2005-04-17 02:20:36 +04:00
/*
* Oct 15 , 2000 Matt Domsch < Matt_Domsch @ dell . com >
* Nicer crc32 functions / docs submitted by linux @ horizon . com . Thanks !
* Code was from the public domain , copyright abandoned . Code was
* subsequently included in the kernel , thus was re - licensed under the
* GNU GPL v2 .
*
* Oct 12 , 2000 Matt Domsch < Matt_Domsch @ dell . com >
* Same crc32 function was used in 5 other places in the kernel .
* I made one version , and deleted the others .
* There are various incantations of crc32 ( ) . Some use a seed of 0 or ~ 0.
* Some xor at the end with ~ 0. The generic crc32 ( ) function takes
* seed as an argument , and doesn ' t xor at the end . Then individual
* users can do whatever they need .
* drivers / net / smc9194 . c uses seed ~ 0 , doesn ' t xor with ~ 0.
* fs / jffs2 uses seed 0 , doesn ' t xor with ~ 0.
* fs / partitions / efi . c uses seed ~ 0 , xor ' s with ~ 0.
*
* This source code is licensed under the GNU General Public License ,
* Version 2. See the file COPYING for more details .
*/
# include <linux/crc32.h>
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/compiler.h>
# include <linux/types.h>
# include <linux/slab.h>
# include <linux/init.h>
# include <asm/atomic.h>
# include "crc32defs.h"
# if CRC_LE_BITS == 8
# define tole(x) __constant_cpu_to_le32(x)
# define tobe(x) __constant_cpu_to_be32(x)
# else
# define tole(x) (x)
# define tobe(x) (x)
# endif
# include "crc32table.h"
MODULE_AUTHOR ( " Matt Domsch <Matt_Domsch@dell.com> " ) ;
MODULE_DESCRIPTION ( " Ethernet CRC32 calculations " ) ;
MODULE_LICENSE ( " GPL " ) ;
2006-06-25 16:48:59 +04:00
/**
* crc32_le ( ) - Calculate bitwise little - endian Ethernet AUTODIN II CRC32
* @ crc : seed value for computation . ~ 0 for Ethernet , sometimes 0 for
* other uses , or the previous crc32 value if computing incrementally .
* @ p : pointer to buffer over which CRC is run
* @ len : length of buffer @ p
*/
u32 __attribute_pure__ crc32_le ( u32 crc , unsigned char const * p , size_t len ) ;
2005-04-17 02:20:36 +04:00
# if CRC_LE_BITS == 1
/*
* In fact , the table - based code will work in this case , but it can be
* simplified by inlining the table in ? : form .
*/
u32 __attribute_pure__ crc32_le ( u32 crc , unsigned char const * p , size_t len )
{
int i ;
while ( len - - ) {
crc ^ = * p + + ;
for ( i = 0 ; i < 8 ; i + + )
crc = ( crc > > 1 ) ^ ( ( crc & 1 ) ? CRCPOLY_LE : 0 ) ;
}
return crc ;
}
# else /* Table-based approach */
u32 __attribute_pure__ crc32_le ( u32 crc , unsigned char const * p , size_t len )
{
# if CRC_LE_BITS == 8
const u32 * b = ( u32 * ) p ;
const u32 * tab = crc32table_le ;
# ifdef __LITTLE_ENDIAN
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
# else
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
# endif
crc = __cpu_to_le32 ( crc ) ;
/* Align it */
if ( unlikely ( ( ( long ) b ) & 3 & & len ) ) {
do {
u8 * p = ( u8 * ) b ;
DO_CRC ( * p + + ) ;
b = ( void * ) p ;
} while ( ( - - len ) & & ( ( long ) b ) & 3 ) ;
}
if ( likely ( len > = 4 ) ) {
/* load data 32 bits wide, xor data 32 bits wide. */
size_t save_len = len & 3 ;
len = len > > 2 ;
- - b ; /* use pre increment below(*++b) for speed */
do {
crc ^ = * + + b ;
DO_CRC ( 0 ) ;
DO_CRC ( 0 ) ;
DO_CRC ( 0 ) ;
DO_CRC ( 0 ) ;
} while ( - - len ) ;
b + + ; /* point to next byte(s) */
len = save_len ;
}
/* And the last few bytes */
if ( len ) {
do {
u8 * p = ( u8 * ) b ;
DO_CRC ( * p + + ) ;
b = ( void * ) p ;
} while ( - - len ) ;
}
return __le32_to_cpu ( crc ) ;
# undef ENDIAN_SHIFT
# undef DO_CRC
# elif CRC_LE_BITS == 4
while ( len - - ) {
crc ^ = * p + + ;
crc = ( crc > > 4 ) ^ crc32table_le [ crc & 15 ] ;
crc = ( crc > > 4 ) ^ crc32table_le [ crc & 15 ] ;
}
return crc ;
# elif CRC_LE_BITS == 2
while ( len - - ) {
crc ^ = * p + + ;
crc = ( crc > > 2 ) ^ crc32table_le [ crc & 3 ] ;
crc = ( crc > > 2 ) ^ crc32table_le [ crc & 3 ] ;
crc = ( crc > > 2 ) ^ crc32table_le [ crc & 3 ] ;
crc = ( crc > > 2 ) ^ crc32table_le [ crc & 3 ] ;
}
return crc ;
# endif
}
# endif
2006-06-25 16:48:59 +04:00
/**
* crc32_be ( ) - Calculate bitwise big - endian Ethernet AUTODIN II CRC32
* @ crc : seed value for computation . ~ 0 for Ethernet , sometimes 0 for
* other uses , or the previous crc32 value if computing incrementally .
* @ p : pointer to buffer over which CRC is run
* @ len : length of buffer @ p
*/
u32 __attribute_pure__ crc32_be ( u32 crc , unsigned char const * p , size_t len ) ;
2005-04-17 02:20:36 +04:00
# if CRC_BE_BITS == 1
/*
* In fact , the table - based code will work in this case , but it can be
* simplified by inlining the table in ? : form .
*/
u32 __attribute_pure__ crc32_be ( u32 crc , unsigned char const * p , size_t len )
{
int i ;
while ( len - - ) {
crc ^ = * p + + < < 24 ;
for ( i = 0 ; i < 8 ; i + + )
crc =
( crc < < 1 ) ^ ( ( crc & 0x80000000 ) ? CRCPOLY_BE :
0 ) ;
}
return crc ;
}
# else /* Table-based approach */
u32 __attribute_pure__ crc32_be ( u32 crc , unsigned char const * p , size_t len )
{
# if CRC_BE_BITS == 8
const u32 * b = ( u32 * ) p ;
const u32 * tab = crc32table_be ;
# ifdef __LITTLE_ENDIAN
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
# else
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
# endif
crc = __cpu_to_be32 ( crc ) ;
/* Align it */
if ( unlikely ( ( ( long ) b ) & 3 & & len ) ) {
do {
u8 * p = ( u8 * ) b ;
DO_CRC ( * p + + ) ;
b = ( u32 * ) p ;
} while ( ( - - len ) & & ( ( long ) b ) & 3 ) ;
}
if ( likely ( len > = 4 ) ) {
/* load data 32 bits wide, xor data 32 bits wide. */
size_t save_len = len & 3 ;
len = len > > 2 ;
- - b ; /* use pre increment below(*++b) for speed */
do {
crc ^ = * + + b ;
DO_CRC ( 0 ) ;
DO_CRC ( 0 ) ;
DO_CRC ( 0 ) ;
DO_CRC ( 0 ) ;
} while ( - - len ) ;
b + + ; /* point to next byte(s) */
len = save_len ;
}
/* And the last few bytes */
if ( len ) {
do {
u8 * p = ( u8 * ) b ;
DO_CRC ( * p + + ) ;
b = ( void * ) p ;
} while ( - - len ) ;
}
return __be32_to_cpu ( crc ) ;
# undef ENDIAN_SHIFT
# undef DO_CRC
# elif CRC_BE_BITS == 4
while ( len - - ) {
crc ^ = * p + + < < 24 ;
crc = ( crc < < 4 ) ^ crc32table_be [ crc > > 28 ] ;
crc = ( crc < < 4 ) ^ crc32table_be [ crc > > 28 ] ;
}
return crc ;
# elif CRC_BE_BITS == 2
while ( len - - ) {
crc ^ = * p + + < < 24 ;
crc = ( crc < < 2 ) ^ crc32table_be [ crc > > 30 ] ;
crc = ( crc < < 2 ) ^ crc32table_be [ crc > > 30 ] ;
crc = ( crc < < 2 ) ^ crc32table_be [ crc > > 30 ] ;
crc = ( crc < < 2 ) ^ crc32table_be [ crc > > 30 ] ;
}
return crc ;
# endif
}
# endif
EXPORT_SYMBOL ( crc32_le ) ;
EXPORT_SYMBOL ( crc32_be ) ;
/*
* A brief CRC tutorial .
*
* A CRC is a long - division remainder . You add the CRC to the message ,
* and the whole thing ( message + CRC ) is a multiple of the given
* CRC polynomial . To check the CRC , you can either check that the
* CRC matches the recomputed value , * or * you can check that the
* remainder computed on the message + CRC is 0. This latter approach
* is used by a lot of hardware implementations , and is why so many
* protocols put the end - of - frame flag after the CRC .
*
* It ' s actually the same long division you learned in school , except that
* - We ' re working in binary , so the digits are only 0 and 1 , and
* - When dividing polynomials , there are no carries . Rather than add and
* subtract , we just xor . Thus , we tend to get a bit sloppy about
* the difference between adding and subtracting .
*
* A 32 - bit CRC polynomial is actually 33 bits long . But since it ' s
* 33 bits long , bit 32 is always going to be set , so usually the CRC
* is written in hex with the most significant bit omitted . ( If you ' re
* familiar with the IEEE 754 floating - point format , it ' s the same idea . )
*
* Note that a CRC is computed over a string of * bits * , so you have
* to decide on the endianness of the bits within each byte . To get
* the best error - detecting properties , this should correspond to the
* order they ' re actually sent . For example , standard RS - 232 serial is
* little - endian ; the most significant bit ( sometimes used for parity )
* is sent last . And when appending a CRC word to a message , you should
* do it in the right order , matching the endianness .
*
* Just like with ordinary division , the remainder is always smaller than
* the divisor ( the CRC polynomial ) you ' re dividing by . Each step of the
* division , you take one more digit ( bit ) of the dividend and append it
* to the current remainder . Then you figure out the appropriate multiple
* of the divisor to subtract to being the remainder back into range .
* In binary , it ' s easy - it has to be either 0 or 1 , and to make the
* XOR cancel , it ' s just a copy of bit 32 of the remainder .
*
* When computing a CRC , we don ' t care about the quotient , so we can
* throw the quotient bit away , but subtract the appropriate multiple of
* the polynomial from the remainder and we ' re back to where we started ,
* ready to process the next bit .
*
* A big - endian CRC written this way would be coded like :
* for ( i = 0 ; i < input_bits ; i + + ) {
* multiple = remainder & 0x80000000 ? CRCPOLY : 0 ;
* remainder = ( remainder < < 1 | next_input_bit ( ) ) ^ multiple ;
* }
* Notice how , to get at bit 32 of the shifted remainder , we look
* at bit 31 of the remainder * before * shifting it .
*
* But also notice how the next_input_bit ( ) bits we ' re shifting into
* the remainder don ' t actually affect any decision - making until
* 32 bits later . Thus , the first 32 cycles of this are pretty boring .
* Also , to add the CRC to a message , we need a 32 - bit - long hole for it at
* the end , so we have to add 32 extra cycles shifting in zeros at the
* end of every message ,
*
* So the standard trick is to rearrage merging in the next_input_bit ( )
* until the moment it ' s needed . Then the first 32 cycles can be precomputed ,
* and merging in the final 32 zero bits to make room for the CRC can be
* skipped entirely .
* This changes the code to :
* for ( i = 0 ; i < input_bits ; i + + ) {
* remainder ^ = next_input_bit ( ) < < 31 ;
* multiple = ( remainder & 0x80000000 ) ? CRCPOLY : 0 ;
* remainder = ( remainder < < 1 ) ^ multiple ;
* }
* With this optimization , the little - endian code is simpler :
* for ( i = 0 ; i < input_bits ; i + + ) {
* remainder ^ = next_input_bit ( ) ;
* multiple = ( remainder & 1 ) ? CRCPOLY : 0 ;
* remainder = ( remainder > > 1 ) ^ multiple ;
* }
*
* Note that the other details of endianness have been hidden in CRCPOLY
* ( which must be bit - reversed ) and next_input_bit ( ) .
*
* However , as long as next_input_bit is returning the bits in a sensible
* order , we can actually do the merging 8 or more bits at a time rather
* than one bit at a time :
* for ( i = 0 ; i < input_bytes ; i + + ) {
* remainder ^ = next_input_byte ( ) < < 24 ;
* for ( j = 0 ; j < 8 ; j + + ) {
* multiple = ( remainder & 0x80000000 ) ? CRCPOLY : 0 ;
* remainder = ( remainder < < 1 ) ^ multiple ;
* }
* }
* Or in little - endian :
* for ( i = 0 ; i < input_bytes ; i + + ) {
* remainder ^ = next_input_byte ( ) ;
* for ( j = 0 ; j < 8 ; j + + ) {
* multiple = ( remainder & 1 ) ? CRCPOLY : 0 ;
* remainder = ( remainder < < 1 ) ^ multiple ;
* }
* }
* If the input is a multiple of 32 bits , you can even XOR in a 32 - bit
* word at a time and increase the inner loop count to 32.
*
* You can also mix and match the two loop styles , for example doing the
* bulk of a message byte - at - a - time and adding bit - at - a - time processing
* for any fractional bytes at the end .
*
* The only remaining optimization is to the byte - at - a - time table method .
* Here , rather than just shifting one bit of the remainder to decide
* in the correct multiple to subtract , we can shift a byte at a time .
* This produces a 40 - bit ( rather than a 33 - bit ) intermediate remainder ,
* but again the multiple of the polynomial to subtract depends only on
* the high bits , the high 8 bits in this case .
*
* The multile we need in that case is the low 32 bits of a 40 - bit
* value whose high 8 bits are given , and which is a multiple of the
* generator polynomial . This is simply the CRC - 32 of the given
* one - byte message .
*
* Two more details : normally , appending zero bits to a message which
* is already a multiple of a polynomial produces a larger multiple of that
* polynomial . To enable a CRC to detect this condition , it ' s common to
* invert the CRC before appending it . This makes the remainder of the
* message + crc come out not as zero , but some fixed non - zero value .
*
* The same problem applies to zero bits prepended to the message , and
* a similar solution is used . Instead of starting with a remainder of
* 0 , an initial remainder of all ones is used . As long as you start
* the same way on decoding , it doesn ' t make a difference .
*/
# ifdef UNITTEST
# include <stdlib.h>
# include <stdio.h>
#if 0 /*Not used at present */
static void
buf_dump ( char const * prefix , unsigned char const * buf , size_t len )
{
fputs ( prefix , stdout ) ;
while ( len - - )
printf ( " %02x " , * buf + + ) ;
putchar ( ' \n ' ) ;
}
# endif
static void bytereverse ( unsigned char * buf , size_t len )
{
while ( len - - ) {
2006-12-08 13:36:25 +03:00
unsigned char x = bitrev8 ( * buf ) ;
2005-04-17 02:20:36 +04:00
* buf + + = x ;
}
}
static void random_garbage ( unsigned char * buf , size_t len )
{
while ( len - - )
* buf + + = ( unsigned char ) random ( ) ;
}
#if 0 /* Not used at present */
static void store_le ( u32 x , unsigned char * buf )
{
buf [ 0 ] = ( unsigned char ) x ;
buf [ 1 ] = ( unsigned char ) ( x > > 8 ) ;
buf [ 2 ] = ( unsigned char ) ( x > > 16 ) ;
buf [ 3 ] = ( unsigned char ) ( x > > 24 ) ;
}
# endif
static void store_be ( u32 x , unsigned char * buf )
{
buf [ 0 ] = ( unsigned char ) ( x > > 24 ) ;
buf [ 1 ] = ( unsigned char ) ( x > > 16 ) ;
buf [ 2 ] = ( unsigned char ) ( x > > 8 ) ;
buf [ 3 ] = ( unsigned char ) x ;
}
/*
* This checks that CRC ( buf + CRC ( buf ) ) = 0 , and that
* CRC commutes with bit - reversal . This has the side effect
* of bytewise bit - reversing the input buffer , and returns
* the CRC of the reversed buffer .
*/
static u32 test_step ( u32 init , unsigned char * buf , size_t len )
{
u32 crc1 , crc2 ;
size_t i ;
crc1 = crc32_be ( init , buf , len ) ;
store_be ( crc1 , buf + len ) ;
crc2 = crc32_be ( init , buf , len + 4 ) ;
if ( crc2 )
printf ( " \n CRC cancellation fail: 0x%08x should be 0 \n " ,
crc2 ) ;
for ( i = 0 ; i < = len + 4 ; i + + ) {
crc2 = crc32_be ( init , buf , i ) ;
crc2 = crc32_be ( crc2 , buf + i , len + 4 - i ) ;
if ( crc2 )
printf ( " \n CRC split fail: 0x%08x \n " , crc2 ) ;
}
/* Now swap it around for the other test */
bytereverse ( buf , len + 4 ) ;
2006-12-08 13:36:25 +03:00
init = bitrev32 ( init ) ;
crc2 = bitrev32 ( crc1 ) ;
if ( crc1 ! = bitrev32 ( crc2 ) )
2005-08-07 20:42:53 +04:00
printf ( " \n Bit reversal fail: 0x%08x -> 0x%08x -> 0x%08x \n " ,
2006-12-08 13:36:25 +03:00
crc1 , crc2 , bitrev32 ( crc2 ) ) ;
2005-04-17 02:20:36 +04:00
crc1 = crc32_le ( init , buf , len ) ;
if ( crc1 ! = crc2 )
printf ( " \n CRC endianness fail: 0x%08x != 0x%08x \n " , crc1 ,
crc2 ) ;
crc2 = crc32_le ( init , buf , len + 4 ) ;
if ( crc2 )
printf ( " \n CRC cancellation fail: 0x%08x should be 0 \n " ,
crc2 ) ;
for ( i = 0 ; i < = len + 4 ; i + + ) {
crc2 = crc32_le ( init , buf , i ) ;
crc2 = crc32_le ( crc2 , buf + i , len + 4 - i ) ;
if ( crc2 )
printf ( " \n CRC split fail: 0x%08x \n " , crc2 ) ;
}
return crc1 ;
}
# define SIZE 64
# define INIT1 0
# define INIT2 0
int main ( void )
{
unsigned char buf1 [ SIZE + 4 ] ;
unsigned char buf2 [ SIZE + 4 ] ;
unsigned char buf3 [ SIZE + 4 ] ;
int i , j ;
u32 crc1 , crc2 , crc3 ;
for ( i = 0 ; i < = SIZE ; i + + ) {
printf ( " \r Testing length %d... " , i ) ;
fflush ( stdout ) ;
random_garbage ( buf1 , i ) ;
random_garbage ( buf2 , i ) ;
for ( j = 0 ; j < i ; j + + )
buf3 [ j ] = buf1 [ j ] ^ buf2 [ j ] ;
crc1 = test_step ( INIT1 , buf1 , i ) ;
crc2 = test_step ( INIT2 , buf2 , i ) ;
/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
crc3 = test_step ( INIT1 ^ INIT2 , buf3 , i ) ;
if ( crc3 ! = ( crc1 ^ crc2 ) )
printf ( " CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x \n " ,
crc3 , crc1 , crc2 ) ;
}
printf ( " \n All test complete. No failures expected. \n " ) ;
return 0 ;
}
# endif /* UNITTEST */