2019-05-08 23:21:26 +08:00
.. SPDX-License-Identifier: GPL-2.0
======================
Memory Protection Keys
======================
2017-11-10 16:12:28 -08:00
Memory Protection Keys for Userspace (PKU aka PKEYs) is a feature
2020-05-28 11:08:23 -05:00
which is found on Intel's Skylake (and later) "Scalable Processor"
Server CPUs. It will be available in future non-server Intel parts
and future AMD processors.
2017-11-10 16:12:28 -08:00
For anyone wishing to test or use this feature, it is available in
Amazon's EC2 C5 instances and is known to work there using an Ubuntu
17.04 image.
2015-12-14 11:06:34 -08:00
Memory Protection Keys provides a mechanism for enforcing page-based
protections, but without requiring modification of the page tables
when an application changes protection domains. It works by
dedicating 4 previously ignored bits in each page table entry to a
"protection key", giving 16 possible keys.
There is also a new user-accessible register (PKRU) with two separate
bits (Access Disable and Write Disable) for each key. Being a CPU
register, PKRU is inherently thread-local, potentially giving each
thread a different set of protections from every other thread.
There are two new instructions (RDPKRU/WRPKRU) for reading and writing
to the new register. The feature is only available in 64-bit mode,
even though there is theoretically space in the PAE PTEs. These
permissions are enforced on data access only and have no effect on
instruction fetches.
2019-05-08 23:21:26 +08:00
Syscalls
========
2016-07-29 09:30:20 -07:00
2019-05-08 23:21:26 +08:00
There are 3 system calls which directly interact with pkeys::
2016-07-29 09:30:20 -07:00
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
int pkey_mprotect(unsigned long start, size_t len,
unsigned long prot, int pkey);
Before a pkey can be used, it must first be allocated with
pkey_alloc(). An application calls the WRPKRU instruction
directly in order to change access permissions to memory covered
with a key. In this example WRPKRU is wrapped by a C function
called pkey_set().
2019-05-08 23:21:26 +08:00
::
2016-07-29 09:30:20 -07:00
int real_prot = PROT_READ|PROT_WRITE;
2017-07-24 21:03:46 +08:00
pkey = pkey_alloc(0, PKEY_DISABLE_WRITE);
2016-07-29 09:30:20 -07:00
ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
... application runs here
Now, if the application needs to update the data at 'ptr', it can
2019-05-08 23:21:26 +08:00
gain access, do the update, then remove its write access::
2016-07-29 09:30:20 -07:00
2017-07-24 21:03:46 +08:00
pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
2016-07-29 09:30:20 -07:00
*ptr = foo; // assign something
2017-07-24 21:03:46 +08:00
pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again
2016-07-29 09:30:20 -07:00
Now when it frees the memory, it will also free the pkey since it
2019-05-08 23:21:26 +08:00
is no longer in use::
2016-07-29 09:30:20 -07:00
munmap(ptr, PAGE_SIZE);
pkey_free(pkey);
2019-05-08 23:21:26 +08:00
.. note :: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
An example implementation can be found in
tools/testing/selftests/x86/protection_keys.c.
2016-10-04 09:38:57 -07:00
2019-05-08 23:21:26 +08:00
Behavior
========
2016-07-29 09:30:20 -07:00
The kernel attempts to make protection keys consistent with the
2019-05-08 23:21:26 +08:00
behavior of a plain mprotect(). For instance if you do this::
2016-07-29 09:30:20 -07:00
mprotect(ptr, size, PROT_NONE);
something(ptr);
2019-05-08 23:21:26 +08:00
you can expect the same effects with protection keys when doing this::
2016-07-29 09:30:20 -07:00
pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
something(ptr);
That should be true whether something() is a direct access to 'ptr'
2019-05-08 23:21:26 +08:00
like::
2016-07-29 09:30:20 -07:00
*ptr = foo;
or when the kernel does the access on the application's behalf like
2019-05-08 23:21:26 +08:00
with a read()::
2016-07-29 09:30:20 -07:00
read(fd, ptr, 1);
The kernel will send a SIGSEGV in both cases, but si_code will be set
to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
the plain mprotect() permissions are violated.