets_beacon;
csa.counter_offsets_presp = params->counter_offsets_presp;
csa.n_counter_offsets_beacon = params->n_counter_offsets_beacon;
csa.n_counter_offsets_presp = params->n_counter_offsets_presp;
csa.count = params->count;
err = ieee80211_assign_beacon(sdata, &params->beacon_csa, &csa);
if (err < 0) {
kfree(sdata->u.ap.next_beacon);
return err;
}
*changed |= err;
break;
case NL80211_IFTYPE_ADHOC:
if (!sdata->vif.bss_conf.ibss_joined)
return -EINVAL;
if (params->chandef.width != sdata->u.ibss.chandef.width)
return -EINVAL;
switch (params->chandef.width) {
case NL80211_CHAN_WIDTH_40:
if (cfg80211_get_chandef_type(&params->chandef) !=
cfg80211_get_chandef_type(&sdata->u.ibss.chandef))
return -EINVAL;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
break;
default:
return -EINVAL;
}
/* changes into another band are not supported */
if (sdata->u.ibss.chandef.chan->band !=
params->chandef.chan->band)
return -EINVAL;
/* see comments in the NL80211_IFTYPE_AP block */
if (params->count > 1) {
err = ieee80211_ibss_csa_beacon(sdata, params);
if (err < 0)
return err;
*changed |= err;
}
ieee80211_send_action_csa(sdata, params);
break;
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT: {
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
if (params->chandef.width != sdata->vif.bss_conf.chandef.width)
return -EINVAL;
/* changes into another band are not supported */
if (sdata->vif.bss_conf.chandef.chan->band !=
params->chandef.chan->band)
return -EINVAL;
if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_NONE) {
ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_INIT;
if (!ifmsh->pre_value)
ifmsh->pre_value = 1;
else
ifmsh->pre_value++;
}
/* see comments in the NL80211_IFTYPE_AP block */
if (params->count > 1) {
err = ieee80211_mesh_csa_beacon(sdata, params);
if (err < 0) {
ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_NONE;
return err;
}
*changed |= err;
}
if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_INIT)
ieee80211_send_action_csa(sdata, params);
break;
}
#endif
default:
return -EOPNOTSUPP;
}
return 0;
}
static int
__ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_csa_settings *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct ieee80211_channel_switch ch_switch;
struct ieee80211_chanctx_conf *conf;
struct ieee80211_chanctx *chanctx;
u32 changed = 0;
int err;
sdata_assert_lock(sdata);
lockdep_assert_held(&local->mtx);
if (!list_empty(&local->roc_list) || local->scanning)
return -EBUSY;
if (sdata->wdev.cac_started)
return -EBUSY;
if (cfg80211_chandef_identical(&params->chandef,
&sdata->vif.bss_conf.chandef))
return -EINVAL;
/* don't allow another channel switch if one is already active. */
if (sdata->vif.csa_active)
return -EBUSY;
mutex_lock(&local->chanctx_mtx);
conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
lockdep_is_held(&local->chanctx_mtx));
if (!conf) {
err = -EBUSY;
goto out;
}
chanctx = container_of(conf, struct ieee80211_chanctx, conf);
if (!chanctx) {
err = -EBUSY;
goto out;
}
ch_switch.timestamp = 0;
ch_switch.device_timestamp = 0;
ch_switch.block_tx = params->block_tx;
ch_switch.chandef = params->chandef;
ch_switch.count = params->count;
err = drv_pre_channel_switch(sdata, &ch_switch);
if (err)
goto out;
err = ieee80211_vif_reserve_chanctx(sdata, &params->chandef,
chanctx->mode,
params->radar_required);
if (err)
goto out;
/* if reservation is invalid then this will fail */
err = ieee80211_check_combinations(sdata, NULL, chanctx->mode, 0);
if (err) {
ieee80211_vif_unreserve_chanctx(sdata);
goto out;
}
err = ieee80211_set_csa_beacon(sdata, params, &changed);
if (err) {
ieee80211_vif_unreserve_chanctx(sdata);
goto out;
}
sdata->csa_chandef = params->chandef;
sdata->csa_block_tx = params->block_tx;
sdata->vif.csa_active = true;
if (sdata->csa_block_tx)
ieee80211_stop_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
cfg80211_ch_switch_started_notify(sdata->dev, &sdata->csa_chandef,
params->count);
if (changed) {
ieee80211_bss_info_change_notify(sdata, changed);
drv_channel_switch_beacon(sdata, &params->chandef);
} else {
/* if the beacon didn't change, we can finalize immediately */
ieee80211_csa_finalize(sdata);
}
out:
mutex_unlock(&local->chanctx_mtx);
return err;
}
int ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_csa_settings *params)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
int err;
mutex_lock(&local->mtx);
err = __ieee80211_channel_switch(wiphy, dev, params);
mutex_unlock(&local->mtx);
return err;
}
static struct sk_buff *ieee80211_make_ack_skb(struct ieee80211_local *local,
struct sk_buff *skb, u64 *cookie,
gfp_t gfp)
{
unsigned long spin_flags;
struct sk_buff *ack_skb;
int id;
ack_skb = skb_copy(skb, gfp);
if (!ack_skb)
return ERR_PTR(-ENOMEM);
spin_lock_irqsave(&local->ack_status_lock, spin_flags);
id = idr_alloc(&local->ack_status_frames, ack_skb,
1, 0x10000, GFP_ATOMIC);
spin_unlock_irqrestore(&local->ack_status_lock, spin_flags);
if (id < 0) {
kfree_skb(ack_skb);
return ERR_PTR(-ENOMEM);
}
IEEE80211_SKB_CB(skb)->ack_frame_id = id;
*cookie = ieee80211_mgmt_tx_cookie(local);
IEEE80211_SKB_CB(ack_skb)->ack.cookie = *cookie;
return ack_skb;
}
static int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_mgmt_tx_params *params,
u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb, *ack_skb;
struct sta_info *sta;
const struct ieee80211_mgmt *mgmt = (void *)params->buf;
bool need_offchan = false;
u32 flags;
int ret;
u8 *data;
if (params->dont_wait_for_ack)
flags = IEEE80211_TX_CTL_NO_ACK;
else
flags = IEEE80211_TX_INTFL_NL80211_FRAME_TX |
IEEE80211_TX_CTL_REQ_TX_STATUS;
if (params->no_cck)
flags |= IEEE80211_TX_CTL_NO_CCK_RATE;
switch (sdata->vif.type) {
case NL80211_IFTYPE_ADHOC:
if (!sdata->vif.bss_conf.ibss_joined)
need_offchan = true;
/* fall through */
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT:
if (ieee80211_vif_is_mesh(&sdata->vif) &&
!sdata->u.mesh.mesh_id_len)
need_offchan = true;
/* fall through */
#endif
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_GO:
if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
!ieee80211_vif_is_mesh(&sdata->vif) &&
!rcu_access_pointer(sdata->bss->beacon))
need_offchan = true;
if (!ieee80211_is_action(mgmt->frame_control) ||
mgmt->u.action.category == WLAN_CATEGORY_PUBLIC ||
mgmt->u.action.category == WLAN_CATEGORY_SELF_PROTECTED ||
mgmt->u.action.category == WLAN_CATEGORY_SPECTRUM_MGMT)
break;
rcu_read_lock();
sta = sta_info_get(sdata, mgmt->da);
rcu_read_unlock();
if (!sta)
return -ENOLINK;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
sdata_lock(sdata);
if (!sdata->u.mgd.associated ||
(params->offchan && params->wait &&
local->ops->remain_on_channel &&
memcmp(sdata->u.mgd.associated->bssid,
mgmt->bssid, ETH_ALEN)))
need_offchan = true;
sdata_unlock(sdata);
break;
case NL80211_IFTYPE_P2P_DEVICE:
need_offchan = true;
break;
default:
return -EOPNOTSUPP;
}
/* configurations requiring offchan cannot work if no channel has been
* specified
*/
if (need_offchan && !params->chan)
return -EINVAL;
mutex_lock(&local->mtx);
/* Check if the operating channel is the requested channel */
if (!need_offchan) {
struct ieee80211_chanctx_conf *chanctx_conf;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf) {
need_offchan = params->chan &&
(params->chan !=
chanctx_conf->def.chan);
} else if (!params->chan) {
ret = -EINVAL;
rcu_read_unlock();
goto out_unlock;
} else {
need_offchan = true;
}
rcu_read_unlock();
}
if (need_offchan && !params->offchan) {
ret = -EBUSY;
goto out_unlock;
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom + params->len);
if (!skb) {
ret = -ENOMEM;
goto out_unlock;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
data = skb_put(skb, params->len);
memcpy(data, params->buf, params->len);
/* Update CSA counters */
if (sdata->vif.csa_active &&
(sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_MESH_POINT ||
sdata->vif.type == NL80211_IFTYPE_ADHOC) &&
params->n_csa_offsets) {
int i;
struct beacon_data *beacon = NULL;
rcu_read_lock();
if (sdata->vif.type == NL80211_IFTYPE_AP)
beacon = rcu_dereference(sdata->u.ap.beacon);
else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
beacon = rcu_dereference(sdata->u.ibss.presp);
else if (ieee80211_vif_is_mesh(&sdata->vif))
beacon = rcu_dereference(sdata->u.mesh.beacon);
if (beacon)
for (i = 0; i < params->n_csa_offsets; i++)
data[params->csa_offsets[i]] =
beacon->csa_current_counter;
rcu_read_unlock();
}
IEEE80211_SKB_CB(skb)->flags = flags;
skb->dev = sdata->dev;
if (!params->dont_wait_for_ack) {
/* make a copy to preserve the frame contents
* in case of encryption.
*/
ack_skb = ieee80211_make_ack_skb(local, skb, cookie,
GFP_KERNEL);
if (IS_ERR(ack_skb)) {
ret = PTR_ERR(ack_skb);
kfree_skb(skb);
goto out_unlock;
}
} else {
/* for cookie below */
ack_skb = skb;
}
if (!need_offchan) {
ieee80211_tx_skb(sdata, skb);
ret = 0;
goto out_unlock;
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_TX_OFFCHAN |
IEEE80211_TX_INTFL_OFFCHAN_TX_OK;
if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
IEEE80211_SKB_CB(skb)->hw_queue =
local->hw.offchannel_tx_hw_queue;
/* This will handle all kinds of coalescing and immediate TX */
ret = ieee80211_start_roc_work(local, sdata, params->chan,
params->wait, cookie, skb,
IEEE80211_ROC_TYPE_MGMT_TX);
if (ret)
kfree_skb(skb);
out_unlock:
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return ieee80211_cancel_roc(local, cookie, true);
}
static void ieee80211_mgmt_frame_register(struct wiphy *wiphy,
struct wireless_dev *wdev,
u16 frame_type, bool reg)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
switch (frame_type) {
case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ:
if (reg) {
local->probe_req_reg++;
sdata->vif.probe_req_reg++;
} else {
if (local->probe_req_reg)
local->probe_req_reg--;
if (sdata->vif.probe_req_reg)
sdata->vif.probe_req_reg--;
}
if (!local->open_count)
break;
if (sdata->vif.probe_req_reg == 1)
drv_config_iface_filter(local, sdata, FIF_PROBE_REQ,
FIF_PROBE_REQ);
else if (sdata->vif.probe_req_reg == 0)
drv_config_iface_filter(local, sdata, 0,
FIF_PROBE_REQ);
ieee80211_configure_filter(local);
break;
default:
break;
}
}
static int ieee80211_set_antenna(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
if (local->started)
return -EOPNOTSUPP;
return drv_set_antenna(local, tx_ant, rx_ant);
}
static int ieee80211_get_antenna(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
return drv_get_antenna(local, tx_ant, rx_ant);
}
static int ieee80211_set_rekey_data(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_gtk_rekey_data *data)
{
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!local->ops->set_rekey_data)
return -EOPNOTSUPP;
drv_set_rekey_data(local, sdata, data);
return 0;
}
static int ieee80211_probe_client(struct wiphy *wiphy, struct net_device *dev,
const u8 *peer, u64 *cookie)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct ieee80211_qos_hdr *nullfunc;
struct sk_buff *skb, *ack_skb;
int size = sizeof(*nullfunc);
__le16 fc;
bool qos;
struct ieee80211_tx_info *info;
struct sta_info *sta;
struct ieee80211_chanctx_conf *chanctx_conf;
enum ieee80211_band band;
int ret;
/* the lock is needed to assign the cookie later */
mutex_lock(&local->mtx);
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (WARN_ON(!chanctx_conf)) {
ret = -EINVAL;
goto unlock;
}
band = chanctx_conf->def.chan->band;
sta = sta_info_get_bss(sdata, peer);
if (sta) {
qos = sta->sta.wme;
} else {
ret = -ENOLINK;
goto unlock;
}
if (qos) {
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_QOS_NULLFUNC |
IEEE80211_FCTL_FROMDS);
} else {
size -= 2;
fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_FROMDS);
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
if (!skb) {
ret = -ENOMEM;
goto unlock;
}
skb->dev = dev;
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = (void *) skb_put(skb, size);
nullfunc->frame_control = fc;
nullfunc->duration_id = 0;
memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
nullfunc->seq_ctrl = 0;
info = IEEE80211_SKB_CB(skb);
info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_INTFL_NL80211_FRAME_TX;
info->band = band;
skb_set_queue_mapping(skb, IEEE80211_AC_VO);
skb->priority = 7;
if (qos)
nullfunc->qos_ctrl = cpu_to_le16(7);
ack_skb = ieee80211_make_ack_skb(local, skb, cookie, GFP_ATOMIC);
if (IS_ERR(ack_skb)) {
kfree_skb(skb);
ret = PTR_ERR(ack_skb);
goto unlock;
}
local_bh_disable();
ieee80211_xmit(sdata, sta, skb);
local_bh_enable();
ret = 0;
unlock:
rcu_read_unlock();
mutex_unlock(&local->mtx);
return ret;
}
static int ieee80211_cfg_get_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct ieee80211_local *local = wiphy_priv(wiphy);
struct ieee80211_chanctx_conf *chanctx_conf;
int ret = -ENODATA;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (chanctx_conf) {
*chandef = sdata->vif.bss_conf.chandef;
ret = 0;
} else if (local->open_count > 0 &&
local->open_count == local->monitors &&
sdata->vif.type == NL80211_IFTYPE_MONITOR) {
if (local->use_chanctx)
*chandef = local->monitor_chandef;
else
*chandef = local->_oper_chandef;
ret = 0;
}
rcu_read_unlock();
return ret;
}
#ifdef CONFIG_PM
static void ieee80211_set_wakeup(struct wiphy *wiphy, bool enabled)
{
drv_set_wakeup(wiphy_priv(wiphy), enabled);
}
#endif
static int ieee80211_set_qos_map(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_qos_map *qos_map)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct mac80211_qos_map *new_qos_map, *old_qos_map;
if (qos_map) {
new_qos_map = kzalloc(sizeof(*new_qos_map), GFP_KERNEL);
if (!new_qos_map)
return -ENOMEM;
memcpy(&new_qos_map->qos_map, qos_map, sizeof(*qos_map));
} else {
/* A NULL qos_map was passed to disable QoS mapping */
new_qos_map = NULL;
}
old_qos_map = sdata_dereference(sdata->qos_map, sdata);
rcu_assign_pointer(sdata->qos_map, new_qos_map);
if (old_qos_map)
kfree_rcu(old_qos_map, rcu_head);
return 0;
}
static int ieee80211_set_ap_chanwidth(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int ret;
u32 changed = 0;
ret = ieee80211_vif_change_bandwidth(sdata, chandef, &changed);
if (ret == 0)
ieee80211_bss_info_change_notify(sdata, changed);
return ret;
}
static int ieee80211_add_tx_ts(struct wiphy *wiphy, struct net_device *dev,
u8 tsid, const u8 *peer, u8 up,
u16 admitted_time)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
int ac = ieee802_1d_to_ac[up];
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return -EOPNOTSUPP;
if (!(sdata->wmm_acm & BIT(up)))
return -EINVAL;
if (ifmgd->tx_tspec[ac].admitted_time)
return -EBUSY;
if (admitted_time) {
ifmgd->tx_tspec[ac].admitted_time = 32 * admitted_time;
ifmgd->tx_tspec[ac].tsid = tsid;
ifmgd->tx_tspec[ac].up = up;
}
return 0;
}
static int ieee80211_del_tx_ts(struct wiphy *wiphy, struct net_device *dev,
u8 tsid, const u8 *peer)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_local *local = wiphy_priv(wiphy);
int ac;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
struct ieee80211_sta_tx_tspec *tx_tspec = &ifmgd->tx_tspec[ac];
/* skip unused entries */
if (!tx_tspec->admitted_time)
continue;
if (tx_tspec->tsid != tsid)
continue;
/* due to this new packets will be reassigned to non-ACM ACs */
tx_tspec->up = -1;
/* Make sure that all packets have been sent to avoid to
* restore the QoS params on packets that are still on the
* queues.
*/
synchronize_net();
ieee80211_flush_queues(local, sdata, false);
/* restore the normal QoS parameters
* (unconditionally to avoid races)
*/
tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE;
tx_tspec->downgraded = false;
ieee80211_sta_handle_tspec_ac_params(sdata);
/* finally clear all the data */
memset(tx_tspec, 0, sizeof(*tx_tspec));
return 0;
}
return -ENOENT;
}
const struct cfg80211_ops mac80211_config_ops = {
.add_virtual_intf = ieee80211_add_iface,
.del_virtual_intf = ieee80211_del_iface,
.change_virtual_intf = ieee80211_change_iface,
.start_p2p_device = ieee80211_start_p2p_device,
.stop_p2p_device = ieee80211_stop_p2p_device,
.add_key = ieee80211_add_key,
.del_key = ieee80211_del_key,
.get_key = ieee80211_get_key,
.set_default_key = ieee80211_config_default_key,
.set_default_mgmt_key = ieee80211_config_default_mgmt_key,
.start_ap = ieee80211_start_ap,
.change_beacon = ieee80211_change_beacon,
.stop_ap = ieee80211_stop_ap,
.add_station = ieee80211_add_station,
.del_station = ieee80211_del_station,
.change_station = ieee80211_change_station,
.get_station = ieee80211_get_station,
.dump_station = ieee80211_dump_station,
.dump_survey = ieee80211_dump_survey,
#ifdef CONFIG_MAC80211_MESH
.add_mpath = ieee80211_add_mpath,
.del_mpath = ieee80211_del_mpath,
.change_mpath = ieee80211_change_mpath,
.get_mpath = ieee80211_get_mpath,
.dump_mpath = ieee80211_dump_mpath,
.get_mpp = ieee80211_get_mpp,
.dump_mpp = ieee80211_dump_mpp,
.update_mesh_config = ieee80211_update_mesh_config,
.get_mesh_config = ieee80211_get_mesh_config,
.join_mesh = ieee80211_join_mesh,
.leave_mesh = ieee80211_leave_mesh,
#endif
.join_ocb = ieee80211_join_ocb,
.leave_ocb = ieee80211_leave_ocb,
.change_bss = ieee80211_change_bss,
.set_txq_params = ieee80211_set_txq_params,
.set_monitor_channel = ieee80211_set_monitor_channel,
.suspend = ieee80211_suspend,
.resume = ieee80211_resume,
.scan = ieee80211_scan,
.sched_scan_start = ieee80211_sched_scan_start,
.sched_scan_stop = ieee80211_sched_scan_stop,
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 14:39:22 +03:00
.auth = ieee80211_auth,
.assoc = ieee80211_assoc,
.deauth = ieee80211_deauth,
.disassoc = ieee80211_disassoc,
.join_ibss = ieee80211_join_ibss,
.leave_ibss = ieee80211_leave_ibss,
.set_mcast_rate = ieee80211_set_mcast_rate,
.set_wiphy_params = ieee80211_set_wiphy_params,
.set_tx_power = ieee80211_set_tx_power,
.get_tx_power = ieee80211_get_tx_power,
.set_wds_peer = ieee80211_set_wds_peer,
.rfkill_poll = ieee80211_rfkill_poll,
CFG80211_TESTMODE_CMD(ieee80211_testmode_cmd)
CFG80211_TESTMODE_DUMP(ieee80211_testmode_dump)
.set_power_mgmt = ieee80211_set_power_mgmt,
.set_bitrate_mask = ieee80211_set_bitrate_mask,
.remain_on_channel = ieee80211_remain_on_channel,
.cancel_remain_on_channel = ieee80211_cancel_remain_on_channel,
.mgmt_tx = ieee80211_mgmt_tx,
.mgmt_tx_cancel_wait = ieee80211_mgmt_tx_cancel_wait,
.set_cqm_rssi_config = ieee80211_set_cqm_rssi_config,
.mgmt_frame_register = ieee80211_mgmt_frame_register,
.set_antenna = ieee80211_set_antenna,
.get_antenna = ieee80211_get_antenna,
.set_rekey_data = ieee80211_set_rekey_data,
.tdls_oper = ieee80211_tdls_oper,
.tdls_mgmt = ieee80211_tdls_mgmt,
.tdls_channel_switch = ieee80211_tdls_channel_switch,
.tdls_cancel_channel_switch = ieee80211_tdls_cancel_channel_switch,
.probe_client = ieee80211_probe_client,
.set_noack_map = ieee80211_set_noack_map,
#ifdef CONFIG_PM
.set_wakeup = ieee80211_set_wakeup,
#endif
.get_channel = ieee80211_cfg_get_channel,
.start_radar_detection = ieee80211_start_radar_detection,
.channel_switch = ieee80211_channel_switch,
.set_qos_map = ieee80211_set_qos_map,
.set_ap_chanwidth = ieee80211_set_ap_chanwidth,
.add_tx_ts = ieee80211_add_tx_ts,
.del_tx_ts = ieee80211_del_tx_ts,
};