2011-03-15 07:53:21 +01:00
# ifndef SOUND_FIREWIRE_AMDTP_H_INCLUDED
# define SOUND_FIREWIRE_AMDTP_H_INCLUDED
2011-09-04 22:15:44 +02:00
# include <linux/err.h>
2012-05-13 22:03:09 +02:00
# include <linux/interrupt.h>
2011-03-15 07:53:21 +01:00
# include <linux/mutex.h>
2015-09-19 11:21:55 +09:00
# include <linux/sched.h>
2013-11-19 13:29:24 +09:00
# include <sound/asound.h>
2011-03-15 07:53:21 +01:00
# include "packets-buffer.h"
/**
2014-04-25 22:44:42 +09:00
* enum cip_flags - describes details of the streaming protocol
2011-03-15 07:53:21 +01:00
* @ CIP_NONBLOCKING : In non - blocking mode , each packet contains
* sample_rate / 8000 samples , with rounding up or down to adjust
* for clock skew and left - over fractional samples . This should
* be used if supported by the device .
2011-09-04 22:12:48 +02:00
* @ CIP_BLOCKING : In blocking mode , each packet contains either zero or
* SYT_INTERVAL samples , with these two types alternating so that
* the overall sample rate comes out right .
2014-04-25 22:44:49 +09:00
* @ CIP_SYNC_TO_DEVICE : In sync to device mode , time stamp in out packets is
* generated by in packets . Defaultly this driver generates timestamp .
2014-04-25 22:45:03 +09:00
* @ CIP_EMPTY_WITH_TAG0 : Only for in - stream . Empty in - packets have TAG0 .
2014-04-25 22:45:04 +09:00
* @ CIP_DBC_IS_END_EVENT : Only for in - stream . The value of dbc in an in - packet
* corresponds to the end of event in the packet . Out of IEC 61883.
2014-04-25 22:45:05 +09:00
* @ CIP_WRONG_DBS : Only for in - stream . The value of dbs is wrong in in - packets .
* The value of data_block_quadlets is used instead of reported value .
2014-11-18 23:59:40 +09:00
* @ CIP_SKIP_DBC_ZERO_CHECK : Only for in - stream . Packets with zero in dbc is
2014-04-25 22:45:07 +09:00
* skipped for detecting discontinuity .
2014-04-25 22:45:16 +09:00
* @ CIP_SKIP_INIT_DBC_CHECK : Only for in - stream . The value of dbc in first
* packet is not continuous from an initial value .
2014-04-25 22:45:27 +09:00
* @ CIP_EMPTY_HAS_WRONG_DBC : Only for in - stream . The value of dbc in empty
* packet is wrong but the others are correct .
ALSA: firewire-lib: add buffer-over-run protection at receiving more data blocks than expected
In IEC 61883-6, the number of data blocks in a packet is limited up to
the value of SYT_INTERVAL. Current implementation is compliant to the
limitation, while it can cause buffer-over-run when the value of dbs
field in received packet is illegally large.
This commit adds a validator to detect such illegal packets to prevent
the buffer-over-run. Actually, the buffer is aligned to the size of memory
page, thus this issue hardly causes system errors due to the room to page
alignment, as long as a few packets includes such jumbo payload; i.e.
a packet to several received packets.
Here, Behringer F-Control Audio 202 (based on OXFW 960) has a quirk to
postpone transferring isochronous packet till finish handling any
asynchronous packets. In this case, this model is lazy, transfers no
packets according to several cycle-start packets. After finishing, this
model pushes required data in next isochronous packet. As a result, the
packet include more data blocks than IEC 61883-6 defines.
To continue to support this model, this commit adds a new flag to extend
the length of calculated payload. This flag allows the size of payload
5 times as large as IEC 61883-6 defines. As a result, packets from this
model passed the validator successfully.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-05-22 23:00:50 +09:00
* @ CIP_JUMBO_PAYLOAD : Only for in - stream . The number of data blocks in an
* packet is larger than IEC 61883 - 6 defines . Current implementation
* allows 5 times as large as IEC 61883 - 6 defines .
2011-03-15 07:53:21 +01:00
*/
2014-04-25 22:44:42 +09:00
enum cip_flags {
2014-04-25 22:44:49 +09:00
CIP_NONBLOCKING = 0x00 ,
CIP_BLOCKING = 0x01 ,
2014-04-25 22:44:51 +09:00
CIP_SYNC_TO_DEVICE = 0x02 ,
2014-04-25 22:45:03 +09:00
CIP_EMPTY_WITH_TAG0 = 0x04 ,
2014-04-25 22:45:04 +09:00
CIP_DBC_IS_END_EVENT = 0x08 ,
2014-04-25 22:45:05 +09:00
CIP_WRONG_DBS = 0x10 ,
2014-04-25 22:45:07 +09:00
CIP_SKIP_DBC_ZERO_CHECK = 0x20 ,
2014-04-25 22:45:16 +09:00
CIP_SKIP_INIT_DBC_CHECK = 0x40 ,
2014-04-25 22:45:27 +09:00
CIP_EMPTY_HAS_WRONG_DBC = 0x80 ,
ALSA: firewire-lib: add buffer-over-run protection at receiving more data blocks than expected
In IEC 61883-6, the number of data blocks in a packet is limited up to
the value of SYT_INTERVAL. Current implementation is compliant to the
limitation, while it can cause buffer-over-run when the value of dbs
field in received packet is illegally large.
This commit adds a validator to detect such illegal packets to prevent
the buffer-over-run. Actually, the buffer is aligned to the size of memory
page, thus this issue hardly causes system errors due to the room to page
alignment, as long as a few packets includes such jumbo payload; i.e.
a packet to several received packets.
Here, Behringer F-Control Audio 202 (based on OXFW 960) has a quirk to
postpone transferring isochronous packet till finish handling any
asynchronous packets. In this case, this model is lazy, transfers no
packets according to several cycle-start packets. After finishing, this
model pushes required data in next isochronous packet. As a result, the
packet include more data blocks than IEC 61883-6 defines.
To continue to support this model, this commit adds a new flag to extend
the length of calculated payload. This flag allows the size of payload
5 times as large as IEC 61883-6 defines. As a result, packets from this
model passed the validator successfully.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-05-22 23:00:50 +09:00
CIP_JUMBO_PAYLOAD = 0x100 ,
2011-03-15 07:53:21 +01:00
} ;
/**
2014-11-18 23:59:40 +09:00
* enum cip_sfc - supported Sampling Frequency Codes ( SFCs )
* @ CIP_SFC_32000 : 32 , 000 data blocks
* @ CIP_SFC_44100 : 44 , 100 data blocks
* @ CIP_SFC_48000 : 48 , 000 data blocks
* @ CIP_SFC_88200 : 88 , 200 data blocks
* @ CIP_SFC_96000 : 96 , 000 data blocks
* @ CIP_SFC_176400 : 176 , 400 data blocks
* @ CIP_SFC_192000 : 192 , 000 data blocks
* @ CIP_SFC_COUNT : the number of supported SFCs
*
* These values are used to show nominal Sampling Frequency Code in
* Format Dependent Field ( FDF ) of AMDTP packet header . In IEC 61883 - 6 : 2002 ,
* this code means the number of events per second . Actually the code
* represents the number of data blocks transferred per second in an AMDTP
* stream .
*
* In IEC 61883 - 6 : 2005 , some extensions were added to support more types of
* data such as ' One Bit LInear Audio ' , therefore the meaning of SFC became
* different depending on the types .
*
* Currently our implementation is compatible with IEC 61883 - 6 : 2002.
2011-03-15 07:53:21 +01:00
*/
enum cip_sfc {
CIP_SFC_32000 = 0 ,
CIP_SFC_44100 = 1 ,
CIP_SFC_48000 = 2 ,
CIP_SFC_88200 = 3 ,
CIP_SFC_96000 = 4 ,
CIP_SFC_176400 = 5 ,
CIP_SFC_192000 = 6 ,
2011-09-04 22:16:10 +02:00
CIP_SFC_COUNT
2011-03-15 07:53:21 +01:00
} ;
2014-04-25 22:44:46 +09:00
# define AMDTP_IN_PCM_FORMAT_BITS SNDRV_PCM_FMTBIT_S32
2011-03-15 07:53:21 +01:00
# define AMDTP_OUT_PCM_FORMAT_BITS (SNDRV_PCM_FMTBIT_S16 | \
SNDRV_PCM_FMTBIT_S32 )
ALSA: firewire-lib: Add support for MIDI capture/playback
For capturing/playbacking MIDI messages, this commit adds one MIDI conformant
data channel. This data channel has multiplexed 8 MIDI data streams. So this
data channel can transfer messages from/to 8 MIDI ports.
And this commit allows to set PCM format even if AMDTP streams already start.
I suppose the case that PCM substreams are going to be joined into AMDTP
streams when AMDTP streams are already started for MIDI substreams. Each
driver must count how many PCM/MIDI substreams use AMDTP streams to stop
AMDTP streams.
There are differences between specifications about MIDI conformant data.
About the multiplexing, IEC 61883-6:2002, itself, has no information. It
describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027
for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data
streams for one MIDI conformant data channel. IEC 61883-6:2005 adds
'sequence multiplexing' and apply this way and describe incompatibility
between 2002 and 2005.
So this commit applies IEC 61883-6:2005. When we find some devices compliant
to IEC 61883-6:2002, then this difference should be handles as device quirk
in additional work.
About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe
0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED',
'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1,
2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation
procedure' and 'encapsulation details' but there is no specifications for them.
So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows
to pick up 1-3 bytes for capturing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:44:47 +09:00
2014-04-25 22:44:50 +09:00
/*
* This module supports maximum 64 PCM channels for one PCM stream
* This is for our convenience .
*/
# define AMDTP_MAX_CHANNELS_FOR_PCM 64
ALSA: firewire-lib: Add support for MIDI capture/playback
For capturing/playbacking MIDI messages, this commit adds one MIDI conformant
data channel. This data channel has multiplexed 8 MIDI data streams. So this
data channel can transfer messages from/to 8 MIDI ports.
And this commit allows to set PCM format even if AMDTP streams already start.
I suppose the case that PCM substreams are going to be joined into AMDTP
streams when AMDTP streams are already started for MIDI substreams. Each
driver must count how many PCM/MIDI substreams use AMDTP streams to stop
AMDTP streams.
There are differences between specifications about MIDI conformant data.
About the multiplexing, IEC 61883-6:2002, itself, has no information. It
describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027
for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data
streams for one MIDI conformant data channel. IEC 61883-6:2005 adds
'sequence multiplexing' and apply this way and describe incompatibility
between 2002 and 2005.
So this commit applies IEC 61883-6:2005. When we find some devices compliant
to IEC 61883-6:2002, then this difference should be handles as device quirk
in additional work.
About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe
0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED',
'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1,
2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation
procedure' and 'encapsulation details' but there is no specifications for them.
So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows
to pick up 1-3 bytes for capturing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:44:47 +09:00
/*
* AMDTP packet can include channels for MIDI conformant data .
* Each MIDI conformant data channel includes 8 MPX - MIDI data stream .
* Each MPX - MIDI data stream includes one data stream from / to MIDI ports .
*
* This module supports maximum 1 MIDI conformant data channels .
* Then this AMDTP packets can transfer maximum 8 MIDI data streams .
*/
# define AMDTP_MAX_CHANNELS_FOR_MIDI 1
2011-03-15 07:53:21 +01:00
struct fw_unit ;
struct fw_iso_context ;
struct snd_pcm_substream ;
2014-04-25 22:44:52 +09:00
struct snd_pcm_runtime ;
ALSA: firewire-lib: Add support for MIDI capture/playback
For capturing/playbacking MIDI messages, this commit adds one MIDI conformant
data channel. This data channel has multiplexed 8 MIDI data streams. So this
data channel can transfer messages from/to 8 MIDI ports.
And this commit allows to set PCM format even if AMDTP streams already start.
I suppose the case that PCM substreams are going to be joined into AMDTP
streams when AMDTP streams are already started for MIDI substreams. Each
driver must count how many PCM/MIDI substreams use AMDTP streams to stop
AMDTP streams.
There are differences between specifications about MIDI conformant data.
About the multiplexing, IEC 61883-6:2002, itself, has no information. It
describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027
for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data
streams for one MIDI conformant data channel. IEC 61883-6:2005 adds
'sequence multiplexing' and apply this way and describe incompatibility
between 2002 and 2005.
So this commit applies IEC 61883-6:2005. When we find some devices compliant
to IEC 61883-6:2002, then this difference should be handles as device quirk
in additional work.
About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe
0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED',
'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1,
2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation
procedure' and 'encapsulation details' but there is no specifications for them.
So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows
to pick up 1-3 bytes for capturing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:44:47 +09:00
struct snd_rawmidi_substream ;
2011-03-15 07:53:21 +01:00
2014-04-25 22:44:44 +09:00
enum amdtp_stream_direction {
AMDTP_OUT_STREAM = 0 ,
AMDTP_IN_STREAM
} ;
2014-04-25 22:44:42 +09:00
struct amdtp_stream {
2011-03-15 07:53:21 +01:00
struct fw_unit * unit ;
2014-04-25 22:44:42 +09:00
enum cip_flags flags ;
2014-04-25 22:44:44 +09:00
enum amdtp_stream_direction direction ;
2011-03-15 07:53:21 +01:00
struct mutex mutex ;
2015-09-19 11:21:48 +09:00
/* For packet processing. */
struct fw_iso_context * context ;
2011-03-15 07:53:21 +01:00
struct iso_packets_buffer buffer ;
2011-03-15 07:57:24 +01:00
int packet_index ;
2015-09-19 11:21:48 +09:00
/* For CIP headers. */
unsigned int source_node_id_field ;
unsigned int data_block_quadlets ;
2011-03-15 07:53:21 +01:00
unsigned int data_block_counter ;
2015-09-19 11:21:53 +09:00
unsigned int fmt ;
unsigned int fdf ;
2015-09-19 11:21:48 +09:00
/* quirk: fixed interval of dbc between previos/current packets. */
unsigned int tx_dbc_interval ;
/* quirk: indicate the value of dbc field in a first packet. */
unsigned int tx_first_dbc ;
2011-03-15 07:53:21 +01:00
2015-09-19 11:21:48 +09:00
/* Internal flags. */
enum cip_sfc sfc ;
unsigned int syt_interval ;
unsigned int transfer_delay ;
2011-03-15 07:53:21 +01:00
unsigned int data_block_state ;
unsigned int last_syt_offset ;
unsigned int syt_offset_state ;
2015-09-19 11:21:48 +09:00
/* For a PCM substream processing. */
struct snd_pcm_substream * pcm ;
struct tasklet_struct period_tasklet ;
2011-03-15 07:53:21 +01:00
unsigned int pcm_buffer_pointer ;
unsigned int pcm_period_pointer ;
2012-05-13 19:07:22 +02:00
bool pointer_flush ;
ALSA: firewire-lib: Add support for MIDI capture/playback
For capturing/playbacking MIDI messages, this commit adds one MIDI conformant
data channel. This data channel has multiplexed 8 MIDI data streams. So this
data channel can transfer messages from/to 8 MIDI ports.
And this commit allows to set PCM format even if AMDTP streams already start.
I suppose the case that PCM substreams are going to be joined into AMDTP
streams when AMDTP streams are already started for MIDI substreams. Each
driver must count how many PCM/MIDI substreams use AMDTP streams to stop
AMDTP streams.
There are differences between specifications about MIDI conformant data.
About the multiplexing, IEC 61883-6:2002, itself, has no information. It
describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027
for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data
streams for one MIDI conformant data channel. IEC 61883-6:2005 adds
'sequence multiplexing' and apply this way and describe incompatibility
between 2002 and 2005.
So this commit applies IEC 61883-6:2005. When we find some devices compliant
to IEC 61883-6:2002, then this difference should be handles as device quirk
in additional work.
About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe
0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED',
'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1,
2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation
procedure' and 'encapsulation details' but there is no specifications for them.
So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows
to pick up 1-3 bytes for capturing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:44:47 +09:00
2015-09-19 11:21:48 +09:00
/* To wait for first packet. */
bool callbacked ;
wait_queue_head_t callback_wait ;
struct amdtp_stream * sync_slave ;
/* For AM824 processing. */
ALSA: firewire-lib: Add support for MIDI capture/playback
For capturing/playbacking MIDI messages, this commit adds one MIDI conformant
data channel. This data channel has multiplexed 8 MIDI data streams. So this
data channel can transfer messages from/to 8 MIDI ports.
And this commit allows to set PCM format even if AMDTP streams already start.
I suppose the case that PCM substreams are going to be joined into AMDTP
streams when AMDTP streams are already started for MIDI substreams. Each
driver must count how many PCM/MIDI substreams use AMDTP streams to stop
AMDTP streams.
There are differences between specifications about MIDI conformant data.
About the multiplexing, IEC 61883-6:2002, itself, has no information. It
describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027
for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data
streams for one MIDI conformant data channel. IEC 61883-6:2005 adds
'sequence multiplexing' and apply this way and describe incompatibility
between 2002 and 2005.
So this commit applies IEC 61883-6:2005. When we find some devices compliant
to IEC 61883-6:2002, then this difference should be handles as device quirk
in additional work.
About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe
0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED',
'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1,
2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation
procedure' and 'encapsulation details' but there is no specifications for them.
So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows
to pick up 1-3 bytes for capturing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:44:47 +09:00
struct snd_rawmidi_substream * midi [ AMDTP_MAX_CHANNELS_FOR_MIDI * 8 ] ;
2014-11-25 22:54:10 +01:00
int midi_fifo_limit ;
int midi_fifo_used [ AMDTP_MAX_CHANNELS_FOR_MIDI * 8 ] ;
2015-09-19 11:21:48 +09:00
unsigned int pcm_channels ;
unsigned int midi_ports ;
2014-04-25 22:44:49 +09:00
2015-09-19 11:21:48 +09:00
u8 pcm_positions [ AMDTP_MAX_CHANNELS_FOR_PCM ] ;
u8 midi_position ;
2014-04-25 22:45:06 +09:00
2015-09-19 11:21:48 +09:00
void ( * transfer_samples ) ( struct amdtp_stream * s ,
struct snd_pcm_substream * pcm ,
__be32 * buffer , unsigned int frames ) ;
2015-09-19 11:21:51 +09:00
unsigned int frame_multiplier ;
2011-03-15 07:53:21 +01:00
} ;
2014-04-25 22:44:42 +09:00
int amdtp_stream_init ( struct amdtp_stream * s , struct fw_unit * unit ,
2014-04-25 22:44:44 +09:00
enum amdtp_stream_direction dir ,
2015-09-19 11:21:55 +09:00
enum cip_flags flags , unsigned int fmt ) ;
2014-04-25 22:44:42 +09:00
void amdtp_stream_destroy ( struct amdtp_stream * s ) ;
2011-03-15 07:53:21 +01:00
2015-09-19 11:21:49 +09:00
int amdtp_stream_set_parameters ( struct amdtp_stream * s ,
unsigned int rate ,
unsigned int pcm_channels ,
ALSA: firewire-lib: add an argument for Dice's dual wire mode
In IEC 61883-6, one data block represents one event. In ALSA, the event is
one PCM frame. Therefore, when processing one data block, current
implementation counts one PCM frame.
On the other hand, Dice platform has a quirk called as 'dual wire' at
higher sampling rate. In detail, see comment of commit 6eb6c81eee2a
("ALSA: dice: Split stream functionality into a file").
Currently, to handle this quirk, AMDTP stream structure has a
'double_pcm_frames' member. When this is enabled, two PCM frames are
counted. Each driver set this flag by accessing the structure member
directly.
In future commit, some members related to AM824 data block will be moved
to specific structure, to separate packet streaming layer and data block
processing layer. The access will be limited by opaque pointer.
For this reason, this commit adds an argument into
amdtp_stream_set_parameter() to set the flag.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-19 11:21:50 +09:00
unsigned int midi_ports ,
bool double_pcm_frames ) ;
2014-04-25 22:44:42 +09:00
unsigned int amdtp_stream_get_max_payload ( struct amdtp_stream * s ) ;
2011-03-15 07:53:21 +01:00
2014-04-25 22:44:42 +09:00
int amdtp_stream_start ( struct amdtp_stream * s , int channel , int speed ) ;
void amdtp_stream_update ( struct amdtp_stream * s ) ;
void amdtp_stream_stop ( struct amdtp_stream * s ) ;
2011-03-15 07:53:21 +01:00
2014-04-25 22:44:52 +09:00
int amdtp_stream_add_pcm_hw_constraints ( struct amdtp_stream * s ,
struct snd_pcm_runtime * runtime ) ;
2014-04-25 22:44:42 +09:00
void amdtp_stream_set_pcm_format ( struct amdtp_stream * s ,
snd_pcm_format_t format ) ;
void amdtp_stream_pcm_prepare ( struct amdtp_stream * s ) ;
unsigned long amdtp_stream_pcm_pointer ( struct amdtp_stream * s ) ;
void amdtp_stream_pcm_abort ( struct amdtp_stream * s ) ;
2011-03-15 07:53:21 +01:00
2011-10-16 21:39:00 +02:00
extern const unsigned int amdtp_syt_intervals [ CIP_SFC_COUNT ] ;
2014-04-25 22:44:59 +09:00
extern const unsigned int amdtp_rate_table [ CIP_SFC_COUNT ] ;
2011-09-04 22:16:10 +02:00
2014-04-25 22:44:42 +09:00
/**
* amdtp_stream_running - check stream is running or not
* @ s : the AMDTP stream
*
* If this function returns true , the stream is running .
*/
static inline bool amdtp_stream_running ( struct amdtp_stream * s )
2011-09-04 22:15:44 +02:00
{
return ! IS_ERR ( s - > context ) ;
}
2011-03-15 07:57:24 +01:00
/**
2014-04-25 22:44:42 +09:00
* amdtp_streaming_error - check for streaming error
* @ s : the AMDTP stream
2011-03-15 07:57:24 +01:00
*
* If this function returns true , the stream ' s packet queue has stopped due to
* an asynchronous error .
*/
2014-04-25 22:44:42 +09:00
static inline bool amdtp_streaming_error ( struct amdtp_stream * s )
2011-03-15 07:57:24 +01:00
{
return s - > packet_index < 0 ;
}
ALSA: firewire-lib: Add support for MIDI capture/playback
For capturing/playbacking MIDI messages, this commit adds one MIDI conformant
data channel. This data channel has multiplexed 8 MIDI data streams. So this
data channel can transfer messages from/to 8 MIDI ports.
And this commit allows to set PCM format even if AMDTP streams already start.
I suppose the case that PCM substreams are going to be joined into AMDTP
streams when AMDTP streams are already started for MIDI substreams. Each
driver must count how many PCM/MIDI substreams use AMDTP streams to stop
AMDTP streams.
There are differences between specifications about MIDI conformant data.
About the multiplexing, IEC 61883-6:2002, itself, has no information. It
describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027
for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data
streams for one MIDI conformant data channel. IEC 61883-6:2005 adds
'sequence multiplexing' and apply this way and describe incompatibility
between 2002 and 2005.
So this commit applies IEC 61883-6:2005. When we find some devices compliant
to IEC 61883-6:2002, then this difference should be handles as device quirk
in additional work.
About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe
0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED',
'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1,
2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation
procedure' and 'encapsulation details' but there is no specifications for them.
So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows
to pick up 1-3 bytes for capturing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:44:47 +09:00
/**
* amdtp_stream_pcm_running - check PCM substream is running or not
* @ s : the AMDTP stream
*
* If this function returns true , PCM substream in the AMDTP stream is running .
*/
static inline bool amdtp_stream_pcm_running ( struct amdtp_stream * s )
{
return ! ! s - > pcm ;
}
2011-03-15 07:53:21 +01:00
/**
2014-04-25 22:44:42 +09:00
* amdtp_stream_pcm_trigger - start / stop playback from a PCM device
* @ s : the AMDTP stream
2011-03-15 07:53:21 +01:00
* @ pcm : the PCM device to be started , or % NULL to stop the current device
*
* Call this function on a running isochronous stream to enable the actual
* transmission of PCM data . This function should be called from the PCM
* device ' s . trigger callback .
*/
2014-04-25 22:44:42 +09:00
static inline void amdtp_stream_pcm_trigger ( struct amdtp_stream * s ,
struct snd_pcm_substream * pcm )
2011-03-15 07:53:21 +01:00
{
ACCESS_ONCE ( s - > pcm ) = pcm ;
}
ALSA: firewire-lib: Add support for MIDI capture/playback
For capturing/playbacking MIDI messages, this commit adds one MIDI conformant
data channel. This data channel has multiplexed 8 MIDI data streams. So this
data channel can transfer messages from/to 8 MIDI ports.
And this commit allows to set PCM format even if AMDTP streams already start.
I suppose the case that PCM substreams are going to be joined into AMDTP
streams when AMDTP streams are already started for MIDI substreams. Each
driver must count how many PCM/MIDI substreams use AMDTP streams to stop
AMDTP streams.
There are differences between specifications about MIDI conformant data.
About the multiplexing, IEC 61883-6:2002, itself, has no information. It
describes labels and bytes for MIDI messages and refers to MMA/AMEI RP-027
for 'successfull implementation'. MMA/AMEI RP-027 describes 8 MPX-MIDI data
streams for one MIDI conformant data channel. IEC 61883-6:2005 adds
'sequence multiplexing' and apply this way and describe incompatibility
between 2002 and 2005.
So this commit applies IEC 61883-6:2005. When we find some devices compliant
to IEC 61883-6:2002, then this difference should be handles as device quirk
in additional work.
About the number of bytes in an MIDI conformant data, IEC 61883-6:2002 describe
0,1,2,3 bytes. MMA/AMEI RP-027 describes 'MIDI1.0-1x-SPEED', 'MIDI1.0-2x-SPEED',
'MIDI1.0-3x-SPEED' modes and the maximum bytes for each mode corresponds to 1,
2, 3 bytes. The 'MIDI1.0-2x/3x-SPEED' modes are accompanied with 'negotiation
procedure' and 'encapsulation details' but there is no specifications for them.
So this commit implements 'MIDI1.0-1x-SPEED' mode for playback, but allows
to pick up 1-3 bytes for capturing.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:44:47 +09:00
/**
* amdtp_stream_midi_trigger - start / stop playback / capture with a MIDI device
* @ s : the AMDTP stream
* @ port : index of MIDI port
* @ midi : the MIDI device to be started , or % NULL to stop the current device
*
* Call this function on a running isochronous stream to enable the actual
* transmission of MIDI data . This function should be called from the MIDI
* device ' s . trigger callback .
*/
static inline void amdtp_stream_midi_trigger ( struct amdtp_stream * s ,
unsigned int port ,
struct snd_rawmidi_substream * midi )
{
if ( port < s - > midi_ports )
ACCESS_ONCE ( s - > midi [ port ] ) = midi ;
}
2011-03-15 07:53:21 +01:00
static inline bool cip_sfc_is_base_44100 ( enum cip_sfc sfc )
{
return sfc & 1 ;
}
2014-04-25 22:44:49 +09:00
static inline void amdtp_stream_set_sync ( enum cip_flags sync_mode ,
struct amdtp_stream * master ,
struct amdtp_stream * slave )
{
if ( sync_mode = = CIP_SYNC_TO_DEVICE ) {
master - > flags | = CIP_SYNC_TO_DEVICE ;
slave - > flags | = CIP_SYNC_TO_DEVICE ;
master - > sync_slave = slave ;
} else {
master - > flags & = ~ CIP_SYNC_TO_DEVICE ;
slave - > flags & = ~ CIP_SYNC_TO_DEVICE ;
master - > sync_slave = NULL ;
}
slave - > sync_slave = NULL ;
}
/**
* amdtp_stream_wait_callback - sleep till callbacked or timeout
* @ s : the AMDTP stream
* @ timeout : msec till timeout
*
* If this function return false , the AMDTP stream should be stopped .
*/
static inline bool amdtp_stream_wait_callback ( struct amdtp_stream * s ,
unsigned int timeout )
{
return wait_event_timeout ( s - > callback_wait ,
s - > callbacked = = true ,
msecs_to_jiffies ( timeout ) ) > 0 ;
}
2011-03-15 07:53:21 +01:00
# endif