linux/arch/s390/kernel/perf_cpum_sf.c

1043 lines
27 KiB
C
Raw Normal View History

/*
* Performance event support for the System z CPU-measurement Sampling Facility
*
* Copyright IBM Corp. 2013
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*/
#define KMSG_COMPONENT "cpum_sf"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/export.h>
#include <asm/cpu_mf.h>
#include <asm/irq.h>
#include <asm/debug.h>
#include <asm/timex.h>
/* Minimum number of sample-data-block-tables:
* At least one table is required for the sampling buffer structure.
* A single table contains up to 511 pointers to sample-data-blocks.
*/
#define CPUM_SF_MIN_SDBT 1
/* Minimum number of sample-data-blocks:
* The minimum designates a single page for sample-data-block, i.e.,
* up to 126 sample-data-blocks with a size of 32 bytes (bsdes).
*/
#define CPUM_SF_MIN_SDB 126
/* Maximum number of sample-data-blocks:
* The maximum number designates approx. 256K per CPU including
* the given number of sample-data-blocks and taking the number
* of sample-data-block tables into account.
*
* Later, this number can be increased for extending the sampling
* buffer, for example, by factor 2 (512K) or 4 (1M).
*/
#define CPUM_SF_MAX_SDB 6471
struct sf_buffer {
unsigned long sdbt; /* Sample-data-block-table origin */
/* buffer characteristics (required for buffer increments) */
unsigned long num_sdb; /* Number of sample-data-blocks */
unsigned long tail; /* last sample-data-block-table */
};
struct cpu_hw_sf {
/* CPU-measurement sampling information block */
struct hws_qsi_info_block qsi;
struct hws_lsctl_request_block lsctl;
struct sf_buffer sfb; /* Sampling buffer */
unsigned int flags; /* Status flags */
struct perf_event *event; /* Scheduled perf event */
};
static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
/* Debug feature */
static debug_info_t *sfdbg;
/*
* sf_buffer_available() - Check for an allocated sampling buffer
*/
static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
{
return (cpuhw->sfb.sdbt) ? 1 : 0;
}
/*
* deallocate sampling facility buffer
*/
static void free_sampling_buffer(struct sf_buffer *sfb)
{
unsigned long sdbt, *curr;
if (!sfb->sdbt)
return;
sdbt = sfb->sdbt;
curr = (unsigned long *) sdbt;
/* we'll free the SDBT after all SDBs are processed... */
while (1) {
if (!*curr || !sdbt)
break;
/* watch for link entry reset if found */
if (is_link_entry(curr)) {
curr = get_next_sdbt(curr);
if (sdbt)
free_page(sdbt);
/* we are done if we reach the origin */
if ((unsigned long) curr == sfb->sdbt)
break;
else
sdbt = (unsigned long) curr;
} else {
/* process SDB pointer */
if (*curr) {
free_page(*curr);
curr++;
}
}
}
debug_sprintf_event(sfdbg, 5,
"free_sampling_buffer: freed sdbt=%0lx\n", sfb->sdbt);
memset(sfb, 0, sizeof(*sfb));
}
/*
* allocate_sampling_buffer() - allocate sampler memory
*
* Allocates and initializes a sampling buffer structure using the
* specified number of sample-data-blocks (SDB). For each allocation,
* a 4K page is used. The number of sample-data-block-tables (SDBT)
* are calculated from SDBs.
* Also set the ALERT_REQ mask in each SDBs trailer.
*
* Returns zero on success, non-zero otherwise.
*/
static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
{
int j, k, rc;
unsigned long *sdbt, *tail, *trailer;
unsigned long sdb;
unsigned long num_sdbt, sdb_per_table;
if (sfb->sdbt)
return -EINVAL;
sfb->num_sdb = 0;
/* Compute the number of required sample-data-block-tables (SDBT) */
num_sdbt = num_sdb / ((PAGE_SIZE - 8) / 8);
if (num_sdbt < CPUM_SF_MIN_SDBT)
num_sdbt = CPUM_SF_MIN_SDBT;
sdb_per_table = (PAGE_SIZE - 8) / 8;
debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: num_sdbt=%lu "
"num_sdb=%lu sdb_per_table=%lu\n",
num_sdbt, num_sdb, sdb_per_table);
sdbt = NULL;
tail = sdbt;
for (j = 0; j < num_sdbt; j++) {
sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
if (!sdbt) {
rc = -ENOMEM;
goto allocate_sdbt_error;
}
/* save origin of sample-data-block-table */
if (!sfb->sdbt)
sfb->sdbt = (unsigned long) sdbt;
/* link current page to tail of chain */
if (tail)
*tail = (unsigned long)(void *) sdbt + 1;
for (k = 0; k < num_sdb && k < sdb_per_table; k++) {
/* get and set SDB page */
sdb = get_zeroed_page(GFP_KERNEL);
if (!sdb) {
rc = -ENOMEM;
goto allocate_sdbt_error;
}
*sdbt = sdb;
trailer = trailer_entry_ptr(*sdbt);
*trailer = SDB_TE_ALERT_REQ_MASK;
sdbt++;
}
num_sdb -= k;
sfb->num_sdb += k; /* count allocated sdb's */
tail = sdbt;
}
rc = 0;
if (tail)
*tail = sfb->sdbt + 1;
sfb->tail = (unsigned long) (void *)tail;
allocate_sdbt_error:
if (rc)
free_sampling_buffer(sfb);
else
debug_sprintf_event(sfdbg, 4,
"alloc_sampling_buffer: tear=%0lx dear=%0lx\n",
sfb->sdbt, *(unsigned long *) sfb->sdbt);
return rc;
}
static int allocate_sdbt(struct cpu_hw_sf *cpuhw, const struct hw_perf_event *hwc)
{
unsigned long n_sdb, freq;
unsigned long factor;
/* Calculate sampling buffers using 4K pages
*
* 1. Use frequency as input. The samping buffer is designed for
* a complete second. This can be adjusted through the "factor"
* variable.
* In any case, alloc_sampling_buffer() sets the Alert Request
* Control indicator to trigger measurement-alert to harvest
* sample-data-blocks (sdb).
*
* 2. Compute the number of sample-data-blocks and ensure a minimum
* of CPUM_SF_MIN_SDB. Also ensure the upper limit does not
* exceed CPUM_SF_MAX_SDB. See also the remarks for these
* symbolic constants.
*
* 3. Compute number of pages used for the sample-data-block-table
* and ensure a minimum of CPUM_SF_MIN_SDBT (at minimum one table
* to manage up to 511 sample-data-blocks).
*/
freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
factor = 1;
n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / cpuhw->qsi.bsdes));
if (n_sdb < CPUM_SF_MIN_SDB)
n_sdb = CPUM_SF_MIN_SDB;
/* Return if there is already a sampling buffer allocated.
* XXX Remove this later and check number of available and
* required sdb's and, if necessary, increase the sampling buffer.
*/
if (sf_buffer_available(cpuhw))
return 0;
debug_sprintf_event(sfdbg, 3,
"allocate_sdbt: rate=%lu f=%lu sdb=%lu/%i cpuhw=%p\n",
SAMPL_RATE(hwc), freq, n_sdb, CPUM_SF_MAX_SDB, cpuhw);
return alloc_sampling_buffer(&cpuhw->sfb,
min_t(unsigned long, n_sdb, CPUM_SF_MAX_SDB));
}
/* Number of perf events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_cpumf_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);
/*
* sf_disable() - Switch off sampling facility
*/
static int sf_disable(void)
{
struct hws_lsctl_request_block sreq;
memset(&sreq, 0, sizeof(sreq));
return lsctl(&sreq);
}
#define PMC_INIT 0
#define PMC_RELEASE 1
static void setup_pmc_cpu(void *flags)
{
int err;
struct cpu_hw_sf *cpusf = &__get_cpu_var(cpu_hw_sf);
/* XXX Improve error handling and pass a flag in the *flags
* variable to indicate failures. Alternatively, ignore
* (print) errors here and let the PMU functions fail if
* the per-cpu PMU_F_RESERVED flag is not.
*/
err = 0;
switch (*((int *) flags)) {
case PMC_INIT:
memset(cpusf, 0, sizeof(*cpusf));
err = qsi(&cpusf->qsi);
if (err)
break;
cpusf->flags |= PMU_F_RESERVED;
err = sf_disable();
if (err)
pr_err("Switching off the sampling facility failed "
"with rc=%i\n", err);
debug_sprintf_event(sfdbg, 5,
"setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
break;
case PMC_RELEASE:
cpusf->flags &= ~PMU_F_RESERVED;
err = sf_disable();
if (err) {
pr_err("Switching off the sampling facility failed "
"with rc=%i\n", err);
} else {
if (cpusf->sfb.sdbt)
free_sampling_buffer(&cpusf->sfb);
}
debug_sprintf_event(sfdbg, 5,
"setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
break;
}
}
static void release_pmc_hardware(void)
{
int flags = PMC_RELEASE;
irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
on_each_cpu(setup_pmc_cpu, &flags, 1);
}
static int reserve_pmc_hardware(void)
{
int flags = PMC_INIT;
on_each_cpu(setup_pmc_cpu, &flags, 1);
irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
return 0;
}
static void hw_perf_event_destroy(struct perf_event *event)
{
/* Release PMC if this is the last perf event */
if (!atomic_add_unless(&num_events, -1, 1)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_dec_return(&num_events) == 0)
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
static void hw_init_period(struct hw_perf_event *hwc, u64 period)
{
hwc->sample_period = period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
static void hw_reset_registers(struct hw_perf_event *hwc,
unsigned long sdbt_origin)
{
TEAR_REG(hwc) = sdbt_origin; /* (re)set to first sdb table */
}
static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
unsigned long rate)
{
if (rate < si->min_sampl_rate)
return si->min_sampl_rate;
if (rate > si->max_sampl_rate)
return si->max_sampl_rate;
return rate;
}
static int __hw_perf_event_init(struct perf_event *event)
{
struct cpu_hw_sf *cpuhw;
struct hws_qsi_info_block si;
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
unsigned long rate;
int cpu, err;
/* Reserve CPU-measurement sampling facility */
err = 0;
if (!atomic_inc_not_zero(&num_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
err = -EBUSY;
else
atomic_inc(&num_events);
mutex_unlock(&pmc_reserve_mutex);
}
event->destroy = hw_perf_event_destroy;
if (err)
goto out;
/* Access per-CPU sampling information (query sampling info) */
/*
* The event->cpu value can be -1 to count on every CPU, for example,
* when attaching to a task. If this is specified, use the query
* sampling info from the current CPU, otherwise use event->cpu to
* retrieve the per-CPU information.
* Later, cpuhw indicates whether to allocate sampling buffers for a
* particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
*/
memset(&si, 0, sizeof(si));
cpuhw = NULL;
if (event->cpu == -1)
qsi(&si);
else {
/* Event is pinned to a particular CPU, retrieve the per-CPU
* sampling structure for accessing the CPU-specific QSI.
*/
cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
si = cpuhw->qsi;
}
/* Check sampling facility authorization and, if not authorized,
* fall back to other PMUs. It is safe to check any CPU because
* the authorization is identical for all configured CPUs.
*/
if (!si.as) {
err = -ENOENT;
goto out;
}
/* The sampling information (si) contains information about the
* min/max sampling intervals and the CPU speed. So calculate the
* correct sampling interval and avoid the whole period adjust
* feedback loop.
*/
rate = 0;
if (attr->freq) {
rate = freq_to_sample_rate(&si, attr->sample_freq);
rate = hw_limit_rate(&si, rate);
attr->freq = 0;
attr->sample_period = rate;
} else {
/* The min/max sampling rates specifies the valid range
* of sample periods. If the specified sample period is
* out of range, limit the period to the range boundary.
*/
rate = hw_limit_rate(&si, hwc->sample_period);
/* The perf core maintains a maximum sample rate that is
* configurable through the sysctl interface. Ensure the
* sampling rate does not exceed this value. This also helps
* to avoid throttling when pushing samples with
* perf_event_overflow().
*/
if (sample_rate_to_freq(&si, rate) >
sysctl_perf_event_sample_rate) {
err = -EINVAL;
debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
goto out;
}
}
SAMPL_RATE(hwc) = rate;
hw_init_period(hwc, SAMPL_RATE(hwc));
/* Allocate the per-CPU sampling buffer using the CPU information
* from the event. If the event is not pinned to a particular
* CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
* buffers for each online CPU.
*/
if (cpuhw)
/* Event is pinned to a particular CPU */
err = allocate_sdbt(cpuhw, hwc);
else {
/* Event is not pinned, allocate sampling buffer on
* each online CPU
*/
for_each_online_cpu(cpu) {
cpuhw = &per_cpu(cpu_hw_sf, cpu);
err = allocate_sdbt(cpuhw, hwc);
if (err)
break;
}
}
out:
return err;
}
static int cpumsf_pmu_event_init(struct perf_event *event)
{
int err;
/* No support for taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
switch (event->attr.type) {
case PERF_TYPE_RAW:
if (event->attr.config != PERF_EVENT_CPUM_SF)
return -ENOENT;
break;
case PERF_TYPE_HARDWARE:
/* Support sampling of CPU cycles in addition to the
* counter facility. However, the counter facility
* is more precise and, hence, restrict this PMU to
* sampling events only.
*/
if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
return -ENOENT;
if (!is_sampling_event(event))
return -ENOENT;
break;
default:
return -ENOENT;
}
if (event->cpu >= nr_cpumask_bits ||
(event->cpu >= 0 && !cpu_online(event->cpu)))
return -ENODEV;
err = __hw_perf_event_init(event);
if (unlikely(err))
if (event->destroy)
event->destroy(event);
return err;
}
static void cpumsf_pmu_enable(struct pmu *pmu)
{
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
int err;
if (cpuhw->flags & PMU_F_ENABLED)
return;
if (cpuhw->flags & PMU_F_ERR_MASK)
return;
cpuhw->flags |= PMU_F_ENABLED;
barrier();
err = lsctl(&cpuhw->lsctl);
if (err) {
cpuhw->flags &= ~PMU_F_ENABLED;
pr_err("Loading sampling controls failed: op=%i err=%i\n",
1, err);
return;
}
debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i tear=%p dear=%p\n",
cpuhw->lsctl.es, cpuhw->lsctl.cs,
(void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
}
static void cpumsf_pmu_disable(struct pmu *pmu)
{
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
struct hws_lsctl_request_block inactive;
struct hws_qsi_info_block si;
int err;
if (!(cpuhw->flags & PMU_F_ENABLED))
return;
if (cpuhw->flags & PMU_F_ERR_MASK)
return;
/* Switch off sampling activation control */
inactive = cpuhw->lsctl;
inactive.cs = 0;
err = lsctl(&inactive);
if (err) {
pr_err("Loading sampling controls failed: op=%i err=%i\n",
2, err);
return;
}
/* Save state of TEAR and DEAR register contents */
if (!qsi(&si)) {
/* TEAR/DEAR values are valid only if the sampling facility is
* enabled. Note that cpumsf_pmu_disable() might be called even
* for a disabled sampling facility because cpumsf_pmu_enable()
* controls the enable/disable state.
*/
if (si.es) {
cpuhw->lsctl.tear = si.tear;
cpuhw->lsctl.dear = si.dear;
}
} else
debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
"qsi() failed with err=%i\n", err);
cpuhw->flags &= ~PMU_F_ENABLED;
}
/* perf_push_sample() - Push samples to perf
* @event: The perf event
* @sample: Hardware sample data
*
* Use the hardware sample data to create perf event sample. The sample
* is the pushed to the event subsystem and the function checks for
* possible event overflows. If an event overflow occurs, the PMU is
* stopped.
*
* Return non-zero if an event overflow occurred.
*/
static int perf_push_sample(struct perf_event *event,
struct hws_data_entry *sample)
{
int overflow;
struct pt_regs regs;
struct perf_sample_data data;
/* Skip samples that are invalid or for which the instruction address
* is not predictable. For the latter, the wait-state bit is set.
*/
if (sample->I || sample->W)
return 0;
perf_sample_data_init(&data, 0, event->hw.last_period);
memset(&regs, 0, sizeof(regs));
regs.psw.addr = sample->ia;
if (sample->T)
regs.psw.mask |= PSW_MASK_DAT;
if (sample->W)
regs.psw.mask |= PSW_MASK_WAIT;
if (sample->P)
regs.psw.mask |= PSW_MASK_PSTATE;
switch (sample->AS) {
case 0x0:
regs.psw.mask |= PSW_ASC_PRIMARY;
break;
case 0x1:
regs.psw.mask |= PSW_ASC_ACCREG;
break;
case 0x2:
regs.psw.mask |= PSW_ASC_SECONDARY;
break;
case 0x3:
regs.psw.mask |= PSW_ASC_HOME;
break;
}
overflow = 0;
if (perf_event_overflow(event, &data, &regs)) {
overflow = 1;
event->pmu->stop(event, 0);
debug_sprintf_event(sfdbg, 4, "perf_push_sample: PMU stopped"
" because of an event overflow\n");
}
perf_event_update_userpage(event);
return overflow;
}
static void perf_event_count_update(struct perf_event *event, u64 count)
{
local64_add(count, &event->count);
}
/* hw_collect_samples() - Walk through a sample-data-block and collect samples
* @event: The perf event
* @sdbt: Sample-data-block table
* @overflow: Event overflow counter
*
* Walks through a sample-data-block and collects hardware sample-data that is
* pushed to the perf event subsystem. The overflow reports the number of
* samples that has been discarded due to an event overflow.
*/
static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
unsigned long long *overflow)
{
struct hws_data_entry *sample;
unsigned long *trailer;
trailer = trailer_entry_ptr(*sdbt);
sample = (struct hws_data_entry *) *sdbt;
while ((unsigned long *) sample < trailer) {
/* Check for an empty sample */
if (!sample->def)
break;
/* Update perf event period */
perf_event_count_update(event, SAMPL_RATE(&event->hw));
/* Check for basic sampling mode */
if (sample->def == 0x0001) {
/* If an event overflow occurred, the PMU is stopped to
* throttle event delivery. Remaining sample data is
* discarded.
*/
if (!*overflow)
*overflow = perf_push_sample(event, sample);
else
/* Count discarded samples */
*overflow += 1;
} else
/* Sample slot is not yet written or other record */
debug_sprintf_event(sfdbg, 5, "hw_collect_samples: "
"Unknown sample data entry format:"
" %i\n", sample->def);
/* Reset sample slot and advance to next sample */
sample->def = 0;
sample++;
}
}
/* hw_perf_event_update() - Process sampling buffer
* @event: The perf event
* @flush_all: Flag to also flush partially filled sample-data-blocks
*
* Processes the sampling buffer and create perf event samples.
* The sampling buffer position are retrieved and saved in the TEAR_REG
* register of the specified perf event.
*
* Only full sample-data-blocks are processed. Specify the flash_all flag
* to also walk through partially filled sample-data-blocks.
*
*/
static void hw_perf_event_update(struct perf_event *event, int flush_all)
{
struct hw_perf_event *hwc = &event->hw;
struct hws_trailer_entry *te;
unsigned long *sdbt;
unsigned long long event_overflow, sampl_overflow;
int done;
sdbt = (unsigned long *) TEAR_REG(hwc);
done = event_overflow = sampl_overflow = 0;
while (!done) {
/* Get the trailer entry of the sample-data-block */
te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
/* Leave loop if no more work to do (block full indicator) */
if (!te->f) {
done = 1;
if (!flush_all)
break;
}
/* Check sample overflow count */
if (te->overflow) {
/* Increment sample overflow counter */
sampl_overflow += te->overflow;
/* XXX: If an sample overflow occurs, increase the
* sampling buffer. Set a "realloc" flag because
* the sampler must be re-enabled for changing
* the sample-data-block-table content.
*/
}
/* Timestamps are valid for full sample-data-blocks only */
debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
"overflow=%llu timestamp=0x%llx\n",
sdbt, te->overflow,
(te->f) ? te->timestamp : 0ULL);
/* Collect all samples from a single sample-data-block and
* flag if an (perf) event overflow happened. If so, the PMU
* is stopped and remaining samples will be discarded.
*/
hw_collect_samples(event, sdbt, &event_overflow);
/* Reset trailer */
xchg(&te->overflow, 0);
xchg((unsigned char *) te, 0x40);
/* Advance to next sample-data-block */
sdbt++;
if (is_link_entry(sdbt))
sdbt = get_next_sdbt(sdbt);
/* Update event hardware registers */
TEAR_REG(hwc) = (unsigned long) sdbt;
/* Stop processing sample-data if all samples of the current
* sample-data-block were flushed even if it was not full.
*/
if (flush_all && done)
break;
/* If an event overflow happened, discard samples by
* processing any remaining sample-data-blocks.
*/
if (event_overflow)
flush_all = 1;
}
if (sampl_overflow || event_overflow)
debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
"overflow stats: sample=%llu event=%llu\n",
sampl_overflow, event_overflow);
}
static void cpumsf_pmu_read(struct perf_event *event)
{
/* Nothing to do ... updates are interrupt-driven */
}
/* Activate sampling control.
* Next call of pmu_enable() starts sampling.
*/
static void cpumsf_pmu_start(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
return;
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
perf_pmu_disable(event->pmu);
event->hw.state = 0;
cpuhw->lsctl.cs = 1;
perf_pmu_enable(event->pmu);
}
/* Deactivate sampling control.
* Next call of pmu_enable() stops sampling.
*/
static void cpumsf_pmu_stop(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
if (event->hw.state & PERF_HES_STOPPED)
return;
perf_pmu_disable(event->pmu);
cpuhw->lsctl.cs = 0;
event->hw.state |= PERF_HES_STOPPED;
if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
hw_perf_event_update(event, 1);
event->hw.state |= PERF_HES_UPTODATE;
}
perf_pmu_enable(event->pmu);
}
static int cpumsf_pmu_add(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
int err;
if (cpuhw->flags & PMU_F_IN_USE)
return -EAGAIN;
if (!cpuhw->sfb.sdbt)
return -EINVAL;
err = 0;
perf_pmu_disable(event->pmu);
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
/* Set up sampling controls. Always program the sampling register
* using the SDB-table start. Reset TEAR_REG event hardware register
* that is used by hw_perf_event_update() to store the sampling buffer
* position after samples have been flushed.
*/
cpuhw->lsctl.s = 0;
cpuhw->lsctl.h = 1;
cpuhw->lsctl.tear = cpuhw->sfb.sdbt;
cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
/* Ensure sampling functions are in the disabled state. If disabled,
* switch on sampling enable control. */
if (WARN_ON_ONCE(cpuhw->lsctl.es == 1)) {
err = -EAGAIN;
goto out;
}
cpuhw->lsctl.es = 1;
/* Set in_use flag and store event */
event->hw.idx = 0; /* only one sampling event per CPU supported */
cpuhw->event = event;
cpuhw->flags |= PMU_F_IN_USE;
if (flags & PERF_EF_START)
cpumsf_pmu_start(event, PERF_EF_RELOAD);
out:
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
return err;
}
static void cpumsf_pmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
perf_pmu_disable(event->pmu);
cpumsf_pmu_stop(event, PERF_EF_UPDATE);
cpuhw->lsctl.es = 0;
cpuhw->flags &= ~PMU_F_IN_USE;
cpuhw->event = NULL;
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
}
static int cpumsf_pmu_event_idx(struct perf_event *event)
{
return event->hw.idx;
}
CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
static struct attribute *cpumsf_pmu_events_attr[] = {
CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
NULL,
};
PMU_FORMAT_ATTR(event, "config:0-63");
static struct attribute *cpumsf_pmu_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group cpumsf_pmu_events_group = {
.name = "events",
.attrs = cpumsf_pmu_events_attr,
};
static struct attribute_group cpumsf_pmu_format_group = {
.name = "format",
.attrs = cpumsf_pmu_format_attr,
};
static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
&cpumsf_pmu_events_group,
&cpumsf_pmu_format_group,
NULL,
};
static struct pmu cpumf_sampling = {
.pmu_enable = cpumsf_pmu_enable,
.pmu_disable = cpumsf_pmu_disable,
.event_init = cpumsf_pmu_event_init,
.add = cpumsf_pmu_add,
.del = cpumsf_pmu_del,
.start = cpumsf_pmu_start,
.stop = cpumsf_pmu_stop,
.read = cpumsf_pmu_read,
.event_idx = cpumsf_pmu_event_idx,
.attr_groups = cpumsf_pmu_attr_groups,
};
static void cpumf_measurement_alert(struct ext_code ext_code,
unsigned int alert, unsigned long unused)
{
struct cpu_hw_sf *cpuhw;
if (!(alert & CPU_MF_INT_SF_MASK))
return;
inc_irq_stat(IRQEXT_CMS);
cpuhw = &__get_cpu_var(cpu_hw_sf);
/* Measurement alerts are shared and might happen when the PMU
* is not reserved. Ignore these alerts in this case. */
if (!(cpuhw->flags & PMU_F_RESERVED))
return;
/* The processing below must take care of multiple alert events that
* might be indicated concurrently. */
/* Program alert request */
if (alert & CPU_MF_INT_SF_PRA) {
if (cpuhw->flags & PMU_F_IN_USE)
hw_perf_event_update(cpuhw->event, 0);
else
WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
}
/* Report measurement alerts only for non-PRA codes */
if (alert != CPU_MF_INT_SF_PRA)
debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
/* Sampling authorization change request */
if (alert & CPU_MF_INT_SF_SACA)
qsi(&cpuhw->qsi);
/* Loss of sample data due to high-priority machine activities */
if (alert & CPU_MF_INT_SF_LSDA) {
pr_err("Sample data was lost\n");
cpuhw->flags |= PMU_F_ERR_LSDA;
sf_disable();
}
/* Invalid sampling buffer entry */
if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
alert);
cpuhw->flags |= PMU_F_ERR_IBE;
sf_disable();
}
}
static int __cpuinit cpumf_pmu_notifier(struct notifier_block *self,
unsigned long action, void *hcpu)
{
unsigned int cpu = (long) hcpu;
int flags;
/* Ignore the notification if no events are scheduled on the PMU.
* This might be racy...
*/
if (!atomic_read(&num_events))
return NOTIFY_OK;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
flags = PMC_INIT;
smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
break;
case CPU_DOWN_PREPARE:
flags = PMC_RELEASE;
smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
break;
default:
break;
}
return NOTIFY_OK;
}
static int __init init_cpum_sampling_pmu(void)
{
int err;
if (!cpum_sf_avail())
return -ENODEV;
sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
if (!sfdbg)
pr_err("Registering for s390dbf failed\n");
debug_register_view(sfdbg, &debug_sprintf_view);
err = register_external_interrupt(0x1407, cpumf_measurement_alert);
if (err) {
pr_err("Failed to register for CPU-measurement alerts\n");
goto out;
}
err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
if (err) {
pr_err("Failed to register cpum_sf pmu\n");
unregister_external_interrupt(0x1407, cpumf_measurement_alert);
goto out;
}
perf_cpu_notifier(cpumf_pmu_notifier);
out:
return err;
}
arch_initcall(init_cpum_sampling_pmu);