License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
2005-04-16 15:20:36 -07:00
/*
* MMU fault handling support .
*
* Copyright ( C ) 1998 - 2002 Hewlett - Packard Co
* David Mosberger - Tang < davidm @ hpl . hp . com >
*/
2017-02-08 18:51:30 +01:00
# include <linux/sched/signal.h>
2005-04-16 15:20:36 -07:00
# include <linux/kernel.h>
# include <linux/mm.h>
2016-07-23 14:01:45 -04:00
# include <linux/extable.h>
2005-04-16 15:20:36 -07:00
# include <linux/interrupt.h>
2005-09-06 15:19:30 -07:00
# include <linux/kprobes.h>
2007-05-08 00:27:03 -07:00
# include <linux/kdebug.h>
2011-05-20 12:50:29 -07:00
# include <linux/prefetch.h>
2015-05-11 17:52:11 +02:00
# include <linux/uaccess.h>
2005-04-16 15:20:36 -07:00
# include <asm/pgtable.h>
# include <asm/processor.h>
2016-09-19 18:28:25 -04:00
# include <asm/exception.h>
2005-04-16 15:20:36 -07:00
2008-02-04 23:43:03 -08:00
extern int die ( char * , struct pt_regs * , long ) ;
2005-04-16 15:20:36 -07:00
/*
* Return TRUE if ADDRESS points at a page in the kernel ' s mapped segment
* ( inside region 5 , on ia64 ) and that page is present .
*/
static int
mapped_kernel_page_is_present ( unsigned long address )
{
pgd_t * pgd ;
pud_t * pud ;
pmd_t * pmd ;
pte_t * ptep , pte ;
pgd = pgd_offset_k ( address ) ;
if ( pgd_none ( * pgd ) | | pgd_bad ( * pgd ) )
return 0 ;
pud = pud_offset ( pgd , address ) ;
if ( pud_none ( * pud ) | | pud_bad ( * pud ) )
return 0 ;
pmd = pmd_offset ( pud , address ) ;
if ( pmd_none ( * pmd ) | | pmd_bad ( * pmd ) )
return 0 ;
ptep = pte_offset_kernel ( pmd , address ) ;
if ( ! ptep )
return 0 ;
pte = * ptep ;
return pte_present ( pte ) ;
}
2012-06-14 13:11:37 -07:00
# define VM_READ_BIT 0
# define VM_WRITE_BIT 1
# define VM_EXEC_BIT 2
2005-09-06 15:19:30 -07:00
void __kprobes
2005-04-16 15:20:36 -07:00
ia64_do_page_fault ( unsigned long address , unsigned long isr , struct pt_regs * regs )
{
int signal = SIGSEGV , code = SEGV_MAPERR ;
struct vm_area_struct * vma , * prev_vma ;
struct mm_struct * mm = current - > mm ;
unsigned long mask ;
2018-08-17 15:44:47 -07:00
vm_fault_t fault ;
2012-06-14 13:11:37 -07:00
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE ;
mask = ( ( ( ( isr > > IA64_ISR_X_BIT ) & 1UL ) < < VM_EXEC_BIT )
| ( ( ( isr > > IA64_ISR_W_BIT ) & 1UL ) < < VM_WRITE_BIT ) ) ;
2006-03-28 22:54:38 -08:00
/* mmap_sem is performance critical.... */
prefetchw ( & mm - > mmap_sem ) ;
2005-04-16 15:20:36 -07:00
/*
* If we ' re in an interrupt or have no user context , we must not take the fault . .
*/
2015-05-11 17:52:11 +02:00
if ( faulthandler_disabled ( ) | | ! mm )
2005-04-16 15:20:36 -07:00
goto no_context ;
# ifdef CONFIG_VIRTUAL_MEM_MAP
/*
* If fault is in region 5 and we are in the kernel , we may already
* have the mmap_sem ( pfn_valid macro is called during mmap ) . There
* is no vma for region 5 addr ' s anyway , so skip getting the semaphore
* and go directly to the exception handling code .
*/
if ( ( REGION_NUMBER ( address ) = = 5 ) & & ! user_mode ( regs ) )
goto bad_area_no_up ;
# endif
2005-06-23 00:09:27 -07:00
/*
* This is to handle the kprobes on user space access instructions
*/
2019-07-16 16:28:00 -07:00
if ( kprobe_page_fault ( regs , TRAP_BRKPT ) )
2005-06-23 00:09:27 -07:00
return ;
2013-09-12 15:13:39 -07:00
if ( user_mode ( regs ) )
flags | = FAULT_FLAG_USER ;
if ( mask & VM_WRITE )
flags | = FAULT_FLAG_WRITE ;
2012-06-14 13:11:37 -07:00
retry :
2005-04-16 15:20:36 -07:00
down_read ( & mm - > mmap_sem ) ;
vma = find_vma_prev ( mm , address , & prev_vma ) ;
2007-08-16 10:30:46 -07:00
if ( ! vma & & ! prev_vma )
2005-04-16 15:20:36 -07:00
goto bad_area ;
2007-08-16 10:30:46 -07:00
/*
* find_vma_prev ( ) returns vma such that address < vma - > vm_end or NULL
*
* May find no vma , but could be that the last vm area is the
* register backing store that needs to expand upwards , in
* this case vma will be null , but prev_vma will ne non - null
*/
if ( ( ! vma & & prev_vma ) | | ( address < vma - > vm_start ) )
2005-04-16 15:20:36 -07:00
goto check_expansion ;
good_area :
code = SEGV_ACCERR ;
/* OK, we've got a good vm_area for this memory area. Check the access permissions: */
# if (((1 << VM_READ_BIT) != VM_READ || (1 << VM_WRITE_BIT) != VM_WRITE) \
| | ( 1 < < VM_EXEC_BIT ) ! = VM_EXEC )
# error File is out of sync with <linux / mm.h>. Please update.
# endif
[PATCH] make PROT_WRITE imply PROT_READ
Make PROT_WRITE imply PROT_READ for a number of architectures which don't
support write only in hardware.
While looking at this, I noticed that some architectures which do not
support write only mappings already take the exact same approach. For
example, in arch/alpha/mm/fault.c:
"
if (cause < 0) {
if (!(vma->vm_flags & VM_EXEC))
goto bad_area;
} else if (!cause) {
/* Allow reads even for write-only mappings */
if (!(vma->vm_flags & (VM_READ | VM_WRITE)))
goto bad_area;
} else {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
}
"
Thus, this patch brings other architectures which do not support write only
mappings in-line and consistent with the rest. I've verified the patch on
ia64, x86_64 and x86.
Additional discussion:
Several architectures, including x86, can not support write-only mappings.
The pte for x86 reserves a single bit for protection and its two states are
read only or read/write. Thus, write only is not supported in h/w.
Currently, if i 'mmap' a page write-only, the first read attempt on that page
creates a page fault and will SEGV. That check is enforced in
arch/blah/mm/fault.c. However, if i first write that page it will fault in
and the pte will be set to read/write. Thus, any subsequent reads to the page
will succeed. It is this inconsistency in behavior that this patch is
attempting to address. Furthermore, if the page is swapped out, and then
brought back the first read will also cause a SEGV. Thus, any arbitrary read
on a page can potentially result in a SEGV.
According to the SuSv3 spec, "if the application requests only PROT_WRITE, the
implementation may also allow read access." Also as mentioned, some
archtectures, such as alpha, shown above already take the approach that i am
suggesting.
The counter-argument to this raised by Arjan, is that the kernel is enforcing
the write only mapping the best it can given the h/w limitations. This is
true, however Alan Cox, and myself would argue that the inconsitency in
behavior, that is applications can sometimes work/sometimes fails is highly
undesireable. If you read through the thread, i think people, came to an
agreement on the last patch i posted, as nobody has objected to it...
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Andi Kleen <ak@muc.de>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Ian Molton <spyro@f2s.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 01:58:58 -07:00
if ( ( ( isr > > IA64_ISR_R_BIT ) & 1UL ) & & ( ! ( vma - > vm_flags & ( VM_READ | VM_WRITE ) ) ) )
goto bad_area ;
2005-04-16 15:20:36 -07:00
if ( ( vma - > vm_flags & mask ) ! = mask )
goto bad_area ;
/*
* If for any reason at all we couldn ' t handle the fault , make
* sure we exit gracefully rather than endlessly redo the
* fault .
*/
2016-07-26 15:25:18 -07:00
fault = handle_mm_fault ( vma , address , flags ) ;
2012-06-14 13:11:37 -07:00
if ( ( fault & VM_FAULT_RETRY ) & & fatal_signal_pending ( current ) )
return ;
2007-07-19 01:47:05 -07:00
if ( unlikely ( fault & VM_FAULT_ERROR ) ) {
2005-04-16 15:20:36 -07:00
/*
* We ran out of memory , or some other thing happened
* to us that made us unable to handle the page fault
* gracefully .
*/
2007-07-19 01:47:05 -07:00
if ( fault & VM_FAULT_OOM ) {
goto out_of_memory ;
vm: add VM_FAULT_SIGSEGV handling support
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a
"you should SIGSEGV" error, because the SIGSEGV case was generally
handled by the caller - usually the architecture fault handler.
That results in lots of duplication - all the architecture fault
handlers end up doing very similar "look up vma, check permissions, do
retries etc" - but it generally works. However, there are cases where
the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV.
In particular, when accessing the stack guard page, libsigsegv expects a
SIGSEGV. And it usually got one, because the stack growth is handled by
that duplicated architecture fault handler.
However, when the generic VM layer started propagating the error return
from the stack expansion in commit fee7e49d4514 ("mm: propagate error
from stack expansion even for guard page"), that now exposed the
existing VM_FAULT_SIGBUS result to user space. And user space really
expected SIGSEGV, not SIGBUS.
To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those
duplicate architecture fault handlers about it. They all already have
the code to handle SIGSEGV, so it's about just tying that new return
value to the existing code, but it's all a bit annoying.
This is the mindless minimal patch to do this. A more extensive patch
would be to try to gather up the mostly shared fault handling logic into
one generic helper routine, and long-term we really should do that
cleanup.
Just from this patch, you can generally see that most architectures just
copied (directly or indirectly) the old x86 way of doing things, but in
the meantime that original x86 model has been improved to hold the VM
semaphore for shorter times etc and to handle VM_FAULT_RETRY and other
"newer" things, so it would be a good idea to bring all those
improvements to the generic case and teach other architectures about
them too.
Reported-and-tested-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Jan Engelhardt <jengelh@inai.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots"
Cc: linux-arch@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-29 10:51:32 -08:00
} else if ( fault & VM_FAULT_SIGSEGV ) {
goto bad_area ;
2007-07-19 01:47:05 -07:00
} else if ( fault & VM_FAULT_SIGBUS ) {
signal = SIGBUS ;
goto bad_area ;
}
2005-04-16 15:20:36 -07:00
BUG ( ) ;
}
2012-06-14 13:11:37 -07:00
if ( flags & FAULT_FLAG_ALLOW_RETRY ) {
if ( fault & VM_FAULT_MAJOR )
current - > maj_flt + + ;
else
current - > min_flt + + ;
if ( fault & VM_FAULT_RETRY ) {
flags & = ~ FAULT_FLAG_ALLOW_RETRY ;
2012-10-08 16:32:19 -07:00
flags | = FAULT_FLAG_TRIED ;
2012-06-14 13:11:37 -07:00
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry
* in mm / filemap . c .
*/
goto retry ;
}
}
2005-04-16 15:20:36 -07:00
up_read ( & mm - > mmap_sem ) ;
return ;
check_expansion :
if ( ! ( prev_vma & & ( prev_vma - > vm_flags & VM_GROWSUP ) & & ( address = = prev_vma - > vm_end ) ) ) {
2007-08-16 10:30:46 -07:00
if ( ! vma )
goto bad_area ;
2005-04-16 15:20:36 -07:00
if ( ! ( vma - > vm_flags & VM_GROWSDOWN ) )
goto bad_area ;
if ( REGION_NUMBER ( address ) ! = REGION_NUMBER ( vma - > vm_start )
| | REGION_OFFSET ( address ) > = RGN_MAP_LIMIT )
goto bad_area ;
if ( expand_stack ( vma , address ) )
goto bad_area ;
} else {
vma = prev_vma ;
if ( REGION_NUMBER ( address ) ! = REGION_NUMBER ( vma - > vm_start )
| | REGION_OFFSET ( address ) > = RGN_MAP_LIMIT )
goto bad_area ;
2005-10-29 18:16:20 -07:00
/*
* Since the register backing store is accessed sequentially ,
* we disallow growing it by more than a page at a time .
*/
if ( address > vma - > vm_end + PAGE_SIZE - sizeof ( long ) )
goto bad_area ;
if ( expand_upwards ( vma , address ) )
2005-04-16 15:20:36 -07:00
goto bad_area ;
}
goto good_area ;
bad_area :
up_read ( & mm - > mmap_sem ) ;
# ifdef CONFIG_VIRTUAL_MEM_MAP
bad_area_no_up :
# endif
if ( ( isr & IA64_ISR_SP )
| | ( ( isr & IA64_ISR_NA ) & & ( isr & IA64_ISR_CODE_MASK ) = = IA64_ISR_CODE_LFETCH ) )
{
/*
* This fault was due to a speculative load or lfetch . fault , set the " ed "
* bit in the psr to ensure forward progress . ( Target register will get a
* NaT for ld . s , lfetch will be canceled . )
*/
ia64_psr ( regs ) - > ed = 1 ;
return ;
}
if ( user_mode ( regs ) ) {
2018-04-17 17:39:29 -05:00
force_sig_fault ( signal , code , ( void __user * ) address ,
2019-05-23 11:04:24 -05:00
0 , __ISR_VALID , isr ) ;
2005-04-16 15:20:36 -07:00
return ;
}
no_context :
2005-04-25 13:22:44 -07:00
if ( ( isr & IA64_ISR_SP )
| | ( ( isr & IA64_ISR_NA ) & & ( isr & IA64_ISR_CODE_MASK ) = = IA64_ISR_CODE_LFETCH ) )
{
2005-04-16 15:20:36 -07:00
/*
2005-04-25 13:22:44 -07:00
* This fault was due to a speculative load or lfetch . fault , set the " ed "
* bit in the psr to ensure forward progress . ( Target register will get a
* NaT for ld . s , lfetch will be canceled . )
2005-04-16 15:20:36 -07:00
*/
ia64_psr ( regs ) - > ed = 1 ;
return ;
}
/*
* Since we have no vma ' s for region 5 , we might get here even if the address is
* valid , due to the VHPT walker inserting a non present translation that becomes
* stale . If that happens , the non present fault handler already purged the stale
* translation , which fixed the problem . So , we check to see if the translation is
* valid , and return if it is .
*/
if ( REGION_NUMBER ( address ) = = 5 & & mapped_kernel_page_is_present ( address ) )
return ;
2005-08-24 18:03:43 -04:00
if ( ia64_done_with_exception ( regs ) )
return ;
2005-04-16 15:20:36 -07:00
/*
* Oops . The kernel tried to access some bad page . We ' ll have to terminate things
* with extreme prejudice .
*/
bust_spinlocks ( 1 ) ;
if ( address < PAGE_SIZE )
printk ( KERN_ALERT " Unable to handle kernel NULL pointer dereference (address %016lx) \n " , address ) ;
else
printk ( KERN_ALERT " Unable to handle kernel paging request at "
" virtual address %016lx \n " , address ) ;
2008-02-04 23:43:03 -08:00
if ( die ( " Oops " , regs , isr ) )
regs = NULL ;
2005-04-16 15:20:36 -07:00
bust_spinlocks ( 0 ) ;
2008-02-04 23:43:03 -08:00
if ( regs )
do_exit ( SIGKILL ) ;
2005-04-16 15:20:36 -07:00
return ;
out_of_memory :
up_read ( & mm - > mmap_sem ) ;
2010-05-07 14:34:33 -07:00
if ( ! user_mode ( regs ) )
goto no_context ;
pagefault_out_of_memory ( ) ;
2005-04-16 15:20:36 -07:00
}