84 lines
2.3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
/*
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
*/
#include <linux/cache.h>
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
#include <linux/crc32.h>
#include <linux/init.h>
#include <linux/libfdt.h>
#include <linux/mm_types.h>
#include <linux/sched.h>
#include <linux/types.h>
mm: reorder includes after introduction of linux/pgtable.h The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include of the latter in the middle of asm includes. Fix this up with the aid of the below script and manual adjustments here and there. import sys import re if len(sys.argv) is not 3: print "USAGE: %s <file> <header>" % (sys.argv[0]) sys.exit(1) hdr_to_move="#include <linux/%s>" % sys.argv[2] moved = False in_hdrs = False with open(sys.argv[1], "r") as f: lines = f.readlines() for _line in lines: line = _line.rstrip(' ') if line == hdr_to_move: continue if line.startswith("#include <linux/"): in_hdrs = True elif not moved and in_hdrs: moved = True print hdr_to_move print line Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:32:42 -07:00
#include <linux/pgtable.h>
#include <linux/random.h>
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
#include <asm/fixmap.h>
#include <asm/kernel-pgtable.h>
#include <asm/memory.h>
#include <asm/mmu.h>
#include <asm/sections.h>
#include <asm/setup.h>
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
u64 __ro_after_init module_alloc_base;
u16 __initdata memstart_offset_seed;
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
struct arm64_ftr_override kaslr_feature_override __initdata;
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
static int __init kaslr_init(void)
{
u64 module_range;
u32 seed;
/*
* Set a reasonable default for module_alloc_base in case
* we end up running with module randomization disabled.
*/
module_alloc_base = (u64)_etext - MODULES_VSIZE;
if (kaslr_feature_override.val & kaslr_feature_override.mask & 0xf) {
pr_info("KASLR disabled on command line\n");
return 0;
}
arm64: kaslr: don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN Our virtual KASLR displacement is a randomly chosen multiple of 2 MiB plus an offset that is equal to the physical placement modulo 2 MiB. This arrangement ensures that we can always use 2 MiB block mappings (or contiguous PTE mappings for 16k or 64k pages) to map the kernel. This means that a KASLR offset of less than 2 MiB is simply the product of this physical displacement, and no randomization has actually taken place. Currently, we use 'kaslr_offset() > 0' to decide whether or not randomization has occurred, and so we misidentify this case. If the kernel image placement is not randomized, modules are allocated from a dedicated region below the kernel mapping, which is only used for modules and not for other vmalloc() or vmap() calls. When randomization is enabled, the kernel image is vmap()'ed randomly inside the vmalloc region, and modules are allocated in the vicinity of this mapping to ensure that relative references are always in range. However, unlike the dedicated module region below the vmalloc region, this region is not reserved exclusively for modules, and so ordinary vmalloc() calls may end up overlapping with it. This should rarely happen, given that vmalloc allocates bottom up, although it cannot be ruled out entirely. The misidentified case results in a placement of the kernel image within 2 MiB of its default address. However, the logic that randomizes the module region is still invoked, and this could result in the module region overlapping with the start of the vmalloc region, instead of using the dedicated region below it. If this happens, a single large vmalloc() or vmap() call will use up the entire region, and leave no space for loading modules after that. Since commit 82046702e288 ("efi/libstub/arm64: Replace 'preferred' offset with alignment check"), this is much more likely to occur on systems that boot via EFI but lack an implementation of the EFI RNG protocol, as in that case, the EFI stub will decide to leave the image where it found it, and the EFI firmware uses 64k alignment only. Fix this, by correctly identifying the case where the virtual displacement is a result of the physical displacement only. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230223204101.1500373-1-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-02-23 21:41:01 +01:00
if (!kaslr_enabled()) {
pr_warn("KASLR disabled due to lack of seed\n");
return 0;
}
pr_info("KASLR enabled\n");
seed = get_random_u32();
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
/*
arm64/kernel: kaslr: reduce module randomization range to 2 GB The following commit 7290d5809571 ("module: use relative references for __ksymtab entries") updated the ksymtab handling of some KASLR capable architectures so that ksymtab entries are emitted as pairs of 32-bit relative references. This reduces the size of the entries, but more importantly, it gets rid of statically assigned absolute addresses, which require fixing up at boot time if the kernel is self relocating (which takes a 24 byte RELA entry for each member of the ksymtab struct). Since ksymtab entries are always part of the same module as the symbol they export, it was assumed at the time that a 32-bit relative reference is always sufficient to capture the offset between a ksymtab entry and its target symbol. Unfortunately, this is not always true: in the case of per-CPU variables, a per-CPU variable's base address (which usually differs from the actual address of any of its per-CPU copies) is allocated in the vicinity of the ..data.percpu section in the core kernel (i.e., in the per-CPU reserved region which follows the section containing the core kernel's statically allocated per-CPU variables). Since we randomize the module space over a 4 GB window covering the core kernel (based on the -/+ 4 GB range of an ADRP/ADD pair), we may end up putting the core kernel out of the -/+ 2 GB range of 32-bit relative references of module ksymtab entries that refer to per-CPU variables. So reduce the module randomization range a bit further. We lose 1 bit of randomization this way, but this is something we can tolerate. Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-05-23 10:17:37 +01:00
* Randomize the module region over a 2 GB window covering the
arm64/kernel: kaslr: reduce module randomization range to 4 GB We currently have to rely on the GCC large code model for KASLR for two distinct but related reasons: - if we enable full randomization, modules will be loaded very far away from the core kernel, where they are out of range for ADRP instructions, - even without full randomization, the fact that the 128 MB module region is now no longer fully reserved for kernel modules means that there is a very low likelihood that the normal bottom-up allocation of other vmalloc regions may collide, and use up the range for other things. Large model code is suboptimal, given that each symbol reference involves a literal load that goes through the D-cache, reducing cache utilization. But more importantly, literals are not instructions but part of .text nonetheless, and hence mapped with executable permissions. So let's get rid of our dependency on the large model for KASLR, by: - reducing the full randomization range to 4 GB, thereby ensuring that ADRP references between modules and the kernel are always in range, - reduce the spillover range to 4 GB as well, so that we fallback to a region that is still guaranteed to be in range - move the randomization window of the core kernel to the middle of the VMALLOC space Note that KASAN always uses the module region outside of the vmalloc space, so keep the kernel close to that if KASAN is enabled. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 17:15:32 +00:00
* kernel. This reduces the risk of modules leaking information
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
* about the address of the kernel itself, but results in
* branches between modules and the core kernel that are
* resolved via PLTs. (Branches between modules will be
* resolved normally.)
*/
arm64/kernel: kaslr: reduce module randomization range to 2 GB The following commit 7290d5809571 ("module: use relative references for __ksymtab entries") updated the ksymtab handling of some KASLR capable architectures so that ksymtab entries are emitted as pairs of 32-bit relative references. This reduces the size of the entries, but more importantly, it gets rid of statically assigned absolute addresses, which require fixing up at boot time if the kernel is self relocating (which takes a 24 byte RELA entry for each member of the ksymtab struct). Since ksymtab entries are always part of the same module as the symbol they export, it was assumed at the time that a 32-bit relative reference is always sufficient to capture the offset between a ksymtab entry and its target symbol. Unfortunately, this is not always true: in the case of per-CPU variables, a per-CPU variable's base address (which usually differs from the actual address of any of its per-CPU copies) is allocated in the vicinity of the ..data.percpu section in the core kernel (i.e., in the per-CPU reserved region which follows the section containing the core kernel's statically allocated per-CPU variables). Since we randomize the module space over a 4 GB window covering the core kernel (based on the -/+ 4 GB range of an ADRP/ADD pair), we may end up putting the core kernel out of the -/+ 2 GB range of 32-bit relative references of module ksymtab entries that refer to per-CPU variables. So reduce the module randomization range a bit further. We lose 1 bit of randomization this way, but this is something we can tolerate. Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-05-23 10:17:37 +01:00
module_range = SZ_2G - (u64)(_end - _stext);
module_alloc_base = max((u64)_end - SZ_2G, (u64)MODULES_VADDR);
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
} else {
/*
* Randomize the module region by setting module_alloc_base to
* a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
* _stext) . This guarantees that the resulting region still
* covers [_stext, _etext], and that all relative branches can
* be resolved without veneers unless this region is exhausted
* and we fall back to a larger 2GB window in module_alloc()
* when ARM64_MODULE_PLTS is enabled.
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
*/
module_range = MODULES_VSIZE - (u64)(_etext - _stext);
}
/* use the lower 21 bits to randomize the base of the module region */
module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
module_alloc_base &= PAGE_MASK;
return 0;
}
subsys_initcall(kaslr_init)