linux/drivers/hid/hid-mcp2221.c

1249 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* MCP2221A - Microchip USB to I2C Host Protocol Bridge
*
* Copyright (c) 2020, Rishi Gupta <gupt21@gmail.com>
*
* Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/20005565B.pdf
*/
#include <linux/module.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/bitfield.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/hid.h>
#include <linux/hidraw.h>
#include <linux/i2c.h>
#include <linux/gpio/driver.h>
#include <linux/iio/iio.h>
#include "hid-ids.h"
/* Commands codes in a raw output report */
enum {
MCP2221_I2C_WR_DATA = 0x90,
MCP2221_I2C_WR_NO_STOP = 0x94,
MCP2221_I2C_RD_DATA = 0x91,
MCP2221_I2C_RD_RPT_START = 0x93,
MCP2221_I2C_GET_DATA = 0x40,
MCP2221_I2C_PARAM_OR_STATUS = 0x10,
MCP2221_I2C_SET_SPEED = 0x20,
MCP2221_I2C_CANCEL = 0x10,
MCP2221_GPIO_SET = 0x50,
MCP2221_GPIO_GET = 0x51,
MCP2221_SET_SRAM_SETTINGS = 0x60,
MCP2221_GET_SRAM_SETTINGS = 0x61,
MCP2221_READ_FLASH_DATA = 0xb0,
};
/* Response codes in a raw input report */
enum {
MCP2221_SUCCESS = 0x00,
MCP2221_I2C_ENG_BUSY = 0x01,
MCP2221_I2C_START_TOUT = 0x12,
MCP2221_I2C_STOP_TOUT = 0x62,
MCP2221_I2C_WRADDRL_TOUT = 0x23,
MCP2221_I2C_WRDATA_TOUT = 0x44,
MCP2221_I2C_WRADDRL_NACK = 0x25,
MCP2221_I2C_MASK_ADDR_NACK = 0x40,
MCP2221_I2C_WRADDRL_SEND = 0x21,
MCP2221_I2C_ADDR_NACK = 0x25,
MCP2221_I2C_READ_PARTIAL = 0x54,
MCP2221_I2C_READ_COMPL = 0x55,
MCP2221_ALT_F_NOT_GPIOV = 0xEE,
MCP2221_ALT_F_NOT_GPIOD = 0xEF,
};
/* MCP GPIO direction encoding */
enum {
MCP2221_DIR_OUT = 0x00,
MCP2221_DIR_IN = 0x01,
};
#define MCP_NGPIO 4
/* MCP GPIO set command layout */
struct mcp_set_gpio {
u8 cmd;
u8 dummy;
struct {
u8 change_value;
u8 value;
u8 change_direction;
u8 direction;
} gpio[MCP_NGPIO];
} __packed;
/* MCP GPIO get command layout */
struct mcp_get_gpio {
u8 cmd;
u8 dummy;
struct {
u8 value;
u8 direction;
} gpio[MCP_NGPIO];
} __packed;
/*
* There is no way to distinguish responses. Therefore next command
* is sent only after response to previous has been received. Mutex
* lock is used for this purpose mainly.
*/
struct mcp2221 {
struct hid_device *hdev;
struct i2c_adapter adapter;
struct mutex lock;
struct completion wait_in_report;
struct delayed_work init_work;
u8 *rxbuf;
u8 txbuf[64];
int rxbuf_idx;
int status;
u8 cur_i2c_clk_div;
struct gpio_chip *gc;
u8 gp_idx;
u8 gpio_dir;
u8 mode[4];
#if IS_REACHABLE(CONFIG_IIO)
struct iio_chan_spec iio_channels[3];
u16 adc_values[3];
u8 adc_scale;
u8 dac_value;
u16 dac_scale;
#endif
};
struct mcp2221_iio {
struct mcp2221 *mcp;
};
/*
* Default i2c bus clock frequency 400 kHz. Modify this if you
* want to set some other frequency (min 50 kHz - max 400 kHz).
*/
static uint i2c_clk_freq = 400;
/* Synchronously send output report to the device */
static int mcp_send_report(struct mcp2221 *mcp,
u8 *out_report, size_t len)
{
u8 *buf;
int ret;
buf = kmemdup(out_report, len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* mcp2221 uses interrupt endpoint for out reports */
ret = hid_hw_output_report(mcp->hdev, buf, len);
kfree(buf);
if (ret < 0)
return ret;
return 0;
}
/*
* Send o/p report to the device and wait for i/p report to be
* received from the device. If the device does not respond,
* we timeout.
*/
static int mcp_send_data_req_status(struct mcp2221 *mcp,
u8 *out_report, int len)
{
int ret;
unsigned long t;
reinit_completion(&mcp->wait_in_report);
ret = mcp_send_report(mcp, out_report, len);
if (ret)
return ret;
t = wait_for_completion_timeout(&mcp->wait_in_report,
msecs_to_jiffies(4000));
if (!t)
return -ETIMEDOUT;
return mcp->status;
}
/* Check pass/fail for actual communication with i2c slave */
static int mcp_chk_last_cmd_status(struct mcp2221 *mcp)
{
memset(mcp->txbuf, 0, 8);
mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
return mcp_send_data_req_status(mcp, mcp->txbuf, 8);
}
/* Cancels last command releasing i2c bus just in case occupied */
static int mcp_cancel_last_cmd(struct mcp2221 *mcp)
{
memset(mcp->txbuf, 0, 8);
mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
mcp->txbuf[2] = MCP2221_I2C_CANCEL;
return mcp_send_data_req_status(mcp, mcp->txbuf, 8);
}
/* Check if the last command succeeded or failed and return the result.
* If the command did fail, cancel that command which will free the i2c bus.
*/
static int mcp_chk_last_cmd_status_free_bus(struct mcp2221 *mcp)
{
int ret;
ret = mcp_chk_last_cmd_status(mcp);
if (ret) {
/* The last command was a failure.
* Send a cancel which will also free the bus.
*/
usleep_range(980, 1000);
mcp_cancel_last_cmd(mcp);
}
return ret;
}
static int mcp_set_i2c_speed(struct mcp2221 *mcp)
{
int ret;
memset(mcp->txbuf, 0, 8);
mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
mcp->txbuf[3] = MCP2221_I2C_SET_SPEED;
mcp->txbuf[4] = mcp->cur_i2c_clk_div;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 8);
if (ret) {
/* Small delay is needed here */
usleep_range(980, 1000);
mcp_cancel_last_cmd(mcp);
}
return 0;
}
/*
* An output report can contain minimum 1 and maximum 60 user data
* bytes. If the number of data bytes is more then 60, we send it
* in chunks of 60 bytes. Last chunk may contain exactly 60 or less
* bytes. Total number of bytes is informed in very first report to
* mcp2221, from that point onwards it first collect all the data
* from host and then send to i2c slave device.
*/
static int mcp_i2c_write(struct mcp2221 *mcp,
struct i2c_msg *msg, int type, u8 last_status)
{
int ret, len, idx, sent;
idx = 0;
sent = 0;
if (msg->len < 60)
len = msg->len;
else
len = 60;
do {
mcp->txbuf[0] = type;
mcp->txbuf[1] = msg->len & 0xff;
mcp->txbuf[2] = msg->len >> 8;
mcp->txbuf[3] = (u8)(msg->addr << 1);
memcpy(&mcp->txbuf[4], &msg->buf[idx], len);
ret = mcp_send_data_req_status(mcp, mcp->txbuf, len + 4);
if (ret)
return ret;
usleep_range(980, 1000);
if (last_status) {
ret = mcp_chk_last_cmd_status_free_bus(mcp);
if (ret)
return ret;
}
sent = sent + len;
if (sent >= msg->len)
break;
idx = idx + len;
if ((msg->len - sent) < 60)
len = msg->len - sent;
else
len = 60;
/*
* Testing shows delay is needed between successive writes
* otherwise next write fails on first-try from i2c core.
* This value is obtained through automated stress testing.
*/
usleep_range(980, 1000);
} while (len > 0);
return ret;
}
/*
* Device reads all data (0 - 65535 bytes) from i2c slave device and
* stores it in device itself. This data is read back from device to
* host in multiples of 60 bytes using input reports.
*/
static int mcp_i2c_smbus_read(struct mcp2221 *mcp,
struct i2c_msg *msg, int type, u16 smbus_addr,
u8 smbus_len, u8 *smbus_buf)
{
int ret;
u16 total_len;
int retries = 0;
mcp->txbuf[0] = type;
if (msg) {
mcp->txbuf[1] = msg->len & 0xff;
mcp->txbuf[2] = msg->len >> 8;
mcp->txbuf[3] = (u8)(msg->addr << 1);
total_len = msg->len;
mcp->rxbuf = msg->buf;
} else {
mcp->txbuf[1] = smbus_len;
mcp->txbuf[2] = 0;
mcp->txbuf[3] = (u8)(smbus_addr << 1);
total_len = smbus_len;
mcp->rxbuf = smbus_buf;
}
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 4);
if (ret)
return ret;
mcp->rxbuf_idx = 0;
do {
/* Wait for the data to be read by the device */
usleep_range(980, 1000);
memset(mcp->txbuf, 0, 4);
mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret) {
if (retries < 5) {
/* The data wasn't ready to read.
* Wait a bit longer and try again.
*/
usleep_range(90, 100);
retries++;
} else {
return ret;
}
} else {
retries = 0;
}
} while (mcp->rxbuf_idx < total_len);
usleep_range(980, 1000);
ret = mcp_chk_last_cmd_status_free_bus(mcp);
return ret;
}
static int mcp_i2c_xfer(struct i2c_adapter *adapter,
struct i2c_msg msgs[], int num)
{
int ret;
struct mcp2221 *mcp = i2c_get_adapdata(adapter);
hid_hw_power(mcp->hdev, PM_HINT_FULLON);
mutex_lock(&mcp->lock);
if (num == 1) {
if (msgs->flags & I2C_M_RD) {
ret = mcp_i2c_smbus_read(mcp, msgs, MCP2221_I2C_RD_DATA,
0, 0, NULL);
} else {
ret = mcp_i2c_write(mcp, msgs, MCP2221_I2C_WR_DATA, 1);
}
if (ret)
goto exit;
ret = num;
} else if (num == 2) {
/* Ex transaction; send reg address and read its contents */
if (msgs[0].addr == msgs[1].addr &&
!(msgs[0].flags & I2C_M_RD) &&
(msgs[1].flags & I2C_M_RD)) {
ret = mcp_i2c_write(mcp, &msgs[0],
MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, &msgs[1],
MCP2221_I2C_RD_RPT_START,
0, 0, NULL);
if (ret)
goto exit;
ret = num;
} else {
dev_err(&adapter->dev,
"unsupported multi-msg i2c transaction\n");
ret = -EOPNOTSUPP;
}
} else {
dev_err(&adapter->dev,
"unsupported multi-msg i2c transaction\n");
ret = -EOPNOTSUPP;
}
exit:
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
mutex_unlock(&mcp->lock);
return ret;
}
static int mcp_smbus_write(struct mcp2221 *mcp, u16 addr,
u8 command, u8 *buf, u8 len, int type,
u8 last_status)
{
int data_len, ret;
mcp->txbuf[0] = type;
mcp->txbuf[1] = len + 1; /* 1 is due to command byte itself */
mcp->txbuf[2] = 0;
mcp->txbuf[3] = (u8)(addr << 1);
mcp->txbuf[4] = command;
switch (len) {
case 0:
data_len = 5;
break;
case 1:
mcp->txbuf[5] = buf[0];
data_len = 6;
break;
case 2:
mcp->txbuf[5] = buf[0];
mcp->txbuf[6] = buf[1];
data_len = 7;
break;
default:
if (len > I2C_SMBUS_BLOCK_MAX)
return -EINVAL;
memcpy(&mcp->txbuf[5], buf, len);
data_len = len + 5;
}
ret = mcp_send_data_req_status(mcp, mcp->txbuf, data_len);
if (ret)
return ret;
if (last_status) {
usleep_range(980, 1000);
ret = mcp_chk_last_cmd_status_free_bus(mcp);
}
return ret;
}
static int mcp_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char read_write,
u8 command, int size,
union i2c_smbus_data *data)
{
int ret;
struct mcp2221 *mcp = i2c_get_adapdata(adapter);
hid_hw_power(mcp->hdev, PM_HINT_FULLON);
mutex_lock(&mcp->lock);
switch (size) {
case I2C_SMBUS_QUICK:
if (read_write == I2C_SMBUS_READ)
ret = mcp_i2c_smbus_read(mcp, NULL, MCP2221_I2C_RD_DATA,
addr, 0, &data->byte);
else
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_DATA, 1);
break;
case I2C_SMBUS_BYTE:
if (read_write == I2C_SMBUS_READ)
ret = mcp_i2c_smbus_read(mcp, NULL, MCP2221_I2C_RD_DATA,
addr, 1, &data->byte);
else
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_DATA, 1);
break;
case I2C_SMBUS_BYTE_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, 1, &data->byte);
} else {
ret = mcp_smbus_write(mcp, addr, command, &data->byte,
1, MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_WORD_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, 2, (u8 *)&data->word);
} else {
ret = mcp_smbus_write(mcp, addr, command,
(u8 *)&data->word, 2,
MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_BLOCK_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 1);
if (ret)
goto exit;
mcp->rxbuf_idx = 0;
mcp->rxbuf = data->block;
mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret)
goto exit;
} else {
if (!data->block[0]) {
ret = -EINVAL;
goto exit;
}
ret = mcp_smbus_write(mcp, addr, command, data->block,
data->block[0] + 1,
MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_I2C_BLOCK_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 1);
if (ret)
goto exit;
mcp->rxbuf_idx = 0;
mcp->rxbuf = data->block;
mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret)
goto exit;
} else {
if (!data->block[0]) {
ret = -EINVAL;
goto exit;
}
ret = mcp_smbus_write(mcp, addr, command,
&data->block[1], data->block[0],
MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_PROC_CALL:
ret = mcp_smbus_write(mcp, addr, command,
(u8 *)&data->word,
2, MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, 2, (u8 *)&data->word);
break;
case I2C_SMBUS_BLOCK_PROC_CALL:
ret = mcp_smbus_write(mcp, addr, command, data->block,
data->block[0] + 1,
MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, I2C_SMBUS_BLOCK_MAX,
data->block);
break;
default:
dev_err(&mcp->adapter.dev,
"unsupported smbus transaction size:%d\n", size);
ret = -EOPNOTSUPP;
}
exit:
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
mutex_unlock(&mcp->lock);
return ret;
}
static u32 mcp_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C |
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_PEC);
}
static const struct i2c_algorithm mcp_i2c_algo = {
.master_xfer = mcp_i2c_xfer,
.smbus_xfer = mcp_smbus_xfer,
.functionality = mcp_i2c_func,
};
#if IS_REACHABLE(CONFIG_GPIOLIB)
static int mcp_gpio_get(struct gpio_chip *gc,
unsigned int offset)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mcp->txbuf[0] = MCP2221_GPIO_GET;
mcp->gp_idx = offsetof(struct mcp_get_gpio, gpio[offset]);
mutex_lock(&mcp->lock);
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
mutex_unlock(&mcp->lock);
return ret;
}
static void mcp_gpio_set(struct gpio_chip *gc,
unsigned int offset, int value)
{
struct mcp2221 *mcp = gpiochip_get_data(gc);
memset(mcp->txbuf, 0, 18);
mcp->txbuf[0] = MCP2221_GPIO_SET;
mcp->gp_idx = offsetof(struct mcp_set_gpio, gpio[offset].value);
mcp->txbuf[mcp->gp_idx - 1] = 1;
mcp->txbuf[mcp->gp_idx] = !!value;
mutex_lock(&mcp->lock);
mcp_send_data_req_status(mcp, mcp->txbuf, 18);
mutex_unlock(&mcp->lock);
}
static int mcp_gpio_dir_set(struct mcp2221 *mcp,
unsigned int offset, u8 val)
{
memset(mcp->txbuf, 0, 18);
mcp->txbuf[0] = MCP2221_GPIO_SET;
mcp->gp_idx = offsetof(struct mcp_set_gpio, gpio[offset].direction);
mcp->txbuf[mcp->gp_idx - 1] = 1;
mcp->txbuf[mcp->gp_idx] = val;
return mcp_send_data_req_status(mcp, mcp->txbuf, 18);
}
static int mcp_gpio_direction_input(struct gpio_chip *gc,
unsigned int offset)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mutex_lock(&mcp->lock);
ret = mcp_gpio_dir_set(mcp, offset, MCP2221_DIR_IN);
mutex_unlock(&mcp->lock);
return ret;
}
static int mcp_gpio_direction_output(struct gpio_chip *gc,
unsigned int offset, int value)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mutex_lock(&mcp->lock);
ret = mcp_gpio_dir_set(mcp, offset, MCP2221_DIR_OUT);
mutex_unlock(&mcp->lock);
/* Can't configure as output, bailout early */
if (ret)
return ret;
mcp_gpio_set(gc, offset, value);
return 0;
}
static int mcp_gpio_get_direction(struct gpio_chip *gc,
unsigned int offset)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mcp->txbuf[0] = MCP2221_GPIO_GET;
mcp->gp_idx = offsetof(struct mcp_get_gpio, gpio[offset]);
mutex_lock(&mcp->lock);
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
mutex_unlock(&mcp->lock);
if (ret)
return ret;
if (mcp->gpio_dir == MCP2221_DIR_IN)
return GPIO_LINE_DIRECTION_IN;
return GPIO_LINE_DIRECTION_OUT;
}
#endif
/* Gives current state of i2c engine inside mcp2221 */
static int mcp_get_i2c_eng_state(struct mcp2221 *mcp,
u8 *data, u8 idx)
{
int ret;
switch (data[idx]) {
case MCP2221_I2C_WRADDRL_NACK:
case MCP2221_I2C_WRADDRL_SEND:
ret = -ENXIO;
break;
case MCP2221_I2C_START_TOUT:
case MCP2221_I2C_STOP_TOUT:
case MCP2221_I2C_WRADDRL_TOUT:
case MCP2221_I2C_WRDATA_TOUT:
ret = -ETIMEDOUT;
break;
case MCP2221_I2C_ENG_BUSY:
ret = -EAGAIN;
break;
case MCP2221_SUCCESS:
ret = 0x00;
break;
default:
ret = -EIO;
}
return ret;
}
/*
* MCP2221 uses interrupt endpoint for input reports. This function
* is called by HID layer when it receives i/p report from mcp2221,
* which is actually a response to the previously sent command.
*
* MCP2221A firmware specific return codes are parsed and 0 or
* appropriate negative error code is returned. Delayed response
* results in timeout error and stray reponses results in -EIO.
*/
static int mcp2221_raw_event(struct hid_device *hdev,
struct hid_report *report, u8 *data, int size)
{
u8 *buf;
struct mcp2221 *mcp = hid_get_drvdata(hdev);
switch (data[0]) {
case MCP2221_I2C_WR_DATA:
case MCP2221_I2C_WR_NO_STOP:
case MCP2221_I2C_RD_DATA:
case MCP2221_I2C_RD_RPT_START:
switch (data[1]) {
case MCP2221_SUCCESS:
mcp->status = 0;
break;
default:
mcp->status = mcp_get_i2c_eng_state(mcp, data, 2);
}
complete(&mcp->wait_in_report);
break;
case MCP2221_I2C_PARAM_OR_STATUS:
switch (data[1]) {
case MCP2221_SUCCESS:
if ((mcp->txbuf[3] == MCP2221_I2C_SET_SPEED) &&
(data[3] != MCP2221_I2C_SET_SPEED)) {
mcp->status = -EAGAIN;
break;
}
if (data[20] & MCP2221_I2C_MASK_ADDR_NACK) {
mcp->status = -ENXIO;
break;
}
mcp->status = mcp_get_i2c_eng_state(mcp, data, 8);
#if IS_REACHABLE(CONFIG_IIO)
memcpy(&mcp->adc_values, &data[50], sizeof(mcp->adc_values));
#endif
break;
default:
mcp->status = -EIO;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_I2C_GET_DATA:
switch (data[1]) {
case MCP2221_SUCCESS:
if (data[2] == MCP2221_I2C_ADDR_NACK) {
mcp->status = -ENXIO;
break;
}
if (!mcp_get_i2c_eng_state(mcp, data, 2)
&& (data[3] == 0)) {
mcp->status = 0;
break;
}
if (data[3] == 127) {
mcp->status = -EIO;
break;
}
if (data[2] == MCP2221_I2C_READ_COMPL ||
data[2] == MCP2221_I2C_READ_PARTIAL) {
buf = mcp->rxbuf;
memcpy(&buf[mcp->rxbuf_idx], &data[4], data[3]);
mcp->rxbuf_idx = mcp->rxbuf_idx + data[3];
mcp->status = 0;
break;
}
mcp->status = -EIO;
break;
default:
mcp->status = -EIO;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_GPIO_GET:
switch (data[1]) {
case MCP2221_SUCCESS:
if ((data[mcp->gp_idx] == MCP2221_ALT_F_NOT_GPIOV) ||
(data[mcp->gp_idx + 1] == MCP2221_ALT_F_NOT_GPIOD)) {
mcp->status = -ENOENT;
} else {
mcp->status = !!data[mcp->gp_idx];
mcp->gpio_dir = data[mcp->gp_idx + 1];
}
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_GPIO_SET:
switch (data[1]) {
case MCP2221_SUCCESS:
if ((data[mcp->gp_idx] == MCP2221_ALT_F_NOT_GPIOV) ||
(data[mcp->gp_idx - 1] == MCP2221_ALT_F_NOT_GPIOV)) {
mcp->status = -ENOENT;
} else {
mcp->status = 0;
}
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_SET_SRAM_SETTINGS:
switch (data[1]) {
case MCP2221_SUCCESS:
mcp->status = 0;
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_GET_SRAM_SETTINGS:
switch (data[1]) {
case MCP2221_SUCCESS:
memcpy(&mcp->mode, &data[22], 4);
#if IS_REACHABLE(CONFIG_IIO)
mcp->dac_value = data[6] & GENMASK(4, 0);
#endif
mcp->status = 0;
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_READ_FLASH_DATA:
switch (data[1]) {
case MCP2221_SUCCESS:
mcp->status = 0;
/* Only handles CHIP SETTINGS subpage currently */
if (mcp->txbuf[1] != 0) {
mcp->status = -EIO;
break;
}
#if IS_REACHABLE(CONFIG_IIO)
{
u8 tmp;
/* DAC scale value */
tmp = FIELD_GET(GENMASK(7, 6), data[6]);
if ((data[6] & BIT(5)) && tmp)
mcp->dac_scale = tmp + 4;
else
mcp->dac_scale = 5;
/* ADC scale value */
tmp = FIELD_GET(GENMASK(4, 3), data[7]);
if ((data[7] & BIT(2)) && tmp)
mcp->adc_scale = tmp - 1;
else
mcp->adc_scale = 0;
}
#endif
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
default:
mcp->status = -EIO;
complete(&mcp->wait_in_report);
}
return 1;
}
/* Device resource managed function for HID unregistration */
static void mcp2221_hid_unregister(void *ptr)
{
struct hid_device *hdev = ptr;
hid_hw_close(hdev);
hid_hw_stop(hdev);
}
/* This is needed to be sure hid_hw_stop() isn't called twice by the subsystem */
static void mcp2221_remove(struct hid_device *hdev)
{
#if IS_REACHABLE(CONFIG_IIO)
struct mcp2221 *mcp = hid_get_drvdata(hdev);
cancel_delayed_work_sync(&mcp->init_work);
#endif
}
#if IS_REACHABLE(CONFIG_IIO)
static int mcp2221_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int *val,
int *val2, long mask)
{
struct mcp2221_iio *priv = iio_priv(indio_dev);
struct mcp2221 *mcp = priv->mcp;
int ret;
if (mask == IIO_CHAN_INFO_SCALE) {
if (channel->output)
*val = 1 << mcp->dac_scale;
else
*val = 1 << mcp->adc_scale;
return IIO_VAL_INT;
}
mutex_lock(&mcp->lock);
if (channel->output) {
*val = mcp->dac_value;
ret = IIO_VAL_INT;
} else {
/* Read ADC values */
ret = mcp_chk_last_cmd_status(mcp);
if (!ret) {
*val = le16_to_cpu((__force __le16) mcp->adc_values[channel->address]);
if (*val >= BIT(10))
ret = -EINVAL;
else
ret = IIO_VAL_INT;
}
}
mutex_unlock(&mcp->lock);
return ret;
}
static int mcp2221_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct mcp2221_iio *priv = iio_priv(indio_dev);
struct mcp2221 *mcp = priv->mcp;
int ret;
if (val < 0 || val >= BIT(5))
return -EINVAL;
mutex_lock(&mcp->lock);
memset(mcp->txbuf, 0, 12);
mcp->txbuf[0] = MCP2221_SET_SRAM_SETTINGS;
mcp->txbuf[4] = BIT(7) | val;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 12);
if (!ret)
mcp->dac_value = val;
mutex_unlock(&mcp->lock);
return ret;
}
static const struct iio_info mcp2221_info = {
.read_raw = &mcp2221_read_raw,
.write_raw = &mcp2221_write_raw,
};
static int mcp_iio_channels(struct mcp2221 *mcp)
{
int idx, cnt = 0;
bool dac_created = false;
/* GP0 doesn't have ADC/DAC alternative function */
for (idx = 1; idx < MCP_NGPIO; idx++) {
struct iio_chan_spec *chan = &mcp->iio_channels[cnt];
switch (mcp->mode[idx]) {
case 2:
chan->address = idx - 1;
chan->channel = cnt++;
break;
case 3:
/* GP1 doesn't have DAC alternative function */
if (idx == 1 || dac_created)
continue;
/* DAC1 and DAC2 outputs are connected to the same DAC */
dac_created = true;
chan->output = 1;
cnt++;
break;
default:
continue;
};
chan->type = IIO_VOLTAGE;
chan->indexed = 1;
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_index = -1;
}
return cnt;
}
static void mcp_init_work(struct work_struct *work)
{
struct iio_dev *indio_dev;
struct mcp2221 *mcp = container_of(work, struct mcp2221, init_work.work);
struct mcp2221_iio *data;
static int retries = 5;
int ret, num_channels;
hid_hw_power(mcp->hdev, PM_HINT_FULLON);
mutex_lock(&mcp->lock);
mcp->txbuf[0] = MCP2221_GET_SRAM_SETTINGS;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret == -EAGAIN)
goto reschedule_task;
num_channels = mcp_iio_channels(mcp);
if (!num_channels)
goto unlock;
mcp->txbuf[0] = MCP2221_READ_FLASH_DATA;
mcp->txbuf[1] = 0;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 2);
if (ret == -EAGAIN)
goto reschedule_task;
indio_dev = devm_iio_device_alloc(&mcp->hdev->dev, sizeof(*data));
if (!indio_dev)
goto unlock;
data = iio_priv(indio_dev);
data->mcp = mcp;
indio_dev->name = "mcp2221";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &mcp2221_info;
indio_dev->channels = mcp->iio_channels;
indio_dev->num_channels = num_channels;
devm_iio_device_register(&mcp->hdev->dev, indio_dev);
unlock:
mutex_unlock(&mcp->lock);
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
return;
reschedule_task:
mutex_unlock(&mcp->lock);
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
if (!retries--)
return;
/* Device is not ready to read SRAM or FLASH data, try again */
schedule_delayed_work(&mcp->init_work, msecs_to_jiffies(100));
}
#endif
static int mcp2221_probe(struct hid_device *hdev,
const struct hid_device_id *id)
{
int ret;
struct mcp2221 *mcp;
mcp = devm_kzalloc(&hdev->dev, sizeof(*mcp), GFP_KERNEL);
if (!mcp)
return -ENOMEM;
ret = hid_parse(hdev);
if (ret) {
hid_err(hdev, "can't parse reports\n");
return ret;
}
/*
* This driver uses the .raw_event callback and therefore does not need any
* HID_CONNECT_xxx flags.
*/
ret = hid_hw_start(hdev, 0);
if (ret) {
hid_err(hdev, "can't start hardware\n");
return ret;
}
hid_info(hdev, "USB HID v%x.%02x Device [%s] on %s\n", hdev->version >> 8,
hdev->version & 0xff, hdev->name, hdev->phys);
ret = hid_hw_open(hdev);
if (ret) {
hid_err(hdev, "can't open device\n");
hid_hw_stop(hdev);
return ret;
}
mutex_init(&mcp->lock);
init_completion(&mcp->wait_in_report);
hid_set_drvdata(hdev, mcp);
mcp->hdev = hdev;
ret = devm_add_action_or_reset(&hdev->dev, mcp2221_hid_unregister, hdev);
if (ret)
return ret;
hid_device_io_start(hdev);
/* Set I2C bus clock diviser */
if (i2c_clk_freq > 400)
i2c_clk_freq = 400;
if (i2c_clk_freq < 50)
i2c_clk_freq = 50;
mcp->cur_i2c_clk_div = (12000000 / (i2c_clk_freq * 1000)) - 3;
ret = mcp_set_i2c_speed(mcp);
if (ret) {
hid_err(hdev, "can't set i2c speed: %d\n", ret);
return ret;
}
mcp->adapter.owner = THIS_MODULE;
mcp->adapter.class = I2C_CLASS_HWMON;
mcp->adapter.algo = &mcp_i2c_algo;
mcp->adapter.retries = 1;
mcp->adapter.dev.parent = &hdev->dev;
ACPI_COMPANION_SET(&mcp->adapter.dev, ACPI_COMPANION(hdev->dev.parent));
snprintf(mcp->adapter.name, sizeof(mcp->adapter.name),
"MCP2221 usb-i2c bridge");
i2c_set_adapdata(&mcp->adapter, mcp);
ret = devm_i2c_add_adapter(&hdev->dev, &mcp->adapter);
if (ret) {
hid_err(hdev, "can't add usb-i2c adapter: %d\n", ret);
return ret;
}
#if IS_REACHABLE(CONFIG_GPIOLIB)
/* Setup GPIO chip */
mcp->gc = devm_kzalloc(&hdev->dev, sizeof(*mcp->gc), GFP_KERNEL);
if (!mcp->gc)
return -ENOMEM;
mcp->gc->label = "mcp2221_gpio";
mcp->gc->direction_input = mcp_gpio_direction_input;
mcp->gc->direction_output = mcp_gpio_direction_output;
mcp->gc->get_direction = mcp_gpio_get_direction;
mcp->gc->set = mcp_gpio_set;
mcp->gc->get = mcp_gpio_get;
mcp->gc->ngpio = MCP_NGPIO;
mcp->gc->base = -1;
mcp->gc->can_sleep = 1;
mcp->gc->parent = &hdev->dev;
ret = devm_gpiochip_add_data(&hdev->dev, mcp->gc, mcp);
if (ret)
return ret;
#endif
#if IS_REACHABLE(CONFIG_IIO)
INIT_DELAYED_WORK(&mcp->init_work, mcp_init_work);
schedule_delayed_work(&mcp->init_work, msecs_to_jiffies(100));
#endif
return 0;
}
static const struct hid_device_id mcp2221_devices[] = {
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_MCP2221) },
{ }
};
MODULE_DEVICE_TABLE(hid, mcp2221_devices);
static struct hid_driver mcp2221_driver = {
.name = "mcp2221",
.id_table = mcp2221_devices,
.probe = mcp2221_probe,
.remove = mcp2221_remove,
.raw_event = mcp2221_raw_event,
};
/* Register with HID core */
module_hid_driver(mcp2221_driver);
MODULE_AUTHOR("Rishi Gupta <gupt21@gmail.com>");
MODULE_DESCRIPTION("MCP2221 Microchip HID USB to I2C master bridge");
MODULE_LICENSE("GPL v2");