2018-04-18 11:07:47 +03:00
=============================
Examining Process Page Tables
=============================
2008-06-05 22:46:59 -07:00
pagemap is a new (as of 2.6.25) set of interfaces in the kernel that allow
userspace programs to examine the page tables and related information by
2018-03-21 21:22:33 +02:00
reading files in `` /proc `` .
2008-06-05 22:46:59 -07:00
2015-09-09 15:35:38 -07:00
There are four components to pagemap:
2008-06-05 22:46:59 -07:00
2018-03-21 21:22:33 +02:00
* `` /proc/pid/pagemap `` . This file lets a userspace process find out which
2008-06-05 22:46:59 -07:00
physical frame each virtual page is mapped to. It contains one 64-bit
value for each virtual page, containing the following data (from
2018-04-18 11:07:46 +03:00
`` fs/proc/task_mmu.c `` , above pagemap_read):
2008-06-05 22:46:59 -07:00
2009-06-16 15:32:25 -07:00
* Bits 0-54 page frame number (PFN) if present
2008-06-05 22:46:59 -07:00
* Bits 0-4 swap type if swapped
2009-06-16 15:32:25 -07:00
* Bits 5-54 swap offset if swapped
2018-04-18 11:07:50 +03:00
* Bit 55 pte is soft-dirty (see
2023-02-01 11:41:56 +02:00
Documentation/admin-guide/mm/soft-dirty.rst)
2015-09-08 15:00:13 -07:00
* Bit 56 page exclusively mapped (since 4.2)
2021-06-30 18:49:09 -07:00
* Bit 57 pte is uffd-wp write-protected (since 5.13) (see
2023-02-01 11:41:56 +02:00
Documentation/admin-guide/mm/userfaultfd.rst)
2022-03-04 20:29:07 -08:00
* Bits 58-60 zero
2015-09-08 15:00:13 -07:00
* Bit 61 page is file-page or shared-anon (since 3.5)
2008-06-05 22:46:59 -07:00
* Bit 62 page swapped
* Bit 63 page present
2015-09-08 15:00:13 -07:00
Since Linux 4.0 only users with the CAP_SYS_ADMIN capability can get PFNs.
In 4.0 and 4.1 opens by unprivileged fail with -EPERM. Starting from
4.2 the PFN field is zeroed if the user does not have CAP_SYS_ADMIN.
Reason: information about PFNs helps in exploiting Rowhammer vulnerability.
2008-06-05 22:46:59 -07:00
If the page is not present but in swap, then the PFN contains an
encoding of the swap file number and the page's offset into the
swap. Unmapped pages return a null PFN. This allows determining
precisely which pages are mapped (or in swap) and comparing mapped
pages between processes.
2018-04-18 11:07:46 +03:00
Efficient users of this interface will use `` /proc/pid/maps `` to
2008-06-05 22:46:59 -07:00
determine which areas of memory are actually mapped and llseek to
skip over unmapped regions.
2018-03-21 21:22:33 +02:00
* `` /proc/kpagecount `` . This file contains a 64-bit count of the number of
2008-06-05 22:46:59 -07:00
times each page is mapped, indexed by PFN.
2023-01-03 18:07:52 +00:00
The page-types tool in the tools/mm directory can be used to query the
2018-08-17 15:44:59 -07:00
number of times a page is mapped.
2018-03-21 21:22:33 +02:00
* `` /proc/kpageflags `` . This file contains a 64-bit set of flags for each
2008-06-05 22:46:59 -07:00
page, indexed by PFN.
2018-03-21 21:22:33 +02:00
The flags are (from `` fs/proc/page.c `` , above kpageflags_read):
0. LOCKED
1. ERROR
2. REFERENCED
3. UPTODATE
4. DIRTY
5. LRU
6. ACTIVE
7. SLAB
8. WRITEBACK
9. RECLAIM
2008-06-05 22:46:59 -07:00
10. BUDDY
2009-06-16 15:32:26 -07:00
11. MMAP
12. ANON
13. SWAPCACHE
14. SWAPBACKED
15. COMPOUND_HEAD
16. COMPOUND_TAIL
2016-04-13 11:09:21 -04:00
17. HUGE
2009-06-16 15:32:26 -07:00
18. UNEVICTABLE
2009-10-07 16:32:27 -07:00
19. HWPOISON
2009-06-16 15:32:26 -07:00
20. NOPAGE
2009-10-07 16:32:28 -07:00
21. KSM
pagemap: document KPF_THP and make page-types aware of it
page-types, which is a common user of pagemap, gets aware of thp with this
patch. This helps system admins and kernel hackers know about how thp
works. Here is a sample output of page-types over a thp:
$ page-types -p <pid> --raw --list
voffset offset len flags
...
7f9d40200 3f8400 1 ___U_lA____Ma_bH______t____________
7f9d40201 3f8401 1ff ________________T_____t____________
flags page-count MB symbolic-flags long-symbolic-flags
0x0000000000410000 511 1 ________________T_____t____________ compound_tail,thp
0x000000000040d868 1 0 ___U_lA____Ma_bH______t____________ uptodate,lru,active,mmap,anonymous,swapbacked,compound_head,thp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:58 -07:00
22. THP
2019-03-05 15:42:23 -08:00
23. OFFLINE
2015-02-11 15:24:51 -08:00
24. ZERO_PAGE
2015-09-09 15:35:48 -07:00
25. IDLE
2019-03-05 15:42:23 -08:00
26. PGTABLE
2009-06-16 15:32:26 -07:00
2018-03-21 21:22:33 +02:00
* `` /proc/kpagecgroup `` . This file contains a 64-bit inode number of the
2015-09-09 15:35:38 -07:00
memory cgroup each page is charged to, indexed by PFN. Only available when
CONFIG_MEMCG is set.
2018-04-18 11:07:46 +03:00
Short descriptions to the page flags
====================================
2018-03-21 21:22:33 +02:00
0 - LOCKED
2021-11-05 13:48:19 -07:00
The page is being locked for exclusive access, e.g. by undergoing read/write
IO.
2018-03-21 21:22:33 +02:00
7 - SLAB
2021-11-05 13:48:19 -07:00
The page is managed by the SLAB/SLOB/SLUB/SLQB kernel memory allocator.
2018-03-21 21:22:33 +02:00
When compound page is used, SLUB/SLQB will only set this flag on the head
page; SLOB will not flag it at all.
10 - BUDDY
2021-11-05 13:48:19 -07:00
A free memory block managed by the buddy system allocator.
2009-06-16 15:32:26 -07:00
The buddy system organizes free memory in blocks of various orders.
An order N block has 2^N physically contiguous pages, with the BUDDY flag
set for and _only_ for the first page.
2018-03-21 21:22:33 +02:00
15 - COMPOUND_HEAD
2009-06-16 15:32:26 -07:00
A compound page with order N consists of 2^N physically contiguous pages.
A compound page with order 2 takes the form of "HTTT", where H donates its
head page and T donates its tail page(s). The major consumers of compound
2023-02-01 11:41:56 +02:00
pages are hugeTLB pages (Documentation/admin-guide/mm/hugetlbpage.rst),
2018-04-18 11:07:50 +03:00
the SLUB etc. memory allocators and various device drivers.
However in this interface, only huge/giga pages are made visible
to end users.
2018-03-21 21:22:33 +02:00
16 - COMPOUND_TAIL
A compound page tail (see description above).
17 - HUGE
2021-11-05 13:48:19 -07:00
This is an integral part of a HugeTLB page.
2018-03-21 21:22:33 +02:00
19 - HWPOISON
2021-11-05 13:48:19 -07:00
Hardware detected memory corruption on this page: don't touch the data!
2018-03-21 21:22:33 +02:00
20 - NOPAGE
2021-11-05 13:48:19 -07:00
No page frame exists at the requested address.
2018-03-21 21:22:33 +02:00
21 - KSM
2021-11-05 13:48:19 -07:00
Identical memory pages dynamically shared between one or more processes.
2018-03-21 21:22:33 +02:00
22 - THP
2021-11-05 13:48:19 -07:00
Contiguous pages which construct transparent hugepages.
2019-03-05 15:42:23 -08:00
23 - OFFLINE
2021-11-05 13:48:19 -07:00
The page is logically offline.
2018-03-21 21:22:33 +02:00
24 - ZERO_PAGE
2021-11-05 13:48:19 -07:00
Zero page for pfn_zero or huge_zero page.
2018-03-21 21:22:33 +02:00
25 - IDLE
2021-11-05 13:48:19 -07:00
The page has not been accessed since it was marked idle (see
2023-02-01 11:41:56 +02:00
Documentation/admin-guide/mm/idle_page_tracking.rst).
2018-04-18 11:07:50 +03:00
Note that this flag may be stale in case the page was accessed via
a PTE. To make sure the flag is up-to-date one has to read
`` /sys/kernel/mm/page_idle/bitmap `` first.
2019-03-05 15:42:23 -08:00
26 - PGTABLE
2021-11-05 13:48:19 -07:00
The page is in use as a page table.
2018-03-21 21:22:33 +02:00
IO related page flags
---------------------
1 - ERROR
2021-11-05 13:48:19 -07:00
IO error occurred.
2018-03-21 21:22:33 +02:00
3 - UPTODATE
2021-11-05 13:48:19 -07:00
The page has up-to-date data.
2018-03-21 21:22:33 +02:00
ie. for file backed page: (in-memory data revision >= on-disk one)
4 - DIRTY
2021-11-05 13:48:19 -07:00
The page has been written to, hence contains new data.
2018-04-18 11:07:46 +03:00
i.e. for file backed page: (in-memory data revision > on-disk one)
2018-03-21 21:22:33 +02:00
8 - WRITEBACK
2021-11-05 13:48:19 -07:00
The page is being synced to disk.
2018-03-21 21:22:33 +02:00
LRU related page flags
----------------------
5 - LRU
2021-11-05 13:48:19 -07:00
The page is in one of the LRU lists.
2018-03-21 21:22:33 +02:00
6 - ACTIVE
2021-11-05 13:48:19 -07:00
The page is in the active LRU list.
2018-03-21 21:22:33 +02:00
18 - UNEVICTABLE
2021-11-05 13:48:19 -07:00
The page is in the unevictable (non-)LRU list It is somehow pinned and
2018-04-18 11:07:46 +03:00
not a candidate for LRU page reclaims, e.g. ramfs pages,
2021-11-05 13:48:19 -07:00
shmctl(SHM_LOCK) and mlock() memory segments.
2018-03-21 21:22:33 +02:00
2 - REFERENCED
2021-11-05 13:48:19 -07:00
The page has been referenced since last LRU list enqueue/requeue.
2018-03-21 21:22:33 +02:00
9 - RECLAIM
2021-11-05 13:48:19 -07:00
The page will be reclaimed soon after its pageout IO completed.
2018-03-21 21:22:33 +02:00
11 - MMAP
2021-11-05 13:48:19 -07:00
A memory mapped page.
2018-03-21 21:22:33 +02:00
12 - ANON
2021-11-05 13:48:19 -07:00
A memory mapped page that is not part of a file.
2018-03-21 21:22:33 +02:00
13 - SWAPCACHE
2021-11-05 13:48:19 -07:00
The page is mapped to swap space, i.e. has an associated swap entry.
2018-03-21 21:22:33 +02:00
14 - SWAPBACKED
2021-11-05 13:48:19 -07:00
The page is backed by swap/RAM.
2009-06-16 15:32:26 -07:00
2023-01-03 18:07:52 +00:00
The page-types tool in the tools/mm directory can be used to query the
2015-04-10 15:00:02 -06:00
above flags.
2008-06-05 22:46:59 -07:00
2018-03-21 21:22:33 +02:00
Using pagemap to do something useful
====================================
2008-06-05 22:46:59 -07:00
The general procedure for using pagemap to find out about a process' memory
usage goes like this:
2018-03-21 21:22:33 +02:00
1. Read `` /proc/pid/maps `` to determine which parts of the memory space are
2008-06-05 22:46:59 -07:00
mapped to what.
2. Select the maps you are interested in -- all of them, or a particular
library, or the stack or the heap, etc.
2018-03-21 21:22:33 +02:00
3. Open `` /proc/pid/pagemap `` and seek to the pages you would like to examine.
2008-06-05 22:46:59 -07:00
4. Read a u64 for each page from pagemap.
2018-03-21 21:22:33 +02:00
5. Open `` /proc/kpagecount `` and/or `` /proc/kpageflags `` . For each PFN you
just read, seek to that entry in the file, and read the data you want.
2008-06-05 22:46:59 -07:00
For example, to find the "unique set size" (USS), which is the amount of
memory that a process is using that is not shared with any other process,
you can go through every map in the process, find the PFNs, look those up
in kpagecount, and tally up the number of pages that are only referenced
once.
2021-11-05 13:38:44 -07:00
Exceptions for Shared Memory
============================
Page table entries for shared pages are cleared when the pages are zapped or
swapped out. This makes swapped out pages indistinguishable from never-allocated
ones.
In kernel space, the swap location can still be retrieved from the page cache.
However, values stored only on the normal PTE get lost irretrievably when the
page is swapped out (i.e. SOFT_DIRTY).
In user space, whether the page is present, swapped or none can be deduced with
the help of lseek and/or mincore system calls.
lseek() can differentiate between accessed pages (present or swapped out) and
holes (none/non-allocated) by specifying the SEEK_DATA flag on the file where
the pages are backed. For anonymous shared pages, the file can be found in
`` /proc/pid/map_files/ `` .
mincore() can differentiate between pages in memory (present, including swap
cache) and out of memory (swapped out or none/non-allocated).
2018-03-21 21:22:33 +02:00
Other notes
===========
2008-06-05 22:46:59 -07:00
Reading from any of the files will return -EINVAL if you are not starting
2013-05-08 16:56:16 -07:00
the read on an 8-byte boundary (e.g., if you sought an odd number of bytes
2008-06-05 22:46:59 -07:00
into the file), or if the size of the read is not a multiple of 8 bytes.
2015-09-08 15:00:13 -07:00
Before Linux 3.11 pagemap bits 55-60 were used for "page-shift" (which is
always 12 at most architectures). Since Linux 3.11 their meaning changes
after first clear of soft-dirty bits. Since Linux 4.2 they are used for
flags unconditionally.