433 lines
11 KiB
ArmAsm
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2017 SiFive
*/
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/asm.h>
#include <asm/csr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/asm-offsets.h>
#if !IS_ENABLED(CONFIG_PREEMPTION)
.set resume_kernel, restore_all
#endif
ENTRY(handle_exception)
/*
* If coming from userspace, preserve the user thread pointer and load
* the kernel thread pointer. If we came from the kernel, the scratch
* register will contain 0, and we should continue on the current TP.
*/
csrrw tp, CSR_SCRATCH, tp
bnez tp, _save_context
_restore_kernel_tpsp:
csrr tp, CSR_SCRATCH
REG_S sp, TASK_TI_KERNEL_SP(tp)
_save_context:
REG_S sp, TASK_TI_USER_SP(tp)
REG_L sp, TASK_TI_KERNEL_SP(tp)
addi sp, sp, -(PT_SIZE_ON_STACK)
REG_S x1, PT_RA(sp)
REG_S x3, PT_GP(sp)
REG_S x5, PT_T0(sp)
REG_S x6, PT_T1(sp)
REG_S x7, PT_T2(sp)
REG_S x8, PT_S0(sp)
REG_S x9, PT_S1(sp)
REG_S x10, PT_A0(sp)
REG_S x11, PT_A1(sp)
REG_S x12, PT_A2(sp)
REG_S x13, PT_A3(sp)
REG_S x14, PT_A4(sp)
REG_S x15, PT_A5(sp)
REG_S x16, PT_A6(sp)
REG_S x17, PT_A7(sp)
REG_S x18, PT_S2(sp)
REG_S x19, PT_S3(sp)
REG_S x20, PT_S4(sp)
REG_S x21, PT_S5(sp)
REG_S x22, PT_S6(sp)
REG_S x23, PT_S7(sp)
REG_S x24, PT_S8(sp)
REG_S x25, PT_S9(sp)
REG_S x26, PT_S10(sp)
REG_S x27, PT_S11(sp)
REG_S x28, PT_T3(sp)
REG_S x29, PT_T4(sp)
REG_S x30, PT_T5(sp)
REG_S x31, PT_T6(sp)
/*
* Disable user-mode memory access as it should only be set in the
* actual user copy routines.
*
* Disable the FPU to detect illegal usage of floating point in kernel
* space.
*/
li t0, SR_SUM | SR_FS
REG_L s0, TASK_TI_USER_SP(tp)
csrrc s1, CSR_STATUS, t0
csrr s2, CSR_EPC
csrr s3, CSR_TVAL
csrr s4, CSR_CAUSE
csrr s5, CSR_SCRATCH
REG_S s0, PT_SP(sp)
REG_S s1, PT_STATUS(sp)
REG_S s2, PT_EPC(sp)
REG_S s3, PT_BADADDR(sp)
REG_S s4, PT_CAUSE(sp)
REG_S s5, PT_TP(sp)
/*
* Set the scratch register to 0, so that if a recursive exception
* occurs, the exception vector knows it came from the kernel
*/
csrw CSR_SCRATCH, x0
/* Load the global pointer */
.option push
.option norelax
la gp, __global_pointer$
.option pop
la ra, ret_from_exception
/*
* MSB of cause differentiates between
* interrupts and exceptions
*/
bge s4, zero, 1f
/* Handle interrupts */
move a0, sp /* pt_regs */
la a1, handle_arch_irq
REG_L a1, (a1)
jr a1
1:
/*
* Exceptions run with interrupts enabled or disabled depending on the
* state of SR_PIE in m/sstatus.
*/
andi t0, s1, SR_PIE
beqz t0, 1f
csrs CSR_STATUS, SR_IE
1:
/* Handle syscalls */
li t0, EXC_SYSCALL
beq s4, t0, handle_syscall
/* Handle other exceptions */
slli t0, s4, RISCV_LGPTR
la t1, excp_vect_table
la t2, excp_vect_table_end
move a0, sp /* pt_regs */
add t0, t1, t0
/* Check if exception code lies within bounds */
bgeu t0, t2, 1f
REG_L t0, 0(t0)
jr t0
1:
tail do_trap_unknown
handle_syscall:
/* save the initial A0 value (needed in signal handlers) */
REG_S a0, PT_ORIG_A0(sp)
/*
* Advance SEPC to avoid executing the original
* scall instruction on sret
*/
addi s2, s2, 0x4
REG_S s2, PT_EPC(sp)
/* Trace syscalls, but only if requested by the user. */
REG_L t0, TASK_TI_FLAGS(tp)
andi t0, t0, _TIF_SYSCALL_WORK
bnez t0, handle_syscall_trace_enter
check_syscall_nr:
/* Check to make sure we don't jump to a bogus syscall number. */
li t0, __NR_syscalls
la s0, sys_ni_syscall
/*
* Syscall number held in a7.
* If syscall number is above allowed value, redirect to ni_syscall.
*/
bge a7, t0, 1f
/*
riscv: fix seccomp reject syscall code path If secure_computing() rejected a system call, we were previously setting the system call number to -1, to indicate to later code that the syscall failed. However, if something (e.g. a user notification) was sleeping, and received a signal, we may set a0 to -ERESTARTSYS and re-try the system call again. In this case, seccomp "denies" the syscall (because of the signal), and we would set a7 to -1, thus losing the value of the system call we want to restart. Instead, let's return -1 from do_syscall_trace_enter() to indicate that the syscall was rejected, so we don't clobber the value in case of -ERESTARTSYS or whatever. This commit fixes the user_notification_signal seccomp selftest on riscv to no longer hang. That test expects the system call to be re-issued after the signal, and it wasn't due to the above bug. Now that it is, everything works normally. Note that in the ptrace (tracer) case, the tracer can set the register values to whatever they want, so we still need to keep the code that handles out-of-bounds syscalls. However, we can drop the comment. We can also drop syscall_set_nr(), since it is no longer used anywhere, and the code that re-loads the value in a7 because of it. Reported in: https://lore.kernel.org/bpf/CAEn-LTp=ss0Dfv6J00=rCAy+N78U2AmhqJNjfqjr2FDpPYjxEQ@mail.gmail.com/ Reported-by: David Abdurachmanov <david.abdurachmanov@gmail.com> Signed-off-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2020-02-08 08:18:17 -07:00
* Check if syscall is rejected by tracer, i.e., a7 == -1.
* If yes, we pretend it was executed.
*/
li t1, -1
beq a7, t1, ret_from_syscall_rejected
blt a7, t1, 1f
/* Call syscall */
la s0, sys_call_table
slli t0, a7, RISCV_LGPTR
add s0, s0, t0
REG_L s0, 0(s0)
1:
jalr s0
ret_from_syscall:
/* Set user a0 to kernel a0 */
REG_S a0, PT_A0(sp)
/*
* We didn't execute the actual syscall.
* Seccomp already set return value for the current task pt_regs.
* (If it was configured with SECCOMP_RET_ERRNO/TRACE)
*/
ret_from_syscall_rejected:
/* Trace syscalls, but only if requested by the user. */
REG_L t0, TASK_TI_FLAGS(tp)
andi t0, t0, _TIF_SYSCALL_WORK
bnez t0, handle_syscall_trace_exit
ret_from_exception:
REG_L s0, PT_STATUS(sp)
csrc CSR_STATUS, SR_IE
#ifdef CONFIG_RISCV_M_MODE
/* the MPP value is too large to be used as an immediate arg for addi */
li t0, SR_MPP
and s0, s0, t0
#else
andi s0, s0, SR_SPP
#endif
bnez s0, resume_kernel
resume_userspace:
/* Interrupts must be disabled here so flags are checked atomically */
REG_L s0, TASK_TI_FLAGS(tp) /* current_thread_info->flags */
andi s1, s0, _TIF_WORK_MASK
bnez s1, work_pending
/* Save unwound kernel stack pointer in thread_info */
addi s0, sp, PT_SIZE_ON_STACK
REG_S s0, TASK_TI_KERNEL_SP(tp)
/*
* Save TP into the scratch register , so we can find the kernel data
* structures again.
*/
csrw CSR_SCRATCH, tp
restore_all:
REG_L a0, PT_STATUS(sp)
/*
* The current load reservation is effectively part of the processor's
* state, in the sense that load reservations cannot be shared between
* different hart contexts. We can't actually save and restore a load
* reservation, so instead here we clear any existing reservation --
* it's always legal for implementations to clear load reservations at
* any point (as long as the forward progress guarantee is kept, but
* we'll ignore that here).
*
* Dangling load reservations can be the result of taking a trap in the
* middle of an LR/SC sequence, but can also be the result of a taken
* forward branch around an SC -- which is how we implement CAS. As a
* result we need to clear reservations between the last CAS and the
* jump back to the new context. While it is unlikely the store
* completes, implementations are allowed to expand reservations to be
* arbitrarily large.
*/
REG_L a2, PT_EPC(sp)
REG_SC x0, a2, PT_EPC(sp)
csrw CSR_STATUS, a0
csrw CSR_EPC, a2
REG_L x1, PT_RA(sp)
REG_L x3, PT_GP(sp)
REG_L x4, PT_TP(sp)
REG_L x5, PT_T0(sp)
REG_L x6, PT_T1(sp)
REG_L x7, PT_T2(sp)
REG_L x8, PT_S0(sp)
REG_L x9, PT_S1(sp)
REG_L x10, PT_A0(sp)
REG_L x11, PT_A1(sp)
REG_L x12, PT_A2(sp)
REG_L x13, PT_A3(sp)
REG_L x14, PT_A4(sp)
REG_L x15, PT_A5(sp)
REG_L x16, PT_A6(sp)
REG_L x17, PT_A7(sp)
REG_L x18, PT_S2(sp)
REG_L x19, PT_S3(sp)
REG_L x20, PT_S4(sp)
REG_L x21, PT_S5(sp)
REG_L x22, PT_S6(sp)
REG_L x23, PT_S7(sp)
REG_L x24, PT_S8(sp)
REG_L x25, PT_S9(sp)
REG_L x26, PT_S10(sp)
REG_L x27, PT_S11(sp)
REG_L x28, PT_T3(sp)
REG_L x29, PT_T4(sp)
REG_L x30, PT_T5(sp)
REG_L x31, PT_T6(sp)
REG_L x2, PT_SP(sp)
#ifdef CONFIG_RISCV_M_MODE
mret
#else
sret
#endif
#if IS_ENABLED(CONFIG_PREEMPTION)
resume_kernel:
REG_L s0, TASK_TI_PREEMPT_COUNT(tp)
bnez s0, restore_all
REG_L s0, TASK_TI_FLAGS(tp)
andi s0, s0, _TIF_NEED_RESCHED
beqz s0, restore_all
call preempt_schedule_irq
j restore_all
#endif
work_pending:
/* Enter slow path for supplementary processing */
la ra, ret_from_exception
andi s1, s0, _TIF_NEED_RESCHED
bnez s1, work_resched
work_notifysig:
/* Handle pending signals and notify-resume requests */
csrs CSR_STATUS, SR_IE /* Enable interrupts for do_notify_resume() */
move a0, sp /* pt_regs */
move a1, s0 /* current_thread_info->flags */
tail do_notify_resume
work_resched:
tail schedule
/* Slow paths for ptrace. */
handle_syscall_trace_enter:
move a0, sp
call do_syscall_trace_enter
riscv: fix seccomp reject syscall code path If secure_computing() rejected a system call, we were previously setting the system call number to -1, to indicate to later code that the syscall failed. However, if something (e.g. a user notification) was sleeping, and received a signal, we may set a0 to -ERESTARTSYS and re-try the system call again. In this case, seccomp "denies" the syscall (because of the signal), and we would set a7 to -1, thus losing the value of the system call we want to restart. Instead, let's return -1 from do_syscall_trace_enter() to indicate that the syscall was rejected, so we don't clobber the value in case of -ERESTARTSYS or whatever. This commit fixes the user_notification_signal seccomp selftest on riscv to no longer hang. That test expects the system call to be re-issued after the signal, and it wasn't due to the above bug. Now that it is, everything works normally. Note that in the ptrace (tracer) case, the tracer can set the register values to whatever they want, so we still need to keep the code that handles out-of-bounds syscalls. However, we can drop the comment. We can also drop syscall_set_nr(), since it is no longer used anywhere, and the code that re-loads the value in a7 because of it. Reported in: https://lore.kernel.org/bpf/CAEn-LTp=ss0Dfv6J00=rCAy+N78U2AmhqJNjfqjr2FDpPYjxEQ@mail.gmail.com/ Reported-by: David Abdurachmanov <david.abdurachmanov@gmail.com> Signed-off-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2020-02-08 08:18:17 -07:00
move t0, a0
REG_L a0, PT_A0(sp)
REG_L a1, PT_A1(sp)
REG_L a2, PT_A2(sp)
REG_L a3, PT_A3(sp)
REG_L a4, PT_A4(sp)
REG_L a5, PT_A5(sp)
REG_L a6, PT_A6(sp)
REG_L a7, PT_A7(sp)
riscv: fix seccomp reject syscall code path If secure_computing() rejected a system call, we were previously setting the system call number to -1, to indicate to later code that the syscall failed. However, if something (e.g. a user notification) was sleeping, and received a signal, we may set a0 to -ERESTARTSYS and re-try the system call again. In this case, seccomp "denies" the syscall (because of the signal), and we would set a7 to -1, thus losing the value of the system call we want to restart. Instead, let's return -1 from do_syscall_trace_enter() to indicate that the syscall was rejected, so we don't clobber the value in case of -ERESTARTSYS or whatever. This commit fixes the user_notification_signal seccomp selftest on riscv to no longer hang. That test expects the system call to be re-issued after the signal, and it wasn't due to the above bug. Now that it is, everything works normally. Note that in the ptrace (tracer) case, the tracer can set the register values to whatever they want, so we still need to keep the code that handles out-of-bounds syscalls. However, we can drop the comment. We can also drop syscall_set_nr(), since it is no longer used anywhere, and the code that re-loads the value in a7 because of it. Reported in: https://lore.kernel.org/bpf/CAEn-LTp=ss0Dfv6J00=rCAy+N78U2AmhqJNjfqjr2FDpPYjxEQ@mail.gmail.com/ Reported-by: David Abdurachmanov <david.abdurachmanov@gmail.com> Signed-off-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2020-02-08 08:18:17 -07:00
bnez t0, ret_from_syscall_rejected
j check_syscall_nr
handle_syscall_trace_exit:
move a0, sp
call do_syscall_trace_exit
j ret_from_exception
END(handle_exception)
ENTRY(ret_from_fork)
la ra, ret_from_exception
tail schedule_tail
ENDPROC(ret_from_fork)
ENTRY(ret_from_kernel_thread)
call schedule_tail
/* Call fn(arg) */
la ra, ret_from_exception
move a0, s1
jr s0
ENDPROC(ret_from_kernel_thread)
/*
* Integer register context switch
* The callee-saved registers must be saved and restored.
*
* a0: previous task_struct (must be preserved across the switch)
* a1: next task_struct
*
* The value of a0 and a1 must be preserved by this function, as that's how
* arguments are passed to schedule_tail.
*/
ENTRY(__switch_to)
/* Save context into prev->thread */
li a4, TASK_THREAD_RA
add a3, a0, a4
add a4, a1, a4
REG_S ra, TASK_THREAD_RA_RA(a3)
REG_S sp, TASK_THREAD_SP_RA(a3)
REG_S s0, TASK_THREAD_S0_RA(a3)
REG_S s1, TASK_THREAD_S1_RA(a3)
REG_S s2, TASK_THREAD_S2_RA(a3)
REG_S s3, TASK_THREAD_S3_RA(a3)
REG_S s4, TASK_THREAD_S4_RA(a3)
REG_S s5, TASK_THREAD_S5_RA(a3)
REG_S s6, TASK_THREAD_S6_RA(a3)
REG_S s7, TASK_THREAD_S7_RA(a3)
REG_S s8, TASK_THREAD_S8_RA(a3)
REG_S s9, TASK_THREAD_S9_RA(a3)
REG_S s10, TASK_THREAD_S10_RA(a3)
REG_S s11, TASK_THREAD_S11_RA(a3)
/* Restore context from next->thread */
REG_L ra, TASK_THREAD_RA_RA(a4)
REG_L sp, TASK_THREAD_SP_RA(a4)
REG_L s0, TASK_THREAD_S0_RA(a4)
REG_L s1, TASK_THREAD_S1_RA(a4)
REG_L s2, TASK_THREAD_S2_RA(a4)
REG_L s3, TASK_THREAD_S3_RA(a4)
REG_L s4, TASK_THREAD_S4_RA(a4)
REG_L s5, TASK_THREAD_S5_RA(a4)
REG_L s6, TASK_THREAD_S6_RA(a4)
REG_L s7, TASK_THREAD_S7_RA(a4)
REG_L s8, TASK_THREAD_S8_RA(a4)
REG_L s9, TASK_THREAD_S9_RA(a4)
REG_L s10, TASK_THREAD_S10_RA(a4)
REG_L s11, TASK_THREAD_S11_RA(a4)
/* Swap the CPU entry around. */
lw a3, TASK_TI_CPU(a0)
lw a4, TASK_TI_CPU(a1)
sw a3, TASK_TI_CPU(a1)
sw a4, TASK_TI_CPU(a0)
#if TASK_TI != 0
#error "TASK_TI != 0: tp will contain a 'struct thread_info', not a 'struct task_struct' so get_current() won't work."
addi tp, a1, TASK_TI
#else
move tp, a1
#endif
ret
ENDPROC(__switch_to)
#ifndef CONFIG_MMU
#define do_page_fault do_trap_unknown
#endif
.section ".rodata"
/* Exception vector table */
ENTRY(excp_vect_table)
RISCV_PTR do_trap_insn_misaligned
RISCV_PTR do_trap_insn_fault
RISCV_PTR do_trap_insn_illegal
RISCV_PTR do_trap_break
RISCV_PTR do_trap_load_misaligned
RISCV_PTR do_trap_load_fault
RISCV_PTR do_trap_store_misaligned
RISCV_PTR do_trap_store_fault
RISCV_PTR do_trap_ecall_u /* system call, gets intercepted */
RISCV_PTR do_trap_ecall_s
RISCV_PTR do_trap_unknown
RISCV_PTR do_trap_ecall_m
RISCV_PTR do_page_fault /* instruction page fault */
RISCV_PTR do_page_fault /* load page fault */
RISCV_PTR do_trap_unknown
RISCV_PTR do_page_fault /* store page fault */
excp_vect_table_end:
END(excp_vect_table)
#ifndef CONFIG_MMU
ENTRY(__user_rt_sigreturn)
li a7, __NR_rt_sigreturn
scall
END(__user_rt_sigreturn)
#endif