linux/kernel/trace/Makefile

104 lines
3.5 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
# SPDX-License-Identifier: GPL-2.0
# Do not instrument the tracer itself:
kbuild: introduce ccflags-remove-y and asflags-remove-y CFLAGS_REMOVE_<file>.o filters out flags when compiling a particular object, but there is no convenient way to do that for every object in a directory. Add ccflags-remove-y and asflags-remove-y to make it easily. Use ccflags-remove-y to clean up some Makefiles. The add/remove order works as follows: [1] KBUILD_CFLAGS specifies compiler flags used globally [2] ccflags-y adds compiler flags for all objects in the current Makefile [3] ccflags-remove-y removes compiler flags for all objects in the current Makefile (New feature) [4] CFLAGS_<file> adds compiler flags per file. [5] CFLAGS_REMOVE_<file> removes compiler flags per file. Having [3] before [4] allows us to remove flags from most (but not all) objects in the current Makefile. For example, kernel/trace/Makefile removes $(CC_FLAGS_FTRACE) from all objects in the directory, then adds it back to trace_selftest_dynamic.o and CFLAGS_trace_kprobe_selftest.o The same applies to lib/livepatch/Makefile. Please note ccflags-remove-y has no effect to the sub-directories. In contrast, the previous notation got rid of compiler flags also from all the sub-directories. The following are not affected because they have no sub-directories: arch/arm/boot/compressed/ arch/powerpc/xmon/ arch/sh/ kernel/trace/ However, lib/ has several sub-directories. To keep the behavior, I added ccflags-remove-y to all Makefiles in subdirectories of lib/, except the following: lib/vdso/Makefile - Kbuild does not descend into this Makefile lib/raid/test/Makefile - This is not used for the kernel build I think commit 2464a609ded0 ("ftrace: do not trace library functions") excluded too much. In the next commit, I will remove ccflags-remove-y from the sub-directories of lib/. Suggested-by: Sami Tolvanen <samitolvanen@google.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Brendan Higgins <brendanhiggins@google.com> (KUnit) Tested-by: Anders Roxell <anders.roxell@linaro.org>
2020-07-07 18:21:16 +09:00
ccflags-remove-$(CONFIG_FUNCTION_TRACER) += $(CC_FLAGS_FTRACE)
ifdef CONFIG_FUNCTION_TRACER
# Avoid recursion due to instrumentation.
KCSAN_SANITIZE := n
ifdef CONFIG_FTRACE_SELFTEST
# selftest needs instrumentation
CFLAGS_trace_selftest_dynamic.o = $(CC_FLAGS_FTRACE)
obj-y += trace_selftest_dynamic.o
endif
endif
ifdef CONFIG_FTRACE_STARTUP_TEST
CFLAGS_trace_kprobe_selftest.o = $(CC_FLAGS_FTRACE)
obj-$(CONFIG_KPROBE_EVENTS) += trace_kprobe_selftest.o
endif
# If unlikely tracing is enabled, do not trace these files
ifdef CONFIG_TRACING_BRANCHES
KBUILD_CFLAGS += -DDISABLE_BRANCH_PROFILING
endif
# for GCOV coverage profiling
ifdef CONFIG_GCOV_PROFILE_FTRACE
GCOV_PROFILE := y
endif
CFLAGS_bpf_trace.o := -I$(src)
tracing: Add tracepoint benchmark tracepoint In order to help benchmark the time tracepoints take, a new config option is added called CONFIG_TRACEPOINT_BENCHMARK. When this option is set a tracepoint is created called "benchmark:benchmark_event". When the tracepoint is enabled, it kicks off a kernel thread that goes into an infinite loop (calling cond_sched() to let other tasks run), and calls the tracepoint. Each iteration will record the time it took to write to the tracepoint and the next iteration that data will be passed to the tracepoint itself. That is, the tracepoint will report the time it took to do the previous tracepoint. The string written to the tracepoint is a static string of 128 bytes to keep the time the same. The initial string is simply a write of "START". The second string records the cold cache time of the first write which is not added to the rest of the calculations. As it is a tight loop, it benchmarks as hot cache. That's fine because we care most about hot paths that are probably in cache already. An example of the output: START first=3672 [COLD CACHED] last=632 first=3672 max=632 min=632 avg=316 std=446 std^2=199712 last=278 first=3672 max=632 min=278 avg=303 std=316 std^2=100337 last=277 first=3672 max=632 min=277 avg=296 std=258 std^2=67064 last=273 first=3672 max=632 min=273 avg=292 std=224 std^2=50411 last=273 first=3672 max=632 min=273 avg=288 std=200 std^2=40389 last=281 first=3672 max=632 min=273 avg=287 std=183 std^2=33666 Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-29 22:49:07 -04:00
CFLAGS_trace_benchmark.o := -I$(src)
CFLAGS_trace_events_filter.o := -I$(src)
obj-$(CONFIG_TRACE_CLOCK) += trace_clock.o
obj-$(CONFIG_FUNCTION_TRACER) += libftrace.o
tracing: unified trace buffer This is a unified tracing buffer that implements a ring buffer that hopefully everyone will eventually be able to use. The events recorded into the buffer have the following structure: struct ring_buffer_event { u32 type:2, len:3, time_delta:27; u32 array[]; }; The minimum size of an event is 8 bytes. All events are 4 byte aligned inside the buffer. There are 4 types (all internal use for the ring buffer, only the data type is exported to the interface users). RINGBUF_TYPE_PADDING: this type is used to note extra space at the end of a buffer page. RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events is greater than the 27 bit delta can hold. We add another 32 bits, and record that in its own event (8 byte size). RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to help keep the buffer timestamps in sync. RINGBUF_TYPE_DATA: The event actually holds user data. The "len" field is only three bits. Since the data must be 4 byte aligned, this field is shifted left by 2, giving a max length of 28 bytes. If the data load is greater than 28 bytes, the first array field holds the full length of the data load and the len field is set to zero. Example, data size of 7 bytes: type = RINGBUF_TYPE_DATA len = 2 time_delta: <time-stamp> - <prev_event-time-stamp> array[0..1]: <7 bytes of data> <1 byte empty> This event is saved in 12 bytes of the buffer. An event with 82 bytes of data: type = RINGBUF_TYPE_DATA len = 0 time_delta: <time-stamp> - <prev_event-time-stamp> array[0]: 84 (Note the alignment) array[1..14]: <82 bytes of data> <2 bytes empty> The above event is saved in 92 bytes (if my math is correct). 82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length. Do not reference the above event struct directly. Use the following functions to gain access to the event table, since the ring_buffer_event structure may change in the future. ring_buffer_event_length(event): get the length of the event. This is the size of the memory used to record this event, and not the size of the data pay load. ring_buffer_time_delta(event): get the time delta of the event This returns the delta time stamp since the last event. Note: Even though this is in the header, there should be no reason to access this directly, accept for debugging. ring_buffer_event_data(event): get the data from the event This is the function to use to get the actual data from the event. Note, it is only a pointer to the data inside the buffer. This data must be copied to another location otherwise you risk it being written over in the buffer. ring_buffer_lock: A way to lock the entire buffer. ring_buffer_unlock: unlock the buffer. ring_buffer_alloc: create a new ring buffer. Can choose between overwrite or consumer/producer mode. Overwrite will overwrite old data, where as consumer producer will throw away new data if the consumer catches up with the producer. The consumer/producer is the default. ring_buffer_free: free the ring buffer. ring_buffer_resize: resize the buffer. Changes the size of each cpu buffer. Note, it is up to the caller to provide that the buffer is not being used while this is happening. This requirement may go away but do not count on it. ring_buffer_lock_reserve: locks the ring buffer and allocates an entry on the buffer to write to. ring_buffer_unlock_commit: unlocks the ring buffer and commits it to the buffer. ring_buffer_write: writes some data into the ring buffer. ring_buffer_peek: Look at a next item in the cpu buffer. ring_buffer_consume: get the next item in the cpu buffer and consume it. That is, this function increments the head pointer. ring_buffer_read_start: Start an iterator of a cpu buffer. For now, this disables the cpu buffer, until you issue a finish. This is just because we do not want the iterator to be overwritten. This restriction may change in the future. But note, this is used for static reading of a buffer which is usually done "after" a trace. Live readings would want to use the ring_buffer_consume above, which will not disable the ring buffer. ring_buffer_read_finish: Finishes the read iterator and reenables the ring buffer. ring_buffer_iter_peek: Look at the next item in the cpu iterator. ring_buffer_read: Read the iterator and increment it. ring_buffer_iter_reset: Reset the iterator to point to the beginning of the cpu buffer. ring_buffer_iter_empty: Returns true if the iterator is at the end of the cpu buffer. ring_buffer_size: returns the size in bytes of each cpu buffer. Note, the real size is this times the number of CPUs. ring_buffer_reset_cpu: Sets the cpu buffer to empty ring_buffer_reset: sets all cpu buffers to empty ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a cpu buffer of another buffer. This is handy when you want to take a snap shot of a running trace on just one cpu. Having a backup buffer, to swap with facilitates this. Ftrace max latencies use this. ring_buffer_empty: Returns true if the ring buffer is empty. ring_buffer_empty_cpu: Returns true if the cpu buffer is empty. ring_buffer_record_disable: disable all cpu buffers (read only) ring_buffer_record_disable_cpu: disable a single cpu buffer (read only) ring_buffer_record_enable: enable all cpu buffers. ring_buffer_record_enabl_cpu: enable a single cpu buffer. ring_buffer_entries: The number of entries in a ring buffer. ring_buffer_overruns: The number of entries removed due to writing wrap. ring_buffer_time_stamp: Get the time stamp used by the ring buffer ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp into nanosecs. I still need to implement the GTOD feature. But we need support from the cpu frequency infrastructure. But this can be done at a later time without affecting the ring buffer interface. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-29 23:02:38 -04:00
obj-$(CONFIG_RING_BUFFER) += ring_buffer.o
ring-buffer: add benchmark and tester This patch adds code that can benchmark the ring buffer as well as test it. This code can be compiled into the kernel (not recommended) or as a module. A separate ring buffer is used to not interfer with other users, like ftrace. It creates a producer and a consumer (option to disable creation of the consumer) and will run for 10 seconds, then sleep for 10 seconds and then repeat. While running, the producer will write 10 byte loads into the ring buffer with just putting in the current CPU number. The reader will continually try to read the buffer. The reader will alternate from reading the buffer via event by event, or by full pages. The output is a pr_info, thus it will fill up the syslogs. Starting ring buffer hammer End ring buffer hammer Time: 9000349 (usecs) Overruns: 12578640 Read: 5358440 (by events) Entries: 0 Total: 17937080 Missed: 0 Hit: 17937080 Entries per millisec: 1993 501 ns per entry Sleeping for 10 secs Starting ring buffer hammer End ring buffer hammer Time: 9936350 (usecs) Overruns: 0 Read: 28146644 (by pages) Entries: 74 Total: 28146718 Missed: 0 Hit: 28146718 Entries per millisec: 2832 353 ns per entry Sleeping for 10 secs Time: is the time the test ran Overruns: the number of events that were overwritten and not read Read: the number of events read (either by pages or events) Entries: the number of entries left in the buffer (the by pages will only read full pages) Total: Entries + Read + Overruns Missed: the number of entries that failed to write Hit: the number of entries that were written The above example shows that it takes ~353 nanosecs per entry when there is a reader, reading by pages (and no overruns) The event by event reader slowed the producer down to 501 nanosecs. [ Impact: see how changes to the ring buffer affect stability and performance ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-05-05 22:47:18 -04:00
obj-$(CONFIG_RING_BUFFER_BENCHMARK) += ring_buffer_benchmark.o
ftrace: latency tracer infrastructure This patch adds the latency tracer infrastructure. This patch does not add anything that will select and turn it on, but will be used by later patches. If it were to be compiled, it would add the following files to the debugfs: The root tracing directory: /debugfs/tracing/ This patch also adds the following files: available_tracers list of available tracers. Currently no tracers are available. Looking into this file only shows "none" which is used to unregister all tracers. current_tracer The trace that is currently active. Empty on start up. To switch to a tracer simply echo one of the tracers that are listed in available_tracers: example: (used with later patches) echo function > /debugfs/tracing/current_tracer To disable the tracer: echo disable > /debugfs/tracing/current_tracer tracing_enabled echoing "1" into this file starts the ftrace function tracing (if sysctl kernel.ftrace_enabled=1) echoing "0" turns it off. latency_trace This file is readonly and holds the result of the trace. trace This file outputs a easier to read version of the trace. iter_ctrl Controls the way the output of traces look. So far there's two controls: echoing in "symonly" will only show the kallsyms variables without the addresses (if kallsyms was configured) echoing in "verbose" will change the output to show a lot more data, but not very easy to understand by humans. echoing in "nosymonly" turns off symonly. echoing in "noverbose" turns off verbose. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 21:20:42 +02:00
obj-$(CONFIG_TRACING) += trace.o
obj-$(CONFIG_TRACING) += trace_output.o
obj-$(CONFIG_TRACING) += trace_seq.o
tracing/ftrace: provide the base infrastructure for histogram tracing Impact: extend the tracing API The goal of this patch is to normalize and make more easy the implementation of statistical (histogram) tracing. It implements a trace_stat file into the /debugfs/tracing directory where one can print a one-shot output of statistics/histogram entries. A tracer has to provide two basic iterator callbacks: stat_start() => the first entry stat_next(prev, idx) => the next one. Note that it is adapted for arrays or hash tables or lists.... since it provides a pointer to the previous entry and the current index of the iterator. These two callbacks are called to get a snapshot of the statistics at each opening of the trace_stat file because. The values are so updated between two "cat trace_stat". And the tracer is free to lock its datas during the iteration to keep consistent values. Since it is almost always interesting to sort statisticals values to address the problems by priority, this infrastructure provides a "sorting" of the stat entries too if desired. A tracer has just to provide a stat_cmp callback to compare two entries and the stat tracing infrastructure will build a sorted list of the given entries. A last callback, called stat_headers, can be implemented by a tracer to output headers on its trace. If one of these callbacks is changed on runtime, it just have to signal it to the stat tracing API by calling the init_tracer_stat() helper. Changes in V2: - Fix a memory leak if the user opens multiple times the trace_stat file without closing it. Now we always free our list before rebuilding it. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-28 20:44:51 -08:00
obj-$(CONFIG_TRACING) += trace_stat.o
tracing/core: drop the old trace_printk() implementation in favour of trace_bprintk() Impact: faster and lighter tracing Now that we have trace_bprintk() which is faster and consume lesser memory than trace_printk() and has the same purpose, we can now drop the old implementation in favour of the binary one from trace_bprintk(), which means we move all the implementation of trace_bprintk() to trace_printk(), so the Api doesn't change except that we must now use trace_seq_bprintk() to print the TRACE_PRINT entries. Some changes result of this: - Previously, trace_bprintk depended of a single tracer and couldn't work without. This tracer has been dropped and the whole implementation of trace_printk() (like the module formats management) is now integrated in the tracing core (comes with CONFIG_TRACING), though we keep the file trace_printk (previously trace_bprintk.c) where we can find the module management. Thus we don't overflow trace.c - changes some parts to use trace_seq_bprintk() to print TRACE_PRINT entries. - change a bit trace_printk/trace_vprintk macros to support non-builtin formats constants, and fix 'const' qualifiers warnings. But this is all transparent for developers. - etc... V2: - Rebase against last changes - Fix mispell on the changelog V3: - Rebase against last changes (moving trace_printk() to kernel.h) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> LKML-Reference: <1236356510-8381-5-git-send-email-fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-06 17:21:49 +01:00
obj-$(CONFIG_TRACING) += trace_printk.o
obj-$(CONFIG_TRACING) += pid_list.o
obj-$(CONFIG_TRACING_MAP) += tracing_map.o
lib: Add module for testing preemptoff/irqsoff latency tracers Here we introduce a test module for introducing a long preempt or irq disable delay in the kernel which the preemptoff or irqsoff tracers can detect. This module is to be used only for test purposes and is default disabled. Following is the expected output (only briefly shown) that can be parsed to verify that the tracers are working correctly. We will use this from the kselftests in future patches. For the preemptoff tracer: echo preemptoff > /d/tracing/current_tracer sleep 1 insmod ./preemptirq_delay_test.ko test_mode=preempt delay=500000 sleep 1 bash-4.3# cat /d/tracing/trace preempt -1066 2...2 0us@: preemptirq_delay_run <-preemptirq_delay_run preempt -1066 2...2 500002us : preemptirq_delay_run <-preemptirq_delay_run preempt -1066 2...2 500004us : tracer_preempt_on <-preemptirq_delay_run preempt -1066 2...2 500012us : <stack trace> => kthread => ret_from_fork For the irqsoff tracer: echo irqsoff > /d/tracing/current_tracer sleep 1 insmod ./preemptirq_delay_test.ko test_mode=irq delay=500000 sleep 1 bash-4.3# cat /d/tracing/trace irq dis -1069 1d..1 0us@: preemptirq_delay_run irq dis -1069 1d..1 500001us : preemptirq_delay_run irq dis -1069 1d..1 500002us : tracer_hardirqs_on <-preemptirq_delay_run irq dis -1069 1d..1 500005us : <stack trace> => ret_from_fork Link: http://lkml.kernel.org/r/20180712213611.GA8743@joelaf.mtv.corp.google.com Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Julia Cartwright <julia@ni.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Glexiner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> [ Erick is a co-developer of this commit ] Signed-off-by: Erick Reyes <erickreyes@google.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-07-12 14:36:11 -07:00
obj-$(CONFIG_PREEMPTIRQ_DELAY_TEST) += preemptirq_delay_test.o
obj-$(CONFIG_SYNTH_EVENT_GEN_TEST) += synth_event_gen_test.o
obj-$(CONFIG_KPROBE_EVENT_GEN_TEST) += kprobe_event_gen_test.o
obj-$(CONFIG_CONTEXT_SWITCH_TRACER) += trace_sched_switch.o
obj-$(CONFIG_FUNCTION_TRACER) += trace_functions.o
tracing: Centralize preemptirq tracepoints and unify their usage This patch detaches the preemptirq tracepoints from the tracers and keeps it separate. Advantages: * Lockdep and irqsoff event can now run in parallel since they no longer have their own calls. * This unifies the usecase of adding hooks to an irqsoff and irqson event, and a preemptoff and preempton event. 3 users of the events exist: - Lockdep - irqsoff and preemptoff tracers - irqs and preempt trace events The unification cleans up several ifdefs and makes the code in preempt tracer and irqsoff tracers simpler. It gets rid of all the horrific ifdeferry around PROVE_LOCKING and makes configuration of the different users of the tracepoints more easy and understandable. It also gets rid of the time_* function calls from the lockdep hooks used to call into the preemptirq tracer which is not needed anymore. The negative delta in lines of code in this patch is quite large too. In the patch we introduce a new CONFIG option PREEMPTIRQ_TRACEPOINTS as a single point for registering probes onto the tracepoints. With this, the web of config options for preempt/irq toggle tracepoints and its users becomes: PREEMPT_TRACER PREEMPTIRQ_EVENTS IRQSOFF_TRACER PROVE_LOCKING | | \ | | \ (selects) / \ \ (selects) / TRACE_PREEMPT_TOGGLE ----> TRACE_IRQFLAGS \ / \ (depends on) / PREEMPTIRQ_TRACEPOINTS Other than the performance tests mentioned in the previous patch, I also ran the locking API test suite. I verified that all tests cases are passing. I also injected issues by not registering lockdep probes onto the tracepoints and I see failures to confirm that the probes are indeed working. This series + lockdep probes not registered (just to inject errors): [ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/12:FAILED|FAILED| ok | [ 0.000000] sirq-safe-A => hirqs-on/21:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + irqs-on/12:FAILED|FAILED| ok | [ 0.000000] soft-safe-A + irqs-on/12:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + irqs-on/21:FAILED|FAILED| ok | [ 0.000000] soft-safe-A + irqs-on/21:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok | [ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok | With this series + lockdep probes registered, all locking tests pass: [ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/12: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/21: ok | ok | ok | [ 0.000000] hard-safe-A + irqs-on/12: ok | ok | ok | [ 0.000000] soft-safe-A + irqs-on/12: ok | ok | ok | [ 0.000000] hard-safe-A + irqs-on/21: ok | ok | ok | [ 0.000000] soft-safe-A + irqs-on/21: ok | ok | ok | [ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok | [ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok | Link: http://lkml.kernel.org/r/20180730222423.196630-4-joel@joelfernandes.org Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-07-30 15:24:23 -07:00
obj-$(CONFIG_PREEMPTIRQ_TRACEPOINTS) += trace_preemptirq.o
ftrace: trace irq disabled critical timings This patch adds latency tracing for critical timings (how long interrupts are disabled for). "irqsoff" is added to /debugfs/tracing/available_tracers Note: tracing_max_latency also holds the max latency for irqsoff (in usecs). (default to large number so one must start latency tracing) tracing_thresh threshold (in usecs) to always print out if irqs off is detected to be longer than stated here. If irq_thresh is non-zero, then max_irq_latency is ignored. Here's an example of a trace with ftrace_enabled = 0 ======= preemption latency trace v1.1.5 on 2.6.24-rc7 Signed-off-by: Ingo Molnar <mingo@elte.hu> -------------------------------------------------------------------- latency: 100 us, #3/3, CPU#1 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: _spin_lock_irqsave+0x2a/0xb7 => ended at: _spin_unlock_irqrestore+0x32/0x5f _------=> CPU# / _-----=> irqs-off | / _----=> need-resched || / _---=> hardirq/softirq ||| / _--=> preempt-depth |||| / ||||| delay cmd pid ||||| time | caller \ / ||||| \ | / swapper-0 1d.s3 0us+: _spin_lock_irqsave+0x2a/0xb7 (e1000_update_stats+0x47/0x64c [e1000]) swapper-0 1d.s3 100us : _spin_unlock_irqrestore+0x32/0x5f (e1000_update_stats+0x641/0x64c [e1000]) swapper-0 1d.s3 100us : trace_hardirqs_on_caller+0x75/0x89 (_spin_unlock_irqrestore+0x32/0x5f) vim:ft=help ======= And this is a trace with ftrace_enabled == 1 ======= preemption latency trace v1.1.5 on 2.6.24-rc7 -------------------------------------------------------------------- latency: 102 us, #12/12, CPU#1 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- => started at: _spin_lock_irqsave+0x2a/0xb7 => ended at: _spin_unlock_irqrestore+0x32/0x5f _------=> CPU# / _-----=> irqs-off | / _----=> need-resched || / _---=> hardirq/softirq ||| / _--=> preempt-depth |||| / ||||| delay cmd pid ||||| time | caller \ / ||||| \ | / swapper-0 1dNs3 0us+: _spin_lock_irqsave+0x2a/0xb7 (e1000_update_stats+0x47/0x64c [e1000]) swapper-0 1dNs3 46us : e1000_read_phy_reg+0x16/0x225 [e1000] (e1000_update_stats+0x5e2/0x64c [e1000]) swapper-0 1dNs3 46us : e1000_swfw_sync_acquire+0x10/0x99 [e1000] (e1000_read_phy_reg+0x49/0x225 [e1000]) swapper-0 1dNs3 46us : e1000_get_hw_eeprom_semaphore+0x12/0xa6 [e1000] (e1000_swfw_sync_acquire+0x36/0x99 [e1000]) swapper-0 1dNs3 47us : __const_udelay+0x9/0x47 (e1000_read_phy_reg+0x116/0x225 [e1000]) swapper-0 1dNs3 47us+: __delay+0x9/0x50 (__const_udelay+0x45/0x47) swapper-0 1dNs3 97us : preempt_schedule+0xc/0x84 (__delay+0x4e/0x50) swapper-0 1dNs3 98us : e1000_swfw_sync_release+0xc/0x55 [e1000] (e1000_read_phy_reg+0x211/0x225 [e1000]) swapper-0 1dNs3 99us+: e1000_put_hw_eeprom_semaphore+0x9/0x35 [e1000] (e1000_swfw_sync_release+0x50/0x55 [e1000]) swapper-0 1dNs3 101us : _spin_unlock_irqrestore+0xe/0x5f (e1000_update_stats+0x641/0x64c [e1000]) swapper-0 1dNs3 102us : _spin_unlock_irqrestore+0x32/0x5f (e1000_update_stats+0x641/0x64c [e1000]) swapper-0 1dNs3 102us : trace_hardirqs_on_caller+0x75/0x89 (_spin_unlock_irqrestore+0x32/0x5f) vim:ft=help ======= Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 21:20:42 +02:00
obj-$(CONFIG_IRQSOFF_TRACER) += trace_irqsoff.o
obj-$(CONFIG_PREEMPT_TRACER) += trace_irqsoff.o
ftrace: tracer for scheduler wakeup latency This patch adds the tracer that tracks the wakeup latency of the highest priority waking task. "wakeup" is added to /debugfs/tracing/available_tracers Also added to /debugfs/tracing tracing_max_latency holds the current max latency for the wakeup wakeup_thresh if set to other than zero, a log will be recorded for every wakeup that takes longer than the number entered in here (usecs for all counters) (deletes previous trace) Examples: (with ftrace_enabled = 0) ============ preemption latency trace v1.1.5 on 2.6.24-rc8 Signed-off-by: Ingo Molnar <mingo@elte.hu> -------------------------------------------------------------------- latency: 26 us, #2/2, CPU#1 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: migration/0-3 (uid:0 nice:-5 policy:1 rt_prio:99) ----------------- _------=> CPU# / _-----=> irqs-off | / _----=> need-resched || / _---=> hardirq/softirq ||| / _--=> preempt-depth |||| / ||||| delay cmd pid ||||| time | caller \ / ||||| \ | / quilt-8551 0d..3 0us+: wake_up_process+0x15/0x17 <ffffffff80233e80> (sched_exec+0xc9/0x100 <ffffffff80235343>) quilt-8551 0d..4 26us : sched_switch_callback+0x73/0x81 <ffffffff80338d2f> (schedule+0x483/0x6d5 <ffffffff8048b3ee>) vim:ft=help ============ (with ftrace_enabled = 1) ============ preemption latency trace v1.1.5 on 2.6.24-rc8 -------------------------------------------------------------------- latency: 36 us, #45/45, CPU#0 | (M:rt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- | task: migration/1-5 (uid:0 nice:-5 policy:1 rt_prio:99) ----------------- _------=> CPU# / _-----=> irqs-off | / _----=> need-resched || / _---=> hardirq/softirq ||| / _--=> preempt-depth |||| / ||||| delay cmd pid ||||| time | caller \ / ||||| \ | / bash-10653 1d..3 0us : wake_up_process+0x15/0x17 <ffffffff80233e80> (sched_exec+0xc9/0x100 <ffffffff80235343>) bash-10653 1d..3 1us : try_to_wake_up+0x271/0x2e7 <ffffffff80233dcf> (sub_preempt_count+0xc/0x7a <ffffffff8023309e>) bash-10653 1d..2 2us : try_to_wake_up+0x296/0x2e7 <ffffffff80233df4> (update_rq_clock+0x9/0x20 <ffffffff802303f3>) bash-10653 1d..2 2us : update_rq_clock+0x1e/0x20 <ffffffff80230408> (__update_rq_clock+0xc/0x90 <ffffffff80230366>) bash-10653 1d..2 3us : __update_rq_clock+0x1b/0x90 <ffffffff80230375> (sched_clock+0x9/0x29 <ffffffff80214529>) bash-10653 1d..2 4us : try_to_wake_up+0x2a6/0x2e7 <ffffffff80233e04> (activate_task+0xc/0x3f <ffffffff8022ffca>) bash-10653 1d..2 4us : activate_task+0x2d/0x3f <ffffffff8022ffeb> (enqueue_task+0xe/0x66 <ffffffff8022ff66>) bash-10653 1d..2 5us : enqueue_task+0x5b/0x66 <ffffffff8022ffb3> (enqueue_task_rt+0x9/0x3c <ffffffff80233351>) bash-10653 1d..2 6us : try_to_wake_up+0x2ba/0x2e7 <ffffffff80233e18> (check_preempt_wakeup+0x12/0x99 <ffffffff80234f84>) [...] bash-10653 1d..5 33us : tracing_record_cmdline+0xcf/0xd4 <ffffffff80338aad> (_spin_unlock+0x9/0x33 <ffffffff8048d3ec>) bash-10653 1d..5 34us : _spin_unlock+0x19/0x33 <ffffffff8048d3fc> (sub_preempt_count+0xc/0x7a <ffffffff8023309e>) bash-10653 1d..4 35us : wakeup_sched_switch+0x65/0x2ff <ffffffff80339f66> (_spin_lock_irqsave+0xc/0xa9 <ffffffff8048d08b>) bash-10653 1d..4 35us : _spin_lock_irqsave+0x19/0xa9 <ffffffff8048d098> (add_preempt_count+0xe/0x77 <ffffffff8023311a>) bash-10653 1d..4 36us : sched_switch_callback+0x73/0x81 <ffffffff80338d2f> (schedule+0x483/0x6d5 <ffffffff8048b3ee>) vim:ft=help ============ The [...] was added here to not waste your email box space. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 21:20:42 +02:00
obj-$(CONFIG_SCHED_TRACER) += trace_sched_wakeup.o
obj-$(CONFIG_HWLAT_TRACER) += trace_hwlat.o
trace: Add osnoise tracer In the context of high-performance computing (HPC), the Operating System Noise (*osnoise*) refers to the interference experienced by an application due to activities inside the operating system. In the context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the system. Moreover, hardware-related jobs can also cause noise, for example, via SMIs. The osnoise tracer leverages the hwlat_detector by running a similar loop with preemption, SoftIRQs and IRQs enabled, thus allowing all the sources of *osnoise* during its execution. Using the same approach of hwlat, osnoise takes note of the entry and exit point of any source of interferences, increasing a per-cpu interference counter. The osnoise tracer also saves an interference counter for each source of interference. The interference counter for NMI, IRQs, SoftIRQs, and threads is increased anytime the tool observes these interferences' entry events. When a noise happens without any interference from the operating system level, the hardware noise counter increases, pointing to a hardware-related noise. In this way, osnoise can account for any source of interference. At the end of the period, the osnoise tracer prints the sum of all noise, the max single noise, the percentage of CPU available for the thread, and the counters for the noise sources. Usage Write the ASCII text "osnoise" into the current_tracer file of the tracing system (generally mounted at /sys/kernel/tracing). For example:: [root@f32 ~]# cd /sys/kernel/tracing/ [root@f32 tracing]# echo osnoise > current_tracer It is possible to follow the trace by reading the trace trace file:: [root@f32 tracing]# cat trace # tracer: osnoise # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth MAX # || / SINGLE Interference counters: # |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+ # TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD # | | | |||| | | | | | | | | | | <...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1 <...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3 <...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21 <...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0 <...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41 <...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2 <...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1 <...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19 In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the tracer prints a message at the end of each period for each CPU that is running an osnoise/CPU thread. The osnoise specific fields report: - The RUNTIME IN USE reports the amount of time in microseconds that the osnoise thread kept looping reading the time. - The NOISE IN US reports the sum of noise in microseconds observed by the osnoise tracer during the associated runtime. - The % OF CPU AVAILABLE reports the percentage of CPU available for the osnoise thread during the runtime window. - The MAX SINGLE NOISE IN US reports the maximum single noise observed during the runtime window. - The Interference counters display how many each of the respective interference happened during the runtime window. Note that the example above shows a high number of HW noise samples. The reason being is that this sample was taken on a virtual machine, and the host interference is detected as a hardware interference. Tracer options The tracer has a set of options inside the osnoise directory, they are: - osnoise/cpus: CPUs at which a osnoise thread will execute. - osnoise/period_us: the period of the osnoise thread. - osnoise/runtime_us: how long an osnoise thread will look for noise. - osnoise/stop_tracing_us: stop the system tracing if a single noise higher than the configured value happens. Writing 0 disables this option. - osnoise/stop_tracing_total_us: stop the system tracing if total noise higher than the configured value happens. Writing 0 disables this option. - tracing_threshold: the minimum delta between two time() reads to be considered as noise, in us. When set to 0, the default value will be used, which is currently 5 us. Additional Tracing In addition to the tracer, a set of tracepoints were added to facilitate the identification of the osnoise source. - osnoise:sample_threshold: printed anytime a noise is higher than the configurable tolerance_ns. - osnoise:nmi_noise: noise from NMI, including the duration. - osnoise:irq_noise: noise from an IRQ, including the duration. - osnoise:softirq_noise: noise from a SoftIRQ, including the duration. - osnoise:thread_noise: noise from a thread, including the duration. Note that all the values are *net values*. For example, if while osnoise is running, another thread preempts the osnoise thread, it will start a thread_noise duration at the start. Then, an IRQ takes place, preempting the thread_noise, starting a irq_noise. When the IRQ ends its execution, it will compute its duration, and this duration will be subtracted from the thread_noise, in such a way as to avoid the double accounting of the IRQ execution. This logic is valid for all sources of noise. Here is one example of the usage of these tracepoints:: osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2 In this example, a noise sample of 8 microseconds was reported in the last line, pointing to two interferences. Looking backward in the trace, the two previous entries were about the migration thread running after a timer IRQ execution. The first event is not part of the noise because it took place one millisecond before. It is worth noticing that the sum of the duration reported in the tracepoints is smaller than eight us reported in the sample_threshold. The reason roots in the overhead of the entry and exit code that happens before and after any interference execution. This justifies the dual approach: measuring thread and tracing. Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> [ Made the following functions static: trace_irqentry_callback() trace_irqexit_callback() trace_intel_irqentry_callback() trace_intel_irqexit_callback() Added to include/trace.h: osnoise_arch_register() osnoise_arch_unregister() Fixed define logic for LATENCY_FS_NOTIFY Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 16:42:27 +02:00
obj-$(CONFIG_OSNOISE_TRACER) += trace_osnoise.o
obj-$(CONFIG_NOP_TRACER) += trace_nop.o
ftrace: add stack tracer This is another tracer using the ftrace infrastructure, that examines at each function call the size of the stack. If the stack use is greater than the previous max it is recorded. You can always see (and set) the max stack size seen. By setting it to zero will start the recording again. The backtrace is also available. For example: # cat /debug/tracing/stack_max_size 1856 # cat /debug/tracing/stack_trace [<c027764d>] stack_trace_call+0x8f/0x101 [<c021b966>] ftrace_call+0x5/0x8 [<c02553cc>] clocksource_get_next+0x12/0x48 [<c02542a5>] update_wall_time+0x538/0x6d1 [<c0245913>] do_timer+0x23/0xb0 [<c0257657>] tick_do_update_jiffies64+0xd9/0xf1 [<c02576b9>] tick_sched_timer+0x4a/0xad [<c0250fe6>] __run_hrtimer+0x3e/0x75 [<c02518ed>] hrtimer_interrupt+0xf1/0x154 [<c022c870>] smp_apic_timer_interrupt+0x71/0x84 [<c021b7e9>] apic_timer_interrupt+0x2d/0x34 [<c0238597>] finish_task_switch+0x29/0xa0 [<c05abd13>] schedule+0x765/0x7be [<c05abfca>] schedule_timeout+0x1b/0x90 [<c05ab4d4>] wait_for_common+0xab/0x101 [<c05ab5ac>] wait_for_completion+0x12/0x14 [<c033cfc3>] blk_execute_rq+0x84/0x99 [<c0402470>] scsi_execute+0xc2/0x105 [<c040250a>] scsi_execute_req+0x57/0x7f [<c043afe0>] sr_test_unit_ready+0x3e/0x97 [<c043bbd6>] sr_media_change+0x43/0x205 [<c046b59f>] media_changed+0x48/0x77 [<c046b5ff>] cdrom_media_changed+0x31/0x37 [<c043b091>] sr_block_media_changed+0x16/0x18 [<c02b9e69>] check_disk_change+0x1b/0x63 [<c046f4c3>] cdrom_open+0x7a1/0x806 [<c043b148>] sr_block_open+0x78/0x8d [<c02ba4c0>] do_open+0x90/0x257 [<c02ba869>] blkdev_open+0x2d/0x56 [<c0296a1f>] __dentry_open+0x14d/0x23c [<c0296b32>] nameidata_to_filp+0x24/0x38 [<c02a1c68>] do_filp_open+0x347/0x626 [<c02967ef>] do_sys_open+0x47/0xbc [<c02968b0>] sys_open+0x23/0x2b [<c021aadd>] sysenter_do_call+0x12/0x26 I've tested this on both x86_64 and i386. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-27 23:31:01 -04:00
obj-$(CONFIG_STACK_TRACER) += trace_stack.o
obj-$(CONFIG_MMIOTRACE) += trace_mmiotrace.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o
obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o
tracing/events: convert block trace points to TRACE_EVENT() TRACE_EVENT is a more generic way to define tracepoints. Doing so adds these new capabilities to this tracepoint: - zero-copy and per-cpu splice() tracing - binary tracing without printf overhead - structured logging records exposed under /debug/tracing/events - trace events embedded in function tracer output and other plugins - user-defined, per tracepoint filter expressions ... Cons: - no dev_t info for the output of plug, unplug_timer and unplug_io events. no dev_t info for getrq and sleeprq events if bio == NULL. no dev_t info for rq_abort,...,rq_requeue events if rq->rq_disk == NULL. This is mainly because we can't get the deivce from a request queue. But this may change in the future. - A packet command is converted to a string in TP_assign, not TP_print. While blktrace do the convertion just before output. Since pc requests should be rather rare, this is not a big issue. - In blktrace, an event can have 2 different print formats, but a TRACE_EVENT has a unique format, which means we have some unused data in a trace entry. The overhead is minimized by using __dynamic_array() instead of __array(). I've benchmarked the ioctl blktrace vs the splice based TRACE_EVENT tracing: dd dd + ioctl blktrace dd + TRACE_EVENT (splice) 1 7.36s, 42.7 MB/s 7.50s, 42.0 MB/s 7.41s, 42.5 MB/s 2 7.43s, 42.3 MB/s 7.48s, 42.1 MB/s 7.43s, 42.4 MB/s 3 7.38s, 42.6 MB/s 7.45s, 42.2 MB/s 7.41s, 42.5 MB/s So the overhead of tracing is very small, and no regression when using those trace events vs blktrace. And the binary output of TRACE_EVENT is much smaller than blktrace: # ls -l -h -rw-r--r-- 1 root root 8.8M 06-09 13:24 sda.blktrace.0 -rw-r--r-- 1 root root 195K 06-09 13:24 sda.blktrace.1 -rw-r--r-- 1 root root 2.7M 06-09 13:25 trace_splice.out Following are some comparisons between TRACE_EVENT and blktrace: plug: kjournald-480 [000] 303.084981: block_plug: [kjournald] kjournald-480 [000] 303.084981: 8,0 P N [kjournald] unplug_io: kblockd/0-118 [000] 300.052973: block_unplug_io: [kblockd/0] 1 kblockd/0-118 [000] 300.052974: 8,0 U N [kblockd/0] 1 remap: kjournald-480 [000] 303.085042: block_remap: 8,0 W 102736992 + 8 <- (8,8) 33384 kjournald-480 [000] 303.085043: 8,0 A W 102736992 + 8 <- (8,8) 33384 bio_backmerge: kjournald-480 [000] 303.085086: block_bio_backmerge: 8,0 W 102737032 + 8 [kjournald] kjournald-480 [000] 303.085086: 8,0 M W 102737032 + 8 [kjournald] getrq: kjournald-480 [000] 303.084974: block_getrq: 8,0 W 102736984 + 8 [kjournald] kjournald-480 [000] 303.084975: 8,0 G W 102736984 + 8 [kjournald] bash-2066 [001] 1072.953770: 8,0 G N [bash] bash-2066 [001] 1072.953773: block_getrq: 0,0 N 0 + 0 [bash] rq_complete: konsole-2065 [001] 300.053184: block_rq_complete: 8,0 W () 103669040 + 16 [0] konsole-2065 [001] 300.053191: 8,0 C W 103669040 + 16 [0] ksoftirqd/1-7 [001] 1072.953811: 8,0 C N (5a 00 08 00 00 00 00 00 24 00) [0] ksoftirqd/1-7 [001] 1072.953813: block_rq_complete: 0,0 N (5a 00 08 00 00 00 00 00 24 00) 0 + 0 [0] rq_insert: kjournald-480 [000] 303.084985: block_rq_insert: 8,0 W 0 () 102736984 + 8 [kjournald] kjournald-480 [000] 303.084986: 8,0 I W 102736984 + 8 [kjournald] Changelog from v2 -> v3: - use the newly introduced __dynamic_array(). Changelog from v1 -> v2: - use __string() instead of __array() to minimize the memory required to store hex dump of rq->cmd(). - support large pc requests. - add missing blk_fill_rwbs_rq() in block_rq_requeue TRACE_EVENT. - some cleanups. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <4A2DF669.5070905@cn.fujitsu.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-06-09 13:43:05 +08:00
obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += fgraph.o
tracing/events: convert block trace points to TRACE_EVENT() TRACE_EVENT is a more generic way to define tracepoints. Doing so adds these new capabilities to this tracepoint: - zero-copy and per-cpu splice() tracing - binary tracing without printf overhead - structured logging records exposed under /debug/tracing/events - trace events embedded in function tracer output and other plugins - user-defined, per tracepoint filter expressions ... Cons: - no dev_t info for the output of plug, unplug_timer and unplug_io events. no dev_t info for getrq and sleeprq events if bio == NULL. no dev_t info for rq_abort,...,rq_requeue events if rq->rq_disk == NULL. This is mainly because we can't get the deivce from a request queue. But this may change in the future. - A packet command is converted to a string in TP_assign, not TP_print. While blktrace do the convertion just before output. Since pc requests should be rather rare, this is not a big issue. - In blktrace, an event can have 2 different print formats, but a TRACE_EVENT has a unique format, which means we have some unused data in a trace entry. The overhead is minimized by using __dynamic_array() instead of __array(). I've benchmarked the ioctl blktrace vs the splice based TRACE_EVENT tracing: dd dd + ioctl blktrace dd + TRACE_EVENT (splice) 1 7.36s, 42.7 MB/s 7.50s, 42.0 MB/s 7.41s, 42.5 MB/s 2 7.43s, 42.3 MB/s 7.48s, 42.1 MB/s 7.43s, 42.4 MB/s 3 7.38s, 42.6 MB/s 7.45s, 42.2 MB/s 7.41s, 42.5 MB/s So the overhead of tracing is very small, and no regression when using those trace events vs blktrace. And the binary output of TRACE_EVENT is much smaller than blktrace: # ls -l -h -rw-r--r-- 1 root root 8.8M 06-09 13:24 sda.blktrace.0 -rw-r--r-- 1 root root 195K 06-09 13:24 sda.blktrace.1 -rw-r--r-- 1 root root 2.7M 06-09 13:25 trace_splice.out Following are some comparisons between TRACE_EVENT and blktrace: plug: kjournald-480 [000] 303.084981: block_plug: [kjournald] kjournald-480 [000] 303.084981: 8,0 P N [kjournald] unplug_io: kblockd/0-118 [000] 300.052973: block_unplug_io: [kblockd/0] 1 kblockd/0-118 [000] 300.052974: 8,0 U N [kblockd/0] 1 remap: kjournald-480 [000] 303.085042: block_remap: 8,0 W 102736992 + 8 <- (8,8) 33384 kjournald-480 [000] 303.085043: 8,0 A W 102736992 + 8 <- (8,8) 33384 bio_backmerge: kjournald-480 [000] 303.085086: block_bio_backmerge: 8,0 W 102737032 + 8 [kjournald] kjournald-480 [000] 303.085086: 8,0 M W 102737032 + 8 [kjournald] getrq: kjournald-480 [000] 303.084974: block_getrq: 8,0 W 102736984 + 8 [kjournald] kjournald-480 [000] 303.084975: 8,0 G W 102736984 + 8 [kjournald] bash-2066 [001] 1072.953770: 8,0 G N [bash] bash-2066 [001] 1072.953773: block_getrq: 0,0 N 0 + 0 [bash] rq_complete: konsole-2065 [001] 300.053184: block_rq_complete: 8,0 W () 103669040 + 16 [0] konsole-2065 [001] 300.053191: 8,0 C W 103669040 + 16 [0] ksoftirqd/1-7 [001] 1072.953811: 8,0 C N (5a 00 08 00 00 00 00 00 24 00) [0] ksoftirqd/1-7 [001] 1072.953813: block_rq_complete: 0,0 N (5a 00 08 00 00 00 00 00 24 00) 0 + 0 [0] rq_insert: kjournald-480 [000] 303.084985: block_rq_insert: 8,0 W 0 () 102736984 + 8 [kjournald] kjournald-480 [000] 303.084986: 8,0 I W 102736984 + 8 [kjournald] Changelog from v2 -> v3: - use the newly introduced __dynamic_array(). Changelog from v1 -> v2: - use __string() instead of __array() to minimize the memory required to store hex dump of rq->cmd(). - support large pc requests. - add missing blk_fill_rwbs_rq() in block_rq_requeue TRACE_EVENT. - some cleanups. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <4A2DF669.5070905@cn.fujitsu.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-06-09 13:43:05 +08:00
ifeq ($(CONFIG_BLOCK),y)
obj-$(CONFIG_EVENT_TRACING) += blktrace.o
endif
obj-$(CONFIG_EVENT_TRACING) += trace_events.o
obj-$(CONFIG_EVENT_TRACING) += trace_export.o
obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o
ifeq ($(CONFIG_PERF_EVENTS),y)
obj-$(CONFIG_EVENT_TRACING) += trace_event_perf.o
endif
obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 08:59:24 -05:00
obj-$(CONFIG_EVENT_TRACING) += trace_events_trigger.o
tracing: Add a probe that attaches to trace events A new dynamic event is introduced: event probe. The event is attached to an existing tracepoint and uses its fields as arguments. The user can specify custom format string of the new event, select what tracepoint arguments will be printed and how to print them. An event probe is created by writing configuration string in 'dynamic_events' ftrace file: e[:[SNAME/]ENAME] SYSTEM/EVENT [FETCHARGS] - Set an event probe -:SNAME/ENAME - Delete an event probe Where: SNAME - System name, if omitted 'eprobes' is used. ENAME - Name of the new event in SNAME, if omitted the SYSTEM_EVENT is used. SYSTEM - Name of the system, where the tracepoint is defined, mandatory. EVENT - Name of the tracepoint event in SYSTEM, mandatory. FETCHARGS - Arguments: <name>=$<field>[:TYPE] - Fetch given filed of the tracepoint and print it as given TYPE with given name. Supported types are: (u8/u16/u32/u64/s8/s16/s32/s64), basic type (x8/x16/x32/x64), hexadecimal types "string", "ustring" and bitfield. Example, attach an event probe on openat system call and print name of the file that will be opened: echo "e:esys/eopen syscalls/sys_enter_openat file=\$filename:string" >> dynamic_events A new dynamic event is created in events/esys/eopen/ directory. It can be deleted with: echo "-:esys/eopen" >> dynamic_events Filters, triggers and histograms can be attached to the new event, it can be matched in synthetic events. There is one limitation - an event probe can not be attached to kprobe, uprobe or another event probe. Link: https://lkml.kernel.org/r/20210812145805.2292326-1-tz.stoyanov@gmail.com Link: https://lkml.kernel.org/r/20210819152825.142428383@goodmis.org Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Co-developed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-08-19 11:26:06 -04:00
obj-$(CONFIG_PROBE_EVENTS) += trace_eprobe.o
tracing: Introduce trace event injection We have been trying to use rasdaemon to monitor hardware errors like correctable memory errors. rasdaemon uses trace events to monitor various hardware errors. In order to test it, we have to inject some hardware errors, unfortunately not all of them provide error injections. MCE does provide a way to inject MCE errors, but errors like PCI error and devlink error don't, it is not easy to add error injection to each of them. Instead, it is relatively easier to just allow users to inject trace events in a generic way so that all trace events can be injected. This patch introduces trace event injection, where a new 'inject' is added to each tracepoint directory. Users could write into this file with key=value pairs to specify the value of each fields of the trace event, all unspecified fields are set to zero values by default. For example, for the net/net_dev_queue tracepoint, we can inject: INJECT=/sys/kernel/debug/tracing/events/net/net_dev_queue/inject echo "" > $INJECT echo "name='test'" > $INJECT echo "name='test' len=1024" > $INJECT cat /sys/kernel/debug/tracing/trace ... <...>-614 [000] .... 36.571483: net_dev_queue: dev= skbaddr=00000000fbf338c2 len=0 <...>-614 [001] .... 136.588252: net_dev_queue: dev=test skbaddr=00000000fbf338c2 len=0 <...>-614 [001] .N.. 208.431878: net_dev_queue: dev=test skbaddr=00000000fbf338c2 len=1024 Triggers could be triggered as usual too: echo "stacktrace if len == 1025" > /sys/kernel/debug/tracing/events/net/net_dev_queue/trigger echo "len=1025" > $INJECT cat /sys/kernel/debug/tracing/trace ... bash-614 [000] .... 36.571483: net_dev_queue: dev= skbaddr=00000000fbf338c2 len=0 bash-614 [001] .... 136.588252: net_dev_queue: dev=test skbaddr=00000000fbf338c2 len=0 bash-614 [001] .N.. 208.431878: net_dev_queue: dev=test skbaddr=00000000fbf338c2 len=1024 bash-614 [001] .N.1 284.236349: <stack trace> => event_inject_write => vfs_write => ksys_write => do_syscall_64 => entry_SYSCALL_64_after_hwframe The only thing that can't be injected is string pointers as they require constant string pointers, this can't be done at run time. Link: http://lkml.kernel.org/r/20191130045218.18979-1-xiyou.wangcong@gmail.com Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-11-29 20:52:18 -08:00
obj-$(CONFIG_TRACE_EVENT_INJECT) += trace_events_inject.o
obj-$(CONFIG_SYNTH_EVENTS) += trace_events_synth.o
tracing: Add 'hist' event trigger command 'hist' triggers allow users to continually aggregate trace events, which can then be viewed afterwards by simply reading a 'hist' file containing the aggregation in a human-readable format. The basic idea is very simple and boils down to a mechanism whereby trace events, rather than being exhaustively dumped in raw form and viewed directly, are automatically 'compressed' into meaningful tables completely defined by the user. This is done strictly via single-line command-line commands and without the aid of any kind of programming language or interpreter. A surprising number of typical use cases can be accomplished by users via this simple mechanism. In fact, a large number of the tasks that users typically do using the more complicated script-based tracing tools, at least during the initial stages of an investigation, can be accomplished by simply specifying a set of keys and values to be used in the creation of a hash table. The Linux kernel trace event subsystem happens to provide an extensive list of keys and values ready-made for such a purpose in the form of the event format files associated with each trace event. By simply consulting the format file for field names of interest and by plugging them into the hist trigger command, users can create an endless number of useful aggregations to help with investigating various properties of the system. See Documentation/trace/events.txt for examples. hist triggers are implemented on top of the existing event trigger infrastructure, and as such are consistent with the existing triggers from a user's perspective as well. The basic syntax follows the existing trigger syntax. Users start an aggregation by writing a 'hist' trigger to the event of interest's trigger file: # echo hist:keys=xxx [ if filter] > event/trigger Once a hist trigger has been set up, by default it continually aggregates every matching event into a hash table using the event key and a value field named 'hitcount'. To view the aggregation at any point in time, simply read the 'hist' file in the same directory as the 'trigger' file: # cat event/hist The detailed syntax provides additional options for user control, and is described exhaustively in Documentation/trace/events.txt and in the virtual tracing/README file in the tracing subsystem. Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Reviewed-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
obj-$(CONFIG_HIST_TRIGGERS) += trace_events_hist.o
bpf: Fix the build on BPF_SYSCALL=y && !CONFIG_TRACING kernels, make it more configurable So bpf_tracing.o depends on CONFIG_BPF_SYSCALL - but that's not its only dependency, it also depends on the tracing infrastructure and on kprobes, without which it will fail to build with: In file included from kernel/trace/bpf_trace.c:14:0: kernel/trace/trace.h: In function ‘trace_test_and_set_recursion’: kernel/trace/trace.h:491:28: error: ‘struct task_struct’ has no member named ‘trace_recursion’ unsigned int val = current->trace_recursion; [...] It took quite some time to trigger this build failure, because right now BPF_SYSCALL is very obscure, depends on CONFIG_EXPERT. So also make BPF_SYSCALL more configurable, not just under CONFIG_EXPERT. If BPF_SYSCALL, tracing and kprobes are enabled then enable the bpf_tracing gateway as well. We might want to make this an interactive option later on, although I'd not complicate it unnecessarily: enabling BPF_SYSCALL is enough of an indicator that the user wants BPF support. Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 15:51:39 +02:00
obj-$(CONFIG_BPF_EVENTS) += bpf_trace.o
obj-$(CONFIG_KPROBE_EVENTS) += trace_kprobe.o
tracing: add error_report_end trace point Patch series "Add error_report_end tracepoint to KFENCE and KASAN", v3. This patchset adds a tracepoint, error_repor_end, that is to be used by KFENCE, KASAN, and potentially other bug detection tools, when they print an error report. One of the possible use cases is userspace collection of kernel error reports: interested parties can subscribe to the tracing event via tracefs, and get notified when an error report occurs. This patch (of 3): Introduce error_report_end tracepoint. It can be used in debugging tools like KASAN, KFENCE, etc. to provide extensions to the error reporting mechanisms (e.g. allow tests hook into error reporting, ease error report collection from production kernels). Another benefit would be making use of ftrace for debugging or benchmarking the tools themselves. Should we need it, the tracepoint name leaves us with the possibility to introduce a complementary error_report_start tracepoint in the future. Link: https://lkml.kernel.org/r/20210121131915.1331302-1-glider@google.com Link: https://lkml.kernel.org/r/20210121131915.1331302-2-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Suggested-by: Marco Elver <elver@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-25 17:19:44 -08:00
obj-$(CONFIG_TRACEPOINTS) += error_report-traces.o
obj-$(CONFIG_TRACEPOINTS) += power-traces.o
ifeq ($(CONFIG_PM),y)
obj-$(CONFIG_TRACEPOINTS) += rpm-traces.o
endif
ifeq ($(CONFIG_TRACING),y)
obj-$(CONFIG_KGDB_KDB) += trace_kdb.o
endif
obj-$(CONFIG_DYNAMIC_EVENTS) += trace_dynevent.o
obj-$(CONFIG_PROBE_EVENTS) += trace_probe.o
obj-$(CONFIG_UPROBE_EVENTS) += trace_uprobe.o
obj-$(CONFIG_BOOTTIME_TRACING) += trace_boot.o
ftrace: Add recording of functions that caused recursion This adds CONFIG_FTRACE_RECORD_RECURSION that will record to a file "recursed_functions" all the functions that caused recursion while a callback to the function tracer was running. Link: https://lkml.kernel.org/r/20201106023548.102375687@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Guo Ren <guoren@kernel.org> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Helge Deller <deller@gmx.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Miroslav Benes <mbenes@suse.cz> Cc: Petr Mladek <pmladek@suse.com> Cc: Joe Lawrence <joe.lawrence@redhat.com> Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com> Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-csky@vger.kernel.org Cc: linux-parisc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-s390@vger.kernel.org Cc: live-patching@vger.kernel.org Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-11-05 21:32:46 -05:00
obj-$(CONFIG_FTRACE_RECORD_RECURSION) += trace_recursion_record.o
ftrace: latency tracer infrastructure This patch adds the latency tracer infrastructure. This patch does not add anything that will select and turn it on, but will be used by later patches. If it were to be compiled, it would add the following files to the debugfs: The root tracing directory: /debugfs/tracing/ This patch also adds the following files: available_tracers list of available tracers. Currently no tracers are available. Looking into this file only shows "none" which is used to unregister all tracers. current_tracer The trace that is currently active. Empty on start up. To switch to a tracer simply echo one of the tracers that are listed in available_tracers: example: (used with later patches) echo function > /debugfs/tracing/current_tracer To disable the tracer: echo disable > /debugfs/tracing/current_tracer tracing_enabled echoing "1" into this file starts the ftrace function tracing (if sysctl kernel.ftrace_enabled=1) echoing "0" turns it off. latency_trace This file is readonly and holds the result of the trace. trace This file outputs a easier to read version of the trace. iter_ctrl Controls the way the output of traces look. So far there's two controls: echoing in "symonly" will only show the kallsyms variables without the addresses (if kallsyms was configured) echoing in "verbose" will change the output to show a lot more data, but not very easy to understand by humans. echoing in "nosymonly" turns off symonly. echoing in "noverbose" turns off verbose. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 21:20:42 +02:00
tracing: Add tracepoint benchmark tracepoint In order to help benchmark the time tracepoints take, a new config option is added called CONFIG_TRACEPOINT_BENCHMARK. When this option is set a tracepoint is created called "benchmark:benchmark_event". When the tracepoint is enabled, it kicks off a kernel thread that goes into an infinite loop (calling cond_sched() to let other tasks run), and calls the tracepoint. Each iteration will record the time it took to write to the tracepoint and the next iteration that data will be passed to the tracepoint itself. That is, the tracepoint will report the time it took to do the previous tracepoint. The string written to the tracepoint is a static string of 128 bytes to keep the time the same. The initial string is simply a write of "START". The second string records the cold cache time of the first write which is not added to the rest of the calculations. As it is a tight loop, it benchmarks as hot cache. That's fine because we care most about hot paths that are probably in cache already. An example of the output: START first=3672 [COLD CACHED] last=632 first=3672 max=632 min=632 avg=316 std=446 std^2=199712 last=278 first=3672 max=632 min=278 avg=303 std=316 std^2=100337 last=277 first=3672 max=632 min=277 avg=296 std=258 std^2=67064 last=273 first=3672 max=632 min=273 avg=292 std=224 std^2=50411 last=273 first=3672 max=632 min=273 avg=288 std=200 std^2=40389 last=281 first=3672 max=632 min=273 avg=287 std=183 std^2=33666 Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-29 22:49:07 -04:00
obj-$(CONFIG_TRACEPOINT_BENCHMARK) += trace_benchmark.o
libftrace-y := ftrace.o