linux/drivers/s390/crypto/ap_bus.h

365 lines
12 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright IBM Corp. 2006, 2019
* Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Ralph Wuerthner <rwuerthn@de.ibm.com>
* Felix Beck <felix.beck@de.ibm.com>
* Holger Dengler <hd@linux.vnet.ibm.com>
*
* Adjunct processor bus header file.
*/
#ifndef _AP_BUS_H_
#define _AP_BUS_H_
#include <linux/device.h>
#include <linux/types.h>
#include <linux/hashtable.h>
#include <asm/isc.h>
#include <asm/ap.h>
#define AP_DEVICES 256 /* Number of AP devices. */
#define AP_DOMAINS 256 /* Number of AP domains. */
s390/zcrypt: multiple zcrypt device nodes support This patch is an extension to the zcrypt device driver to provide, support and maintain multiple zcrypt device nodes. The individual zcrypt device nodes can be restricted in terms of crypto cards, domains and available ioctls. Such a device node can be used as a base for container solutions like docker to control and restrict the access to crypto resources. The handling is done with a new sysfs subdir /sys/class/zcrypt. Echoing a name (or an empty sting) into the attribute "create" creates a new zcrypt device node. In /sys/class/zcrypt a new link will appear which points to the sysfs device tree of this new device. The attribute files "ioctlmask", "apmask" and "aqmask" in this directory are used to customize this new zcrypt device node instance. Finally the zcrypt device node can be destroyed by echoing the name into /sys/class/zcrypt/destroy. The internal structs holding the device info are reference counted - so a destroy will not hard remove a device but only marks it as removable when the reference counter drops to zero. The mask values are bitmaps in big endian order starting with bit 0. So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs attributes accept 2 different formats: * Absolute hex string starting with 0x like "0x12345678" does set the mask starting from left to right. If the given string is shorter than the mask it is padded with 0s on the right. If the string is longer than the mask an error comes back (EINVAL). * Relative format - a concatenation (done with ',') of the terms +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]. <bitnr> may be any valid number (hex, decimal or octal) in the range 0...255. Here are some examples: "+0-15,+32,-128,-0xFF" "-0-255,+1-16,+0x128" "+1,+2,+3,+4,-5,-7-10" A simple usage examples: # create new zcrypt device 'my_zcrypt': echo "my_zcrypt" >/sys/class/zcrypt/create # go into the device dir of this new device echo "my_zcrypt" >create cd my_zcrypt/ ls -l total 0 -rw-r--r-- 1 root root 4096 Jul 20 15:23 apmask -rw-r--r-- 1 root root 4096 Jul 20 15:23 aqmask -r--r--r-- 1 root root 4096 Jul 20 15:23 dev -rw-r--r-- 1 root root 4096 Jul 20 15:23 ioctlmask lrwxrwxrwx 1 root root 0 Jul 20 15:23 subsystem -> ../../../../class/zcrypt ... # customize this zcrypt node clone # enable only adapter 0 and 2 echo "0xa0" >apmask # enable only domain 6 echo "+6" >aqmask # enable all 256 ioctls echo "+0-255" >ioctls # now the /dev/my_zcrypt may be used # finally destroy it echo "my_zcrypt" >/sys/class/zcrypt/destroy Please note that a very similar 'filtering behavior' also applies to the parent z90crypt device. The two mask attributes apmask and aqmask in /sys/bus/ap act the very same for the z90crypt device node. However the implementation here is totally different as the ap bus acts on bind/unbind of queue devices and associated drivers but the effect is still the same. So there are two filters active for each additional zcrypt device node: The adapter/domain needs to be enabled on the ap bus level and it needs to be active on the zcrypt device node level. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-09-17 17:18:41 +03:00
#define AP_IOCTLS 256 /* Number of ioctls. */
#define AP_RESET_TIMEOUT (HZ*0.7) /* Time in ticks for reset timeouts. */
#define AP_CONFIG_TIME 30 /* Time in seconds between AP bus rescans. */
#define AP_POLL_TIME 1 /* Time in ticks between receive polls. */
s390/AP: support new dynamic AP bus size limit This patch provides support for new dynamic AP bus message limit with the existing zcrypt device driver and AP bus core code. There is support for a new field 'ml' from TAPQ query. The field gives if != 0 the AP bus limit for this card in 4k chunk units. The actual message size limit per card is shown as a new read-only sysfs attribute. The sysfs attribute /sys/devices/ap/cardxx/max_msg_size shows the upper limit in bytes used by the AP bus and zcrypt device driver for requests and replies send to and received from this card. Currently up to CEX7 support only max 12kB msg size and thus the field shows 12288 meaning the upper limit of a valid msg for this card is 12kB. Please note that the usable payload is somewhat lower and depends on the msg type and thus the header struct which is to be prepended by the zcrypt dd. The dispatcher responsible for choosing the right card and queue is aware of the individual card AP bus message limit. So a request is only assigned to a queue of a card which is able to handle the size of the request (e.g. a 14kB request will never go to a max 12kB card). If no such card is found the ioctl will fail with ENODEV. The reply buffer held by the device driver is determined by the ml field of the TAPQ for this card. If a response from the card exceeds this limit however, the response is not truncated but the ioctl for this request will fail with errno EMSGSIZE to indicate that the device driver has dropped the response because it would overflow the buffer limit. If the request size does not indicate to the dispatcher that an adapter with extended limit is to be used, a random card will be chosen when no specific card is addressed (ANY addressing). This may result in an ioctl failure when the reply size needs an adapter with extended limit but the randomly chosen one is not capable of handling the broader reply size. The user space application needs to use dedicated addressing to forward such a request only to suitable cards to get requests like this processed properly. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-06-25 13:29:46 +03:00
#define AP_DEFAULT_MAX_MSG_SIZE (12 * 1024)
#define AP_TAPQ_ML_FIELD_CHUNK_SIZE (4096)
extern int ap_domain_index;
s390/AP: support new dynamic AP bus size limit This patch provides support for new dynamic AP bus message limit with the existing zcrypt device driver and AP bus core code. There is support for a new field 'ml' from TAPQ query. The field gives if != 0 the AP bus limit for this card in 4k chunk units. The actual message size limit per card is shown as a new read-only sysfs attribute. The sysfs attribute /sys/devices/ap/cardxx/max_msg_size shows the upper limit in bytes used by the AP bus and zcrypt device driver for requests and replies send to and received from this card. Currently up to CEX7 support only max 12kB msg size and thus the field shows 12288 meaning the upper limit of a valid msg for this card is 12kB. Please note that the usable payload is somewhat lower and depends on the msg type and thus the header struct which is to be prepended by the zcrypt dd. The dispatcher responsible for choosing the right card and queue is aware of the individual card AP bus message limit. So a request is only assigned to a queue of a card which is able to handle the size of the request (e.g. a 14kB request will never go to a max 12kB card). If no such card is found the ioctl will fail with ENODEV. The reply buffer held by the device driver is determined by the ml field of the TAPQ for this card. If a response from the card exceeds this limit however, the response is not truncated but the ioctl for this request will fail with errno EMSGSIZE to indicate that the device driver has dropped the response because it would overflow the buffer limit. If the request size does not indicate to the dispatcher that an adapter with extended limit is to be used, a random card will be chosen when no specific card is addressed (ANY addressing). This may result in an ioctl failure when the reply size needs an adapter with extended limit but the randomly chosen one is not capable of handling the broader reply size. The user space application needs to use dedicated addressing to forward such a request only to suitable cards to get requests like this processed properly. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-06-25 13:29:46 +03:00
extern atomic_t ap_max_msg_size;
extern DECLARE_HASHTABLE(ap_queues, 8);
extern spinlock_t ap_queues_lock;
static inline int ap_test_bit(unsigned int *ptr, unsigned int nr)
{
return (*ptr & (0x80000000u >> nr)) != 0;
}
#define AP_RESPONSE_NORMAL 0x00
#define AP_RESPONSE_Q_NOT_AVAIL 0x01
#define AP_RESPONSE_RESET_IN_PROGRESS 0x02
#define AP_RESPONSE_DECONFIGURED 0x03
#define AP_RESPONSE_CHECKSTOPPED 0x04
#define AP_RESPONSE_BUSY 0x05
#define AP_RESPONSE_INVALID_ADDRESS 0x06
#define AP_RESPONSE_OTHERWISE_CHANGED 0x07
#define AP_RESPONSE_Q_FULL 0x10
#define AP_RESPONSE_NO_PENDING_REPLY 0x10
#define AP_RESPONSE_INDEX_TOO_BIG 0x11
#define AP_RESPONSE_NO_FIRST_PART 0x13
#define AP_RESPONSE_MESSAGE_TOO_BIG 0x15
#define AP_RESPONSE_REQ_FAC_NOT_INST 0x16
#define AP_RESPONSE_INVALID_DOMAIN 0x42
/*
* Known device types
*/
#define AP_DEVICE_TYPE_PCICC 3
#define AP_DEVICE_TYPE_PCICA 4
#define AP_DEVICE_TYPE_PCIXCC 5
#define AP_DEVICE_TYPE_CEX2A 6
#define AP_DEVICE_TYPE_CEX2C 7
#define AP_DEVICE_TYPE_CEX3A 8
#define AP_DEVICE_TYPE_CEX3C 9
#define AP_DEVICE_TYPE_CEX4 10
#define AP_DEVICE_TYPE_CEX5 11
#define AP_DEVICE_TYPE_CEX6 12
#define AP_DEVICE_TYPE_CEX7 13
/*
* Known function facilities
*/
#define AP_FUNC_MEX4K 1
#define AP_FUNC_CRT4K 2
#define AP_FUNC_COPRO 3
#define AP_FUNC_ACCEL 4
#define AP_FUNC_EP11 5
#define AP_FUNC_APXA 6
/*
* AP queue state machine states
*/
enum ap_sm_state {
2020-07-02 12:22:01 +03:00
AP_SM_STATE_RESET_START = 0,
AP_SM_STATE_RESET_WAIT,
AP_SM_STATE_SETIRQ_WAIT,
AP_SM_STATE_IDLE,
AP_SM_STATE_WORKING,
AP_SM_STATE_QUEUE_FULL,
NR_AP_SM_STATES
};
/*
* AP queue state machine events
*/
enum ap_sm_event {
AP_SM_EVENT_POLL,
AP_SM_EVENT_TIMEOUT,
NR_AP_SM_EVENTS
};
/*
* AP queue state wait behaviour
*/
enum ap_sm_wait {
AP_SM_WAIT_AGAIN = 0, /* retry immediately */
AP_SM_WAIT_TIMEOUT, /* wait for timeout */
AP_SM_WAIT_INTERRUPT, /* wait for thin interrupt (if available) */
AP_SM_WAIT_NONE, /* no wait */
NR_AP_SM_WAIT
};
2020-07-02 12:22:01 +03:00
/*
* AP queue device states
*/
enum ap_dev_state {
AP_DEV_STATE_UNINITIATED = 0, /* fresh and virgin, not touched */
AP_DEV_STATE_OPERATING, /* queue dev is working normal */
AP_DEV_STATE_SHUTDOWN, /* remove/unbind/shutdown in progress */
AP_DEV_STATE_ERROR, /* device is in error state */
NR_AP_DEV_STATES
};
struct ap_device;
struct ap_message;
s390/zcrypt: AP bus support for alternate driver(s) The current AP bus, AP devices and AP device drivers implementation uses a clearly defined mapping for binding AP devices to AP device drivers. So for example a CEX6C queue will always be bound to the cex4queue device driver. The Linux Device Driver model has no sensitivity for more than one device driver eligible for one device type. If there exist more than one drivers matching to the device type, simple all drivers are tried consecutively. There is no way to determine and influence the probing order of the drivers. With KVM there is a need to provide additional device drivers matching to the very same type of AP devices. With a simple implementation the KVM drivers run in competition to the regular drivers. Whichever 'wins' a device depends on build order and implementation details within the common Linux Device Driver Model and is not deterministic. However, a userspace process could figure out which device should be bound to which driver and sort out the correct binding by manipulating attributes in the sysfs. If for security reasons a AP device must not get bound to the 'wrong' device driver the sorting out has to be done within the Linux kernel by the AP bus code. This patch modifies the behavior of the AP bus for probing drivers for devices in a way that two sets of drivers are usable. Two new bitmasks 'apmask' and 'aqmask' are used to mark a subset of the APQN range for 'usable by the ap bus and the default drivers' or 'not usable by the default drivers and thus available for alternate drivers like vfio-xxx'. So an APQN which is addressed by this masking only the default drivers will be probed. In contrary an APQN which is not addressed by the masks will never be probed and bound to default drivers but onny to alternate drivers. Eventually the two masks give a way to divide the range of APQNs into two pools: one pool of APQNs used by the AP bus and the default drivers and thus via zcrypt drivers available to the userspace of the system. And another pool where no zcrypt drivers are bound to and which can be used by alternate drivers (like vfio-xxx) for their needs. This division is hot-plug save and makes sure a APQN assigned to an alternate driver is at no time somehow exploitable by the wrong party. The two masks are located in sysfs at /sys/bus/ap/apmask and /sys/bus/ap/aqmask. The mask syntax is exactly the same as the already existing mask attributes in the /sys/bus/ap directory (for example ap_usage_domain_mask and ap_control_domain_mask). By default all APQNs belong to the ap bus and the default drivers: cat /sys/bus/ap/apmask 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff cat /sys/bus/ap/aqmask 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff The masks can be changed at boot time with the kernel command line like this: ... ap.apmask=0xffff ap.aqmask=0x40 This would give these two pools: default drivers pool: adapter 0 - 15, domain 1 alternate drivers pool: adapter 0 - 15, all but domain 1 adapter 16-255, all domains The sysfs attributes for this two masks are writeable and an administrator is able to reconfigure the assignements on the fly by writing new mask values into. With changing the mask(s) a revision of the existing queue to driver bindings is done. So all APQNs which are bound to the 'wrong' driver are reprobed via kernel function device_reprobe() and thus the new correct driver will be assigned with respect of the changed apmask and aqmask bits. The mask values are bitmaps in big endian order starting with bit 0. So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs attributes accept 2 different formats: - Absolute hex string starting with 0x like "0x12345678" does set the mask starting from left to right. If the given string is shorter than the mask it is padded with 0s on the right. If the string is longer than the mask an error comes back (EINVAL). - '+' or '-' followed by a numerical value. Valid examples are "+1", "-13", "+0x41", "-0xff" and even "+0" and "-0". Only the addressed bit in the mask is switched on ('+') or off ('-'). This patch will also be the base for an upcoming extension to the zcrypt drivers to be able to provide additional zcrypt device nodes with filtering based on ap and aq masks. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-07-20 09:36:53 +03:00
/*
* The ap driver struct includes a flags field which holds some info for
* the ap bus about the driver. Currently only one flag is supported and
* used: The DEFAULT flag marks an ap driver as a default driver which is
* used together with the apmask and aqmask whitelisting of the ap bus.
*/
#define AP_DRIVER_FLAG_DEFAULT 0x0001
struct ap_driver {
struct device_driver driver;
struct ap_device_id *ids;
s390/zcrypt: AP bus support for alternate driver(s) The current AP bus, AP devices and AP device drivers implementation uses a clearly defined mapping for binding AP devices to AP device drivers. So for example a CEX6C queue will always be bound to the cex4queue device driver. The Linux Device Driver model has no sensitivity for more than one device driver eligible for one device type. If there exist more than one drivers matching to the device type, simple all drivers are tried consecutively. There is no way to determine and influence the probing order of the drivers. With KVM there is a need to provide additional device drivers matching to the very same type of AP devices. With a simple implementation the KVM drivers run in competition to the regular drivers. Whichever 'wins' a device depends on build order and implementation details within the common Linux Device Driver Model and is not deterministic. However, a userspace process could figure out which device should be bound to which driver and sort out the correct binding by manipulating attributes in the sysfs. If for security reasons a AP device must not get bound to the 'wrong' device driver the sorting out has to be done within the Linux kernel by the AP bus code. This patch modifies the behavior of the AP bus for probing drivers for devices in a way that two sets of drivers are usable. Two new bitmasks 'apmask' and 'aqmask' are used to mark a subset of the APQN range for 'usable by the ap bus and the default drivers' or 'not usable by the default drivers and thus available for alternate drivers like vfio-xxx'. So an APQN which is addressed by this masking only the default drivers will be probed. In contrary an APQN which is not addressed by the masks will never be probed and bound to default drivers but onny to alternate drivers. Eventually the two masks give a way to divide the range of APQNs into two pools: one pool of APQNs used by the AP bus and the default drivers and thus via zcrypt drivers available to the userspace of the system. And another pool where no zcrypt drivers are bound to and which can be used by alternate drivers (like vfio-xxx) for their needs. This division is hot-plug save and makes sure a APQN assigned to an alternate driver is at no time somehow exploitable by the wrong party. The two masks are located in sysfs at /sys/bus/ap/apmask and /sys/bus/ap/aqmask. The mask syntax is exactly the same as the already existing mask attributes in the /sys/bus/ap directory (for example ap_usage_domain_mask and ap_control_domain_mask). By default all APQNs belong to the ap bus and the default drivers: cat /sys/bus/ap/apmask 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff cat /sys/bus/ap/aqmask 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff The masks can be changed at boot time with the kernel command line like this: ... ap.apmask=0xffff ap.aqmask=0x40 This would give these two pools: default drivers pool: adapter 0 - 15, domain 1 alternate drivers pool: adapter 0 - 15, all but domain 1 adapter 16-255, all domains The sysfs attributes for this two masks are writeable and an administrator is able to reconfigure the assignements on the fly by writing new mask values into. With changing the mask(s) a revision of the existing queue to driver bindings is done. So all APQNs which are bound to the 'wrong' driver are reprobed via kernel function device_reprobe() and thus the new correct driver will be assigned with respect of the changed apmask and aqmask bits. The mask values are bitmaps in big endian order starting with bit 0. So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs attributes accept 2 different formats: - Absolute hex string starting with 0x like "0x12345678" does set the mask starting from left to right. If the given string is shorter than the mask it is padded with 0s on the right. If the string is longer than the mask an error comes back (EINVAL). - '+' or '-' followed by a numerical value. Valid examples are "+1", "-13", "+0x41", "-0xff" and even "+0" and "-0". Only the addressed bit in the mask is switched on ('+') or off ('-'). This patch will also be the base for an upcoming extension to the zcrypt drivers to be able to provide additional zcrypt device nodes with filtering based on ap and aq masks. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-07-20 09:36:53 +03:00
unsigned int flags;
int (*probe)(struct ap_device *);
void (*remove)(struct ap_device *);
};
#define to_ap_drv(x) container_of((x), struct ap_driver, driver)
int ap_driver_register(struct ap_driver *, struct module *, char *);
void ap_driver_unregister(struct ap_driver *);
struct ap_device {
struct device device;
int device_type; /* AP device type. */
};
#define to_ap_dev(x) container_of((x), struct ap_device, device)
struct ap_card {
struct ap_device ap_dev;
int raw_hwtype; /* AP raw hardware type. */
unsigned int functions; /* AP device function bitfield. */
int queue_depth; /* AP queue depth.*/
int id; /* AP card number. */
s390/AP: support new dynamic AP bus size limit This patch provides support for new dynamic AP bus message limit with the existing zcrypt device driver and AP bus core code. There is support for a new field 'ml' from TAPQ query. The field gives if != 0 the AP bus limit for this card in 4k chunk units. The actual message size limit per card is shown as a new read-only sysfs attribute. The sysfs attribute /sys/devices/ap/cardxx/max_msg_size shows the upper limit in bytes used by the AP bus and zcrypt device driver for requests and replies send to and received from this card. Currently up to CEX7 support only max 12kB msg size and thus the field shows 12288 meaning the upper limit of a valid msg for this card is 12kB. Please note that the usable payload is somewhat lower and depends on the msg type and thus the header struct which is to be prepended by the zcrypt dd. The dispatcher responsible for choosing the right card and queue is aware of the individual card AP bus message limit. So a request is only assigned to a queue of a card which is able to handle the size of the request (e.g. a 14kB request will never go to a max 12kB card). If no such card is found the ioctl will fail with ENODEV. The reply buffer held by the device driver is determined by the ml field of the TAPQ for this card. If a response from the card exceeds this limit however, the response is not truncated but the ioctl for this request will fail with errno EMSGSIZE to indicate that the device driver has dropped the response because it would overflow the buffer limit. If the request size does not indicate to the dispatcher that an adapter with extended limit is to be used, a random card will be chosen when no specific card is addressed (ANY addressing). This may result in an ioctl failure when the reply size needs an adapter with extended limit but the randomly chosen one is not capable of handling the broader reply size. The user space application needs to use dedicated addressing to forward such a request only to suitable cards to get requests like this processed properly. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-06-25 13:29:46 +03:00
unsigned int maxmsgsize; /* AP msg limit for this card */
bool config; /* configured state */
atomic64_t total_request_count; /* # requests ever for this AP device.*/
};
#define to_ap_card(x) container_of((x), struct ap_card, ap_dev.device)
struct ap_queue {
struct ap_device ap_dev;
struct hlist_node hnode; /* Node for the ap_queues hashtable */
struct ap_card *card; /* Ptr to assoc. AP card. */
spinlock_t lock; /* Per device lock. */
2020-07-02 12:22:01 +03:00
enum ap_dev_state dev_state; /* queue device state */
bool config; /* configured state */
ap_qid_t qid; /* AP queue id. */
bool interrupt; /* indicate if interrupts are enabled */
int queue_count; /* # messages currently on AP queue. */
int pendingq_count; /* # requests on pendingq list. */
int requestq_count; /* # requests on requestq list. */
u64 total_request_count; /* # requests ever for this AP device.*/
int request_timeout; /* Request timeout in jiffies. */
struct timer_list timeout; /* Timer for request timeouts. */
struct list_head pendingq; /* List of message sent to AP queue. */
struct list_head requestq; /* List of message yet to be sent. */
struct ap_message *reply; /* Per device reply message. */
2020-07-02 12:22:01 +03:00
enum ap_sm_state sm_state; /* ap queue state machine state */
int last_err_rc; /* last error state response code */
};
#define to_ap_queue(x) container_of((x), struct ap_queue, ap_dev.device)
typedef enum ap_sm_wait (ap_func_t)(struct ap_queue *queue);
s390/zcrypt: Introduce Failure Injection feature Introduce a way to specify additional debug flags with an crpyto request to be able to trigger certain failures within the zcrypt device drivers and/or ap core code. This failure injection possibility is only enabled with a kernel debug build CONFIG_ZCRYPT_DEBUG) and should never be available on a regular kernel running in production environment. Details: * The ioctl(ICARSAMODEXPO) get's a struct ica_rsa_modexpo. If the leftmost bit of the 32 bit unsigned int inputdatalength field is set, the uppermost 16 bits are separated and used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ICARSACRT) get's a struct ica_rsa_modexpo_crt. If the leftmost bit of the 32 bit unsigned int inputdatalength field is set, the uppermost 16 bits are separated and used als debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ZSECSENDCPRB) used to send CCA CPRBs get's a struct ica_xcRB. If the leftmost bit of the 32 bit unsigned int status field is set, the uppermost 16 bits of this field are used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ZSENDEP11CPRB) used to send EP11 CPRBs get's a struct ep11_urb. If the leftmost bit of the 64 bit unsigned int req_len field is set, the uppermost 16 bits of this field are used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. So it is possible to send an additional 16 bit value to the zcrypt API to be used to carry a failure injection command which may trigger special behavior within the zcrypt API and layers below. This 16 bit value is for the rest of the test referred as 'fi command' for Failure Injection. The lower 8 bits of the fi command construct a numerical argument in the range of 1-255 and is the 'fi action' to be performed with the request or the resulting reply: * 0x00 (all requests): No failure injection action but flags may be provided which may affect the processing of the request or reply. * 0x01 (only CCA CPRBs): The CPRB's agent_ID field is set to 'FF'. This results in an reply code 0x90 (Transport-Protocol Failure). * 0x02 (only CCA CPRBs): After the APQN to send to has been chosen, the domain field within the CPRB is overwritten with value 99 to enforce an reply with RY 0x8A. * 0x03 (all requests): At NQAP invocation the invalid qid value 0xFF00 is used causing an response code of 0x01 (AP queue not valid). The upper 8 bits of the fi command may carry bit flags which may influence the processing of an request or response: * 0x01: No retry. If this bit is set, the usual loop in the zcrypt API which retries an CPRB up to 10 times when the lower layers return with EAGAIN is abandoned after the first attempt to send the CPRB. * 0x02: Toggle special. Toggles the special bit on this request. This should result in an reply code RY~0x41 and result in an ioctl failure with errno EINVAL. This failure injection possibilities may get some further extensions in the future. As of now this is a starting point for Continuous Test and Integration to trigger some failures and watch for the reaction of the ap bus and zcrypt device driver code. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2020-09-29 17:07:22 +03:00
/* failure injection cmd struct */
struct ap_fi {
union {
u16 cmd; /* fi flags + action */
struct {
u8 flags; /* fi flags only */
u8 action; /* fi action only */
};
};
};
/* all currently known fi actions */
enum ap_fi_actions {
AP_FI_ACTION_CCA_AGENT_FF = 0x01,
AP_FI_ACTION_CCA_DOM_INVAL = 0x02,
AP_FI_ACTION_NQAP_QID_INVAL = 0x03,
};
/* all currently known fi flags */
enum ap_fi_flags {
AP_FI_FLAG_NO_RETRY = 0x01,
AP_FI_FLAG_TOGGLE_SPECIAL = 0x02,
};
struct ap_message {
struct list_head list; /* Request queueing. */
unsigned long long psmid; /* Message id. */
void *msg; /* Pointer to message buffer. */
s390/AP: support new dynamic AP bus size limit This patch provides support for new dynamic AP bus message limit with the existing zcrypt device driver and AP bus core code. There is support for a new field 'ml' from TAPQ query. The field gives if != 0 the AP bus limit for this card in 4k chunk units. The actual message size limit per card is shown as a new read-only sysfs attribute. The sysfs attribute /sys/devices/ap/cardxx/max_msg_size shows the upper limit in bytes used by the AP bus and zcrypt device driver for requests and replies send to and received from this card. Currently up to CEX7 support only max 12kB msg size and thus the field shows 12288 meaning the upper limit of a valid msg for this card is 12kB. Please note that the usable payload is somewhat lower and depends on the msg type and thus the header struct which is to be prepended by the zcrypt dd. The dispatcher responsible for choosing the right card and queue is aware of the individual card AP bus message limit. So a request is only assigned to a queue of a card which is able to handle the size of the request (e.g. a 14kB request will never go to a max 12kB card). If no such card is found the ioctl will fail with ENODEV. The reply buffer held by the device driver is determined by the ml field of the TAPQ for this card. If a response from the card exceeds this limit however, the response is not truncated but the ioctl for this request will fail with errno EMSGSIZE to indicate that the device driver has dropped the response because it would overflow the buffer limit. If the request size does not indicate to the dispatcher that an adapter with extended limit is to be used, a random card will be chosen when no specific card is addressed (ANY addressing). This may result in an ioctl failure when the reply size needs an adapter with extended limit but the randomly chosen one is not capable of handling the broader reply size. The user space application needs to use dedicated addressing to forward such a request only to suitable cards to get requests like this processed properly. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-06-25 13:29:46 +03:00
unsigned int len; /* actual msg len in msg buffer */
unsigned int bufsize; /* allocated msg buffer size */
s390/zcrypt: Introduce Failure Injection feature Introduce a way to specify additional debug flags with an crpyto request to be able to trigger certain failures within the zcrypt device drivers and/or ap core code. This failure injection possibility is only enabled with a kernel debug build CONFIG_ZCRYPT_DEBUG) and should never be available on a regular kernel running in production environment. Details: * The ioctl(ICARSAMODEXPO) get's a struct ica_rsa_modexpo. If the leftmost bit of the 32 bit unsigned int inputdatalength field is set, the uppermost 16 bits are separated and used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ICARSACRT) get's a struct ica_rsa_modexpo_crt. If the leftmost bit of the 32 bit unsigned int inputdatalength field is set, the uppermost 16 bits are separated and used als debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ZSECSENDCPRB) used to send CCA CPRBs get's a struct ica_xcRB. If the leftmost bit of the 32 bit unsigned int status field is set, the uppermost 16 bits of this field are used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ZSENDEP11CPRB) used to send EP11 CPRBs get's a struct ep11_urb. If the leftmost bit of the 64 bit unsigned int req_len field is set, the uppermost 16 bits of this field are used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. So it is possible to send an additional 16 bit value to the zcrypt API to be used to carry a failure injection command which may trigger special behavior within the zcrypt API and layers below. This 16 bit value is for the rest of the test referred as 'fi command' for Failure Injection. The lower 8 bits of the fi command construct a numerical argument in the range of 1-255 and is the 'fi action' to be performed with the request or the resulting reply: * 0x00 (all requests): No failure injection action but flags may be provided which may affect the processing of the request or reply. * 0x01 (only CCA CPRBs): The CPRB's agent_ID field is set to 'FF'. This results in an reply code 0x90 (Transport-Protocol Failure). * 0x02 (only CCA CPRBs): After the APQN to send to has been chosen, the domain field within the CPRB is overwritten with value 99 to enforce an reply with RY 0x8A. * 0x03 (all requests): At NQAP invocation the invalid qid value 0xFF00 is used causing an response code of 0x01 (AP queue not valid). The upper 8 bits of the fi command may carry bit flags which may influence the processing of an request or response: * 0x01: No retry. If this bit is set, the usual loop in the zcrypt API which retries an CPRB up to 10 times when the lower layers return with EAGAIN is abandoned after the first attempt to send the CPRB. * 0x02: Toggle special. Toggles the special bit on this request. This should result in an reply code RY~0x41 and result in an ioctl failure with errno EINVAL. This failure injection possibilities may get some further extensions in the future. As of now this is a starting point for Continuous Test and Integration to trigger some failures and watch for the reaction of the ap bus and zcrypt device driver code. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2020-09-29 17:07:22 +03:00
u16 flags; /* Flags, see AP_MSG_FLAG_xxx */
struct ap_fi fi; /* Failure Injection cmd */
int rc; /* Return code for this message */
void *private; /* ap driver private pointer. */
/* receive is called from tasklet context */
void (*receive)(struct ap_queue *, struct ap_message *,
struct ap_message *);
};
s390/zcrypt: Introduce Failure Injection feature Introduce a way to specify additional debug flags with an crpyto request to be able to trigger certain failures within the zcrypt device drivers and/or ap core code. This failure injection possibility is only enabled with a kernel debug build CONFIG_ZCRYPT_DEBUG) and should never be available on a regular kernel running in production environment. Details: * The ioctl(ICARSAMODEXPO) get's a struct ica_rsa_modexpo. If the leftmost bit of the 32 bit unsigned int inputdatalength field is set, the uppermost 16 bits are separated and used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ICARSACRT) get's a struct ica_rsa_modexpo_crt. If the leftmost bit of the 32 bit unsigned int inputdatalength field is set, the uppermost 16 bits are separated and used als debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ZSECSENDCPRB) used to send CCA CPRBs get's a struct ica_xcRB. If the leftmost bit of the 32 bit unsigned int status field is set, the uppermost 16 bits of this field are used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. * The ioctl(ZSENDEP11CPRB) used to send EP11 CPRBs get's a struct ep11_urb. If the leftmost bit of the 64 bit unsigned int req_len field is set, the uppermost 16 bits of this field are used as debug flag value. The process is checked to have the CAP_SYS_ADMIN capability enabled or EPERM is returned. So it is possible to send an additional 16 bit value to the zcrypt API to be used to carry a failure injection command which may trigger special behavior within the zcrypt API and layers below. This 16 bit value is for the rest of the test referred as 'fi command' for Failure Injection. The lower 8 bits of the fi command construct a numerical argument in the range of 1-255 and is the 'fi action' to be performed with the request or the resulting reply: * 0x00 (all requests): No failure injection action but flags may be provided which may affect the processing of the request or reply. * 0x01 (only CCA CPRBs): The CPRB's agent_ID field is set to 'FF'. This results in an reply code 0x90 (Transport-Protocol Failure). * 0x02 (only CCA CPRBs): After the APQN to send to has been chosen, the domain field within the CPRB is overwritten with value 99 to enforce an reply with RY 0x8A. * 0x03 (all requests): At NQAP invocation the invalid qid value 0xFF00 is used causing an response code of 0x01 (AP queue not valid). The upper 8 bits of the fi command may carry bit flags which may influence the processing of an request or response: * 0x01: No retry. If this bit is set, the usual loop in the zcrypt API which retries an CPRB up to 10 times when the lower layers return with EAGAIN is abandoned after the first attempt to send the CPRB. * 0x02: Toggle special. Toggles the special bit on this request. This should result in an reply code RY~0x41 and result in an ioctl failure with errno EINVAL. This failure injection possibilities may get some further extensions in the future. As of now this is a starting point for Continuous Test and Integration to trigger some failures and watch for the reaction of the ap bus and zcrypt device driver code. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2020-09-29 17:07:22 +03:00
#define AP_MSG_FLAG_SPECIAL 1 /* flag msg as 'special' with NQAP */
/**
* ap_init_message() - Initialize ap_message.
* Initialize a message before using. Otherwise this might result in
* unexpected behaviour.
*/
static inline void ap_init_message(struct ap_message *ap_msg)
{
memset(ap_msg, 0, sizeof(*ap_msg));
}
/**
* ap_release_message() - Release ap_message.
* Releases all memory used internal within the ap_message struct
* Currently this is the message and private field.
*/
static inline void ap_release_message(struct ap_message *ap_msg)
{
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 09:18:13 +03:00
kfree_sensitive(ap_msg->msg);
kfree_sensitive(ap_msg->private);
}
/*
* Note: don't use ap_send/ap_recv after using ap_queue_message
* for the first time. Otherwise the ap message queue will get
* confused.
*/
int ap_send(ap_qid_t, unsigned long long, void *, size_t);
int ap_recv(ap_qid_t, unsigned long long *, void *, size_t);
enum ap_sm_wait ap_sm_event(struct ap_queue *aq, enum ap_sm_event event);
enum ap_sm_wait ap_sm_event_loop(struct ap_queue *aq, enum ap_sm_event event);
2020-07-02 12:22:01 +03:00
int ap_queue_message(struct ap_queue *aq, struct ap_message *ap_msg);
void ap_cancel_message(struct ap_queue *aq, struct ap_message *ap_msg);
void ap_flush_queue(struct ap_queue *aq);
void *ap_airq_ptr(void);
void ap_wait(enum ap_sm_wait wait);
void ap_request_timeout(struct timer_list *t);
void ap_bus_force_rescan(void);
int ap_test_config_usage_domain(unsigned int domain);
int ap_test_config_ctrl_domain(unsigned int domain);
void ap_queue_init_reply(struct ap_queue *aq, struct ap_message *ap_msg);
struct ap_queue *ap_queue_create(ap_qid_t qid, int device_type);
s390/zcrypt: revisit ap device remove procedure Working with the vfio-ap driver let to some revisit of the way how an ap (queue) device is removed from the driver. With the current implementation all the cleanup was done before the driver even got notified about the removal. Now the ap queue removal is done in 3 steps: 1) A preparation step, all ap messages within the queue are flushed and so the driver does 'receive' them. Also a new state AP_STATE_REMOVE assigned to the queue makes sure there are no new messages queued in. 2) Now the driver's remove function is invoked and the driver should do the job of cleaning up it's internal administration lists or whatever. After 2) is done it is guaranteed, that the driver is not invoked any more. On the other hand the driver has to make sure that the APQN is not accessed any more after step 2 is complete. 3) Now the ap bus code does the job of total cleanup of the APQN. A reset with zero is triggered and the state of the queue goes to AP_STATE_UNBOUND. After step 3) is complete, the ap queue has no pending messages and the APQN is cleared and so there are no requests and replies lingering around in the firmware queue for this APQN. Also the interrupts are disabled. After these remove steps the ap queue device may be assigned to another driver. Stress testing this remove/probe procedure showed a problem with the correct module reference counting. The actual receive of an reply in the driver is done asynchronous with completions. So with a driver change on an ap queue the message flush triggers completions but the threads waiting for the completions may run at a time where the queue already has the new driver assigned. So the module_put() at receive time needs to be done on the driver module which queued the ap message. This change is also part of this patch. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Ingo Franzki <ifranzki@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2019-02-22 19:24:11 +03:00
void ap_queue_prepare_remove(struct ap_queue *aq);
void ap_queue_remove(struct ap_queue *aq);
void ap_queue_init_state(struct ap_queue *aq);
s390/AP: support new dynamic AP bus size limit This patch provides support for new dynamic AP bus message limit with the existing zcrypt device driver and AP bus core code. There is support for a new field 'ml' from TAPQ query. The field gives if != 0 the AP bus limit for this card in 4k chunk units. The actual message size limit per card is shown as a new read-only sysfs attribute. The sysfs attribute /sys/devices/ap/cardxx/max_msg_size shows the upper limit in bytes used by the AP bus and zcrypt device driver for requests and replies send to and received from this card. Currently up to CEX7 support only max 12kB msg size and thus the field shows 12288 meaning the upper limit of a valid msg for this card is 12kB. Please note that the usable payload is somewhat lower and depends on the msg type and thus the header struct which is to be prepended by the zcrypt dd. The dispatcher responsible for choosing the right card and queue is aware of the individual card AP bus message limit. So a request is only assigned to a queue of a card which is able to handle the size of the request (e.g. a 14kB request will never go to a max 12kB card). If no such card is found the ioctl will fail with ENODEV. The reply buffer held by the device driver is determined by the ml field of the TAPQ for this card. If a response from the card exceeds this limit however, the response is not truncated but the ioctl for this request will fail with errno EMSGSIZE to indicate that the device driver has dropped the response because it would overflow the buffer limit. If the request size does not indicate to the dispatcher that an adapter with extended limit is to be used, a random card will be chosen when no specific card is addressed (ANY addressing). This may result in an ioctl failure when the reply size needs an adapter with extended limit but the randomly chosen one is not capable of handling the broader reply size. The user space application needs to use dedicated addressing to forward such a request only to suitable cards to get requests like this processed properly. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-06-25 13:29:46 +03:00
struct ap_card *ap_card_create(int id, int queue_depth, int raw_type,
int comp_type, unsigned int functions, int ml);
s390/zcrypt: multiple zcrypt device nodes support This patch is an extension to the zcrypt device driver to provide, support and maintain multiple zcrypt device nodes. The individual zcrypt device nodes can be restricted in terms of crypto cards, domains and available ioctls. Such a device node can be used as a base for container solutions like docker to control and restrict the access to crypto resources. The handling is done with a new sysfs subdir /sys/class/zcrypt. Echoing a name (or an empty sting) into the attribute "create" creates a new zcrypt device node. In /sys/class/zcrypt a new link will appear which points to the sysfs device tree of this new device. The attribute files "ioctlmask", "apmask" and "aqmask" in this directory are used to customize this new zcrypt device node instance. Finally the zcrypt device node can be destroyed by echoing the name into /sys/class/zcrypt/destroy. The internal structs holding the device info are reference counted - so a destroy will not hard remove a device but only marks it as removable when the reference counter drops to zero. The mask values are bitmaps in big endian order starting with bit 0. So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs attributes accept 2 different formats: * Absolute hex string starting with 0x like "0x12345678" does set the mask starting from left to right. If the given string is shorter than the mask it is padded with 0s on the right. If the string is longer than the mask an error comes back (EINVAL). * Relative format - a concatenation (done with ',') of the terms +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]. <bitnr> may be any valid number (hex, decimal or octal) in the range 0...255. Here are some examples: "+0-15,+32,-128,-0xFF" "-0-255,+1-16,+0x128" "+1,+2,+3,+4,-5,-7-10" A simple usage examples: # create new zcrypt device 'my_zcrypt': echo "my_zcrypt" >/sys/class/zcrypt/create # go into the device dir of this new device echo "my_zcrypt" >create cd my_zcrypt/ ls -l total 0 -rw-r--r-- 1 root root 4096 Jul 20 15:23 apmask -rw-r--r-- 1 root root 4096 Jul 20 15:23 aqmask -r--r--r-- 1 root root 4096 Jul 20 15:23 dev -rw-r--r-- 1 root root 4096 Jul 20 15:23 ioctlmask lrwxrwxrwx 1 root root 0 Jul 20 15:23 subsystem -> ../../../../class/zcrypt ... # customize this zcrypt node clone # enable only adapter 0 and 2 echo "0xa0" >apmask # enable only domain 6 echo "+6" >aqmask # enable all 256 ioctls echo "+0-255" >ioctls # now the /dev/my_zcrypt may be used # finally destroy it echo "my_zcrypt" >/sys/class/zcrypt/destroy Please note that a very similar 'filtering behavior' also applies to the parent z90crypt device. The two mask attributes apmask and aqmask in /sys/bus/ap act the very same for the z90crypt device node. However the implementation here is totally different as the ap bus acts on bind/unbind of queue devices and associated drivers but the effect is still the same. So there are two filters active for each additional zcrypt device node: The adapter/domain needs to be enabled on the ap bus level and it needs to be active on the zcrypt device node level. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-09-17 17:18:41 +03:00
struct ap_perms {
unsigned long ioctlm[BITS_TO_LONGS(AP_IOCTLS)];
unsigned long apm[BITS_TO_LONGS(AP_DEVICES)];
unsigned long aqm[BITS_TO_LONGS(AP_DOMAINS)];
};
extern struct ap_perms ap_perms;
extern struct mutex ap_perms_mutex;
/*
* Get ap_queue device for this qid.
* Returns ptr to the struct ap_queue device or NULL if there
* was no ap_queue device with this qid found. When something is
* found, the reference count of the embedded device is increased.
* So the caller has to decrease the reference count after use
* with a call to put_device(&aq->ap_dev.device).
*/
struct ap_queue *ap_get_qdev(ap_qid_t qid);
s390/zcrypt: AP bus support for alternate driver(s) The current AP bus, AP devices and AP device drivers implementation uses a clearly defined mapping for binding AP devices to AP device drivers. So for example a CEX6C queue will always be bound to the cex4queue device driver. The Linux Device Driver model has no sensitivity for more than one device driver eligible for one device type. If there exist more than one drivers matching to the device type, simple all drivers are tried consecutively. There is no way to determine and influence the probing order of the drivers. With KVM there is a need to provide additional device drivers matching to the very same type of AP devices. With a simple implementation the KVM drivers run in competition to the regular drivers. Whichever 'wins' a device depends on build order and implementation details within the common Linux Device Driver Model and is not deterministic. However, a userspace process could figure out which device should be bound to which driver and sort out the correct binding by manipulating attributes in the sysfs. If for security reasons a AP device must not get bound to the 'wrong' device driver the sorting out has to be done within the Linux kernel by the AP bus code. This patch modifies the behavior of the AP bus for probing drivers for devices in a way that two sets of drivers are usable. Two new bitmasks 'apmask' and 'aqmask' are used to mark a subset of the APQN range for 'usable by the ap bus and the default drivers' or 'not usable by the default drivers and thus available for alternate drivers like vfio-xxx'. So an APQN which is addressed by this masking only the default drivers will be probed. In contrary an APQN which is not addressed by the masks will never be probed and bound to default drivers but onny to alternate drivers. Eventually the two masks give a way to divide the range of APQNs into two pools: one pool of APQNs used by the AP bus and the default drivers and thus via zcrypt drivers available to the userspace of the system. And another pool where no zcrypt drivers are bound to and which can be used by alternate drivers (like vfio-xxx) for their needs. This division is hot-plug save and makes sure a APQN assigned to an alternate driver is at no time somehow exploitable by the wrong party. The two masks are located in sysfs at /sys/bus/ap/apmask and /sys/bus/ap/aqmask. The mask syntax is exactly the same as the already existing mask attributes in the /sys/bus/ap directory (for example ap_usage_domain_mask and ap_control_domain_mask). By default all APQNs belong to the ap bus and the default drivers: cat /sys/bus/ap/apmask 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff cat /sys/bus/ap/aqmask 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff The masks can be changed at boot time with the kernel command line like this: ... ap.apmask=0xffff ap.aqmask=0x40 This would give these two pools: default drivers pool: adapter 0 - 15, domain 1 alternate drivers pool: adapter 0 - 15, all but domain 1 adapter 16-255, all domains The sysfs attributes for this two masks are writeable and an administrator is able to reconfigure the assignements on the fly by writing new mask values into. With changing the mask(s) a revision of the existing queue to driver bindings is done. So all APQNs which are bound to the 'wrong' driver are reprobed via kernel function device_reprobe() and thus the new correct driver will be assigned with respect of the changed apmask and aqmask bits. The mask values are bitmaps in big endian order starting with bit 0. So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs attributes accept 2 different formats: - Absolute hex string starting with 0x like "0x12345678" does set the mask starting from left to right. If the given string is shorter than the mask it is padded with 0s on the right. If the string is longer than the mask an error comes back (EINVAL). - '+' or '-' followed by a numerical value. Valid examples are "+1", "-13", "+0x41", "-0xff" and even "+0" and "-0". Only the addressed bit in the mask is switched on ('+') or off ('-'). This patch will also be the base for an upcoming extension to the zcrypt drivers to be able to provide additional zcrypt device nodes with filtering based on ap and aq masks. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-07-20 09:36:53 +03:00
/*
* check APQN for owned/reserved by ap bus and default driver(s).
* Checks if this APQN is or will be in use by the ap bus
* and the default set of drivers.
* If yes, returns 1, if not returns 0. On error a negative
* errno value is returned.
*/
int ap_owned_by_def_drv(int card, int queue);
/*
* check 'matrix' of APQNs for owned/reserved by ap bus and
* default driver(s).
* Checks if there is at least one APQN in the given 'matrix'
* marked as owned/reserved by the ap bus and default driver(s).
* If such an APQN is found the return value is 1, otherwise
* 0 is returned. On error a negative errno value is returned.
* The parameter apm is a bitmask which should be declared
* as DECLARE_BITMAP(apm, AP_DEVICES), the aqm parameter is
* similar, should be declared as DECLARE_BITMAP(aqm, AP_DOMAINS).
*/
int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
unsigned long *aqm);
s390/zcrypt: multiple zcrypt device nodes support This patch is an extension to the zcrypt device driver to provide, support and maintain multiple zcrypt device nodes. The individual zcrypt device nodes can be restricted in terms of crypto cards, domains and available ioctls. Such a device node can be used as a base for container solutions like docker to control and restrict the access to crypto resources. The handling is done with a new sysfs subdir /sys/class/zcrypt. Echoing a name (or an empty sting) into the attribute "create" creates a new zcrypt device node. In /sys/class/zcrypt a new link will appear which points to the sysfs device tree of this new device. The attribute files "ioctlmask", "apmask" and "aqmask" in this directory are used to customize this new zcrypt device node instance. Finally the zcrypt device node can be destroyed by echoing the name into /sys/class/zcrypt/destroy. The internal structs holding the device info are reference counted - so a destroy will not hard remove a device but only marks it as removable when the reference counter drops to zero. The mask values are bitmaps in big endian order starting with bit 0. So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs attributes accept 2 different formats: * Absolute hex string starting with 0x like "0x12345678" does set the mask starting from left to right. If the given string is shorter than the mask it is padded with 0s on the right. If the string is longer than the mask an error comes back (EINVAL). * Relative format - a concatenation (done with ',') of the terms +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]. <bitnr> may be any valid number (hex, decimal or octal) in the range 0...255. Here are some examples: "+0-15,+32,-128,-0xFF" "-0-255,+1-16,+0x128" "+1,+2,+3,+4,-5,-7-10" A simple usage examples: # create new zcrypt device 'my_zcrypt': echo "my_zcrypt" >/sys/class/zcrypt/create # go into the device dir of this new device echo "my_zcrypt" >create cd my_zcrypt/ ls -l total 0 -rw-r--r-- 1 root root 4096 Jul 20 15:23 apmask -rw-r--r-- 1 root root 4096 Jul 20 15:23 aqmask -r--r--r-- 1 root root 4096 Jul 20 15:23 dev -rw-r--r-- 1 root root 4096 Jul 20 15:23 ioctlmask lrwxrwxrwx 1 root root 0 Jul 20 15:23 subsystem -> ../../../../class/zcrypt ... # customize this zcrypt node clone # enable only adapter 0 and 2 echo "0xa0" >apmask # enable only domain 6 echo "+6" >aqmask # enable all 256 ioctls echo "+0-255" >ioctls # now the /dev/my_zcrypt may be used # finally destroy it echo "my_zcrypt" >/sys/class/zcrypt/destroy Please note that a very similar 'filtering behavior' also applies to the parent z90crypt device. The two mask attributes apmask and aqmask in /sys/bus/ap act the very same for the z90crypt device node. However the implementation here is totally different as the ap bus acts on bind/unbind of queue devices and associated drivers but the effect is still the same. So there are two filters active for each additional zcrypt device node: The adapter/domain needs to be enabled on the ap bus level and it needs to be active on the zcrypt device node level. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-09-17 17:18:41 +03:00
/*
* ap_parse_mask_str() - helper function to parse a bitmap string
* and clear/set the bits in the bitmap accordingly. The string may be
* given as absolute value, a hex string like 0x1F2E3D4C5B6A" simple
* overwriting the current content of the bitmap. Or as relative string
* like "+1-16,-32,-0x40,+128" where only single bits or ranges of
* bits are cleared or set. Distinction is done based on the very
* first character which may be '+' or '-' for the relative string
* and othewise assume to be an absolute value string. If parsing fails
* a negative errno value is returned. All arguments and bitmaps are
* big endian order.
*/
int ap_parse_mask_str(const char *str,
unsigned long *bitmap, int bits,
struct mutex *lock);
s390/ap: ap bus userspace notifications for some bus conditions This patch adds notifications to userspace for two important conditions of the ap bus: I) Initial ap bus scan done. This indicates that the initial scan of all the ap devices (cards, queues) is complete and ap devices have been build up for all the hardware found. This condition is signaled with 1) An ap bus change uevent send to userspace with an environment key/value pair "INITSCAN=done": # udevadm monitor -k -p ... KERNEL[97.830919] change /devices/ap (ap) ACTION=change DEVPATH=/devices/ap SUBSYSTEM=ap INITSCAN=done SEQNUM=10421 2) A sysfs attribute /sys/bus/ap/scans which shows the number of completed ap bus scans done since bus init. So a value of 1 or greater signals that the initial ap bus scan is complete. Note: The initial ap bus scan complete condition is fulfilled and will be signaled even if there was no ap resource found. II) APQN driver bindings complete. This indicates that all APQNs have been bound to an zcrypt or alternate device driver. Only with the help of an device driver an APQN can be used for crypto load. So the binding complete condition is the starting point for user space to be sure all crypto resources on the ap bus are available for use. This condition is signaled with 1) An ap bus change uevent send to userspace with an environment key/value pair "BINDINGS=complete": # udevadm monitor -k -p ... KERNEL[97.830975] change /devices/ap (ap) ACTION=change DEVPATH=/devices/ap SUBSYSTEM=ap BINDINGS=complete SEQNUM=10422 2) A sysfs attribute /sys/bus/ap/bindings showing "<nr of bound apqns>/<total nr of apqns> (complete)" when all available apqns have been bound to device drivers, or "<nr of bound apqns>/<total nr of apqns>" when there are some apqns not bound to an device driver. Note: The binding complete condition is also fulfilled, when there are no apqns available to bind any device driver. In this case the binding complete will be signaled AFTER init scan is done. Note: This condition may arise multiple times when after initial scan modifications on the bindings take place. For example a manual unbind of an APQN switches the binding complete condition off. When at a later time the unbound APQNs are bound with an device driver the binding is (again) complete resulting in another uevent and marking the bindings sysfs attribute with '(complete)'. There is also a new function to be used within the kernel: int ap_wait_init_apqn_bindings_complete(unsigned long timeout) Interface to wait for the AP bus to have done one initial ap bus scan and all detected APQNs have been bound to device drivers. If these both conditions are not fulfilled, this function blocks on a condition with wait_for_completion_interruptible_timeout(). If these both conditions are fulfilled (before the timeout hits) the return value is 0. If the timeout (in jiffies) hits instead -ETIME is returned. On failures negative return values are returned to the caller. Please note that further unbind/bind actions after initial binding complete is through do not cause this function to block again. Reviewed-by: Ingo Franzki <ifranzki@linux.ibm.com> Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2020-08-31 11:16:26 +03:00
/*
* Interface to wait for the AP bus to have done one initial ap bus
* scan and all detected APQNs have been bound to device drivers.
* If these both conditions are not fulfilled, this function blocks
* on a condition with wait_for_completion_killable_timeout().
* If these both conditions are fulfilled (before the timeout hits)
* the return value is 0. If the timeout (in jiffies) hits instead
* -ETIME is returned. On failures negative return values are
* returned to the caller.
*/
int ap_wait_init_apqn_bindings_complete(unsigned long timeout);
s390/ap/zcrypt: notify userspace with online, config and mode info This patch brings 3 reworked/new uevent changes: * All AP uevents caused by an ap card or queue device now carry an additional uevent env value MODE=<accel|cca|ep11>. Here is an example: KERNEL[1267.301292] add /devices/ap/card0a (ap) ACTION=add DEVPATH=/devices/ap/card0a SUBSYSTEM=ap DEVTYPE=ap_card DEV_TYPE=000D MODALIAS=ap:t0D MODE=ep11 <- this is new SEQNUM=1095 This is true for bind, unbind, add, remove, and change uevents related to ap card or ap queue devices. * On a change of the soft online attribute on a zcrypt queue or card device a new CHANGE uevent is sent with an env value ONLINE=<0|1>. Example uevent: KERNEL[613.067531] change /devices/ap/card09/09.0011 (ap) ACTION=change DEVPATH=/devices/ap/card09/09.0011 SUBSYSTEM=ap ONLINE=0 <- this is new DEVTYPE=ap_queue DRIVER=cex4queue MODE=cca SEQNUM=1070 - On a change of the config state of an zcrypt card device a new CHANGE uevent is sent with an env value CONFIG=<0|1>. Example uevent: KERNEL[876.258680] change /devices/ap/card09 (ap) ACTION=change DEVPATH=/devices/ap/card09 SUBSYSTEM=ap CONFIG=0 <- this is new DEVTYPE=ap_card DRIVER=cex4card DEV_TYPE=000D MODALIAS=ap:t0D MODE=cca SEQNUM=1073 Setting a card config on/off causes the dependent queue devices to follow the config state change and thus uevents informing about the config state change for the queue devices are also emitted. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Ingo Franzki <ifranzki@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-04-13 19:11:09 +03:00
void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg);
void ap_send_online_uevent(struct ap_device *ap_dev, int online);
#endif /* _AP_BUS_H_ */