linux/drivers/scsi/scsi_transport_spi.c

1610 lines
44 KiB
C
Raw Normal View History

/*
* Parallel SCSI (SPI) transport specific attributes exported to sysfs.
*
* Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
* Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <scsi/scsi.h>
#include "scsi_priv.h"
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_spi.h>
#define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
#define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
* on" attributes */
#define SPI_HOST_ATTRS 1
#define SPI_MAX_ECHO_BUFFER_SIZE 4096
#define DV_LOOPS 3
#define DV_TIMEOUT (10*HZ)
#define DV_RETRIES 3 /* should only need at most
* two cc/ua clears */
/* Our blacklist flags */
enum {
SPI_BLIST_NOIUS = 0x1,
};
/* blacklist table, modelled on scsi_devinfo.c */
static struct {
char *vendor;
char *model;
unsigned flags;
} spi_static_device_list[] __initdata = {
{"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
{"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
{NULL, NULL, 0}
};
/* Private data accessors (keep these out of the header file) */
#define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
#define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
struct spi_internal {
struct scsi_transport_template t;
struct spi_function_template *f;
};
#define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
static const int ppr_to_ps[] = {
/* The PPR values 0-6 are reserved, fill them in when
* the committee defines them */
-1, /* 0x00 */
-1, /* 0x01 */
-1, /* 0x02 */
-1, /* 0x03 */
-1, /* 0x04 */
-1, /* 0x05 */
-1, /* 0x06 */
3125, /* 0x07 */
6250, /* 0x08 */
12500, /* 0x09 */
25000, /* 0x0a */
30300, /* 0x0b */
50000, /* 0x0c */
};
/* The PPR values at which you calculate the period in ns by multiplying
* by 4 */
#define SPI_STATIC_PPR 0x0c
static int sprint_frac(char *dest, int value, int denom)
{
int frac = value % denom;
int result = sprintf(dest, "%d", value / denom);
if (frac == 0)
return result;
dest[result++] = '.';
do {
denom /= 10;
sprintf(dest + result, "%d", frac / denom);
result++;
frac %= denom;
} while (frac);
dest[result++] = '\0';
return result;
}
static int spi_execute(struct scsi_device *sdev, const void *cmd,
enum dma_data_direction dir,
void *buffer, unsigned bufflen,
struct scsi_sense_hdr *sshdr)
{
int i, result;
unsigned char sense[SCSI_SENSE_BUFFERSIZE];
for(i = 0; i < DV_RETRIES; i++) {
result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
sense, DV_TIMEOUT, /* retries */ 1,
REQ_FAILFAST_DEV |
REQ_FAILFAST_TRANSPORT |
REQ_FAILFAST_DRIVER,
NULL);
if (driver_byte(result) & DRIVER_SENSE) {
struct scsi_sense_hdr sshdr_tmp;
if (!sshdr)
sshdr = &sshdr_tmp;
if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
sshdr)
&& sshdr->sense_key == UNIT_ATTENTION)
continue;
}
break;
}
return result;
}
static struct {
enum spi_signal_type value;
char *name;
} signal_types[] = {
{ SPI_SIGNAL_UNKNOWN, "unknown" },
{ SPI_SIGNAL_SE, "SE" },
{ SPI_SIGNAL_LVD, "LVD" },
{ SPI_SIGNAL_HVD, "HVD" },
};
static inline const char *spi_signal_to_string(enum spi_signal_type type)
{
int i;
for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
if (type == signal_types[i].value)
return signal_types[i].name;
}
return NULL;
}
static inline enum spi_signal_type spi_signal_to_value(const char *name)
{
int i, len;
for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
len = strlen(signal_types[i].name);
if (strncmp(name, signal_types[i].name, len) == 0 &&
(name[len] == '\n' || name[len] == '\0'))
return signal_types[i].value;
}
return SPI_SIGNAL_UNKNOWN;
}
static int spi_host_setup(struct transport_container *tc, struct device *dev,
struct device *cdev)
{
struct Scsi_Host *shost = dev_to_shost(dev);
spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
return 0;
}
static int spi_host_configure(struct transport_container *tc,
struct device *dev,
struct device *cdev);
static DECLARE_TRANSPORT_CLASS(spi_host_class,
"spi_host",
spi_host_setup,
NULL,
spi_host_configure);
static int spi_host_match(struct attribute_container *cont,
struct device *dev)
{
struct Scsi_Host *shost;
if (!scsi_is_host_device(dev))
return 0;
shost = dev_to_shost(dev);
if (!shost->transportt || shost->transportt->host_attrs.ac.class
!= &spi_host_class.class)
return 0;
return &shost->transportt->host_attrs.ac == cont;
}
static int spi_target_configure(struct transport_container *tc,
struct device *dev,
struct device *cdev);
static int spi_device_configure(struct transport_container *tc,
struct device *dev,
struct device *cdev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct scsi_target *starget = sdev->sdev_target;
unsigned bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
&sdev->inquiry[16],
SCSI_DEVINFO_SPI);
/* Populate the target capability fields with the values
* gleaned from the device inquiry */
spi_support_sync(starget) = scsi_device_sync(sdev);
spi_support_wide(starget) = scsi_device_wide(sdev);
spi_support_dt(starget) = scsi_device_dt(sdev);
spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
spi_support_ius(starget) = scsi_device_ius(sdev);
if (bflags & SPI_BLIST_NOIUS) {
dev_info(dev, "Information Units disabled by blacklist\n");
spi_support_ius(starget) = 0;
}
spi_support_qas(starget) = scsi_device_qas(sdev);
return 0;
}
static int spi_setup_transport_attrs(struct transport_container *tc,
struct device *dev,
struct device *cdev)
{
struct scsi_target *starget = to_scsi_target(dev);
spi_period(starget) = -1; /* illegal value */
spi_min_period(starget) = 0;
spi_offset(starget) = 0; /* async */
spi_max_offset(starget) = 255;
spi_width(starget) = 0; /* narrow */
spi_max_width(starget) = 1;
spi_iu(starget) = 0; /* no IU */
spi_max_iu(starget) = 1;
spi_dt(starget) = 0; /* ST */
spi_qas(starget) = 0;
spi_max_qas(starget) = 1;
spi_wr_flow(starget) = 0;
spi_rd_strm(starget) = 0;
spi_rti(starget) = 0;
spi_pcomp_en(starget) = 0;
spi_hold_mcs(starget) = 0;
spi_dv_pending(starget) = 0;
spi_dv_in_progress(starget) = 0;
spi_initial_dv(starget) = 0;
mutex_init(&spi_dv_mutex(starget));
return 0;
}
#define spi_transport_show_simple(field, format_string) \
\
static ssize_t \
show_spi_transport_##field(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct scsi_target *starget = transport_class_to_starget(dev); \
struct spi_transport_attrs *tp; \
\
tp = (struct spi_transport_attrs *)&starget->starget_data; \
return snprintf(buf, 20, format_string, tp->field); \
}
#define spi_transport_store_simple(field, format_string) \
\
static ssize_t \
store_spi_transport_##field(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
int val; \
struct scsi_target *starget = transport_class_to_starget(dev); \
struct spi_transport_attrs *tp; \
\
tp = (struct spi_transport_attrs *)&starget->starget_data; \
val = simple_strtoul(buf, NULL, 0); \
tp->field = val; \
return count; \
}
#define spi_transport_show_function(field, format_string) \
\
static ssize_t \
show_spi_transport_##field(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct scsi_target *starget = transport_class_to_starget(dev); \
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
struct spi_transport_attrs *tp; \
struct spi_internal *i = to_spi_internal(shost->transportt); \
tp = (struct spi_transport_attrs *)&starget->starget_data; \
if (i->f->get_##field) \
i->f->get_##field(starget); \
return snprintf(buf, 20, format_string, tp->field); \
}
#define spi_transport_store_function(field, format_string) \
static ssize_t \
store_spi_transport_##field(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
int val; \
struct scsi_target *starget = transport_class_to_starget(dev); \
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
struct spi_internal *i = to_spi_internal(shost->transportt); \
\
if (!i->f->set_##field) \
return -EINVAL; \
val = simple_strtoul(buf, NULL, 0); \
i->f->set_##field(starget, val); \
return count; \
}
#define spi_transport_store_max(field, format_string) \
static ssize_t \
store_spi_transport_##field(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
int val; \
struct scsi_target *starget = transport_class_to_starget(dev); \
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
struct spi_internal *i = to_spi_internal(shost->transportt); \
struct spi_transport_attrs *tp \
= (struct spi_transport_attrs *)&starget->starget_data; \
\
if (i->f->set_##field) \
return -EINVAL; \
val = simple_strtoul(buf, NULL, 0); \
if (val > tp->max_##field) \
val = tp->max_##field; \
i->f->set_##field(starget, val); \
return count; \
}
#define spi_transport_rd_attr(field, format_string) \
spi_transport_show_function(field, format_string) \
spi_transport_store_function(field, format_string) \
static DEVICE_ATTR(field, S_IRUGO, \
show_spi_transport_##field, \
store_spi_transport_##field);
#define spi_transport_simple_attr(field, format_string) \
spi_transport_show_simple(field, format_string) \
spi_transport_store_simple(field, format_string) \
static DEVICE_ATTR(field, S_IRUGO, \
show_spi_transport_##field, \
store_spi_transport_##field);
#define spi_transport_max_attr(field, format_string) \
spi_transport_show_function(field, format_string) \
spi_transport_store_max(field, format_string) \
spi_transport_simple_attr(max_##field, format_string) \
static DEVICE_ATTR(field, S_IRUGO, \
show_spi_transport_##field, \
store_spi_transport_##field);
/* The Parallel SCSI Tranport Attributes: */
spi_transport_max_attr(offset, "%d\n");
spi_transport_max_attr(width, "%d\n");
spi_transport_max_attr(iu, "%d\n");
spi_transport_rd_attr(dt, "%d\n");
spi_transport_max_attr(qas, "%d\n");
spi_transport_rd_attr(wr_flow, "%d\n");
spi_transport_rd_attr(rd_strm, "%d\n");
spi_transport_rd_attr(rti, "%d\n");
spi_transport_rd_attr(pcomp_en, "%d\n");
spi_transport_rd_attr(hold_mcs, "%d\n");
/* we only care about the first child device that's a real SCSI device
* so we return 1 to terminate the iteration when we find it */
static int child_iter(struct device *dev, void *data)
{
if (!scsi_is_sdev_device(dev))
return 0;
spi_dv_device(to_scsi_device(dev));
return 1;
}
static ssize_t
store_spi_revalidate(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_target *starget = transport_class_to_starget(dev);
device_for_each_child(&starget->dev, NULL, child_iter);
return count;
}
static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
/* Translate the period into ns according to the current spec
* for SDTR/PPR messages */
static int period_to_str(char *buf, int period)
{
int len, picosec;
if (period < 0 || period > 0xff) {
picosec = -1;
} else if (period <= SPI_STATIC_PPR) {
picosec = ppr_to_ps[period];
} else {
picosec = period * 4000;
}
if (picosec == -1) {
len = sprintf(buf, "reserved");
} else {
len = sprint_frac(buf, picosec, 1000);
}
return len;
}
static ssize_t
show_spi_transport_period_helper(char *buf, int period)
{
int len = period_to_str(buf, period);
buf[len++] = '\n';
buf[len] = '\0';
return len;
}
static ssize_t
store_spi_transport_period_helper(struct device *dev, const char *buf,
size_t count, int *periodp)
{
int j, picosec, period = -1;
char *endp;
picosec = simple_strtoul(buf, &endp, 10) * 1000;
if (*endp == '.') {
int mult = 100;
do {
endp++;
if (!isdigit(*endp))
break;
picosec += (*endp - '0') * mult;
mult /= 10;
} while (mult > 0);
}
for (j = 0; j <= SPI_STATIC_PPR; j++) {
if (ppr_to_ps[j] < picosec)
continue;
period = j;
break;
}
if (period == -1)
period = picosec / 4000;
if (period > 0xff)
period = 0xff;
*periodp = period;
return count;
}
static ssize_t
show_spi_transport_period(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_target *starget = transport_class_to_starget(dev);
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct spi_internal *i = to_spi_internal(shost->transportt);
struct spi_transport_attrs *tp =
(struct spi_transport_attrs *)&starget->starget_data;
if (i->f->get_period)
i->f->get_period(starget);
return show_spi_transport_period_helper(buf, tp->period);
}
static ssize_t
store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_target *starget = transport_class_to_starget(cdev);
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct spi_internal *i = to_spi_internal(shost->transportt);
struct spi_transport_attrs *tp =
(struct spi_transport_attrs *)&starget->starget_data;
int period, retval;
if (!i->f->set_period)
return -EINVAL;
retval = store_spi_transport_period_helper(cdev, buf, count, &period);
if (period < tp->min_period)
period = tp->min_period;
i->f->set_period(starget, period);
return retval;
}
static DEVICE_ATTR(period, S_IRUGO,
show_spi_transport_period,
store_spi_transport_period);
static ssize_t
show_spi_transport_min_period(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct scsi_target *starget = transport_class_to_starget(cdev);
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct spi_internal *i = to_spi_internal(shost->transportt);
struct spi_transport_attrs *tp =
(struct spi_transport_attrs *)&starget->starget_data;
if (!i->f->set_period)
return -EINVAL;
return show_spi_transport_period_helper(buf, tp->min_period);
}
static ssize_t
store_spi_transport_min_period(struct device *cdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_target *starget = transport_class_to_starget(cdev);
struct spi_transport_attrs *tp =
(struct spi_transport_attrs *)&starget->starget_data;
return store_spi_transport_period_helper(cdev, buf, count,
&tp->min_period);
}
static DEVICE_ATTR(min_period, S_IRUGO,
show_spi_transport_min_period,
store_spi_transport_min_period);
static ssize_t show_spi_host_signalling(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = transport_class_to_shost(cdev);
struct spi_internal *i = to_spi_internal(shost->transportt);
if (i->f->get_signalling)
i->f->get_signalling(shost);
return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
}
static ssize_t store_spi_host_signalling(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = transport_class_to_shost(dev);
struct spi_internal *i = to_spi_internal(shost->transportt);
enum spi_signal_type type = spi_signal_to_value(buf);
if (!i->f->set_signalling)
return -EINVAL;
if (type != SPI_SIGNAL_UNKNOWN)
i->f->set_signalling(shost, type);
return count;
}
static DEVICE_ATTR(signalling, S_IRUGO,
show_spi_host_signalling,
store_spi_host_signalling);
static ssize_t show_spi_host_width(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = transport_class_to_shost(cdev);
return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
}
static DEVICE_ATTR(host_width, S_IRUGO,
show_spi_host_width, NULL);
static ssize_t show_spi_host_hba_id(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = transport_class_to_shost(cdev);
return sprintf(buf, "%d\n", shost->this_id);
}
static DEVICE_ATTR(hba_id, S_IRUGO,
show_spi_host_hba_id, NULL);
#define DV_SET(x, y) \
if(i->f->set_##x) \
i->f->set_##x(sdev->sdev_target, y)
enum spi_compare_returns {
SPI_COMPARE_SUCCESS,
SPI_COMPARE_FAILURE,
SPI_COMPARE_SKIP_TEST,
};
/* This is for read/write Domain Validation: If the device supports
* an echo buffer, we do read/write tests to it */
static enum spi_compare_returns
spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
u8 *ptr, const int retries)
{
int len = ptr - buffer;
int j, k, r, result;
unsigned int pattern = 0x0000ffff;
struct scsi_sense_hdr sshdr;
const char spi_write_buffer[] = {
WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
};
const char spi_read_buffer[] = {
READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
};
/* set up the pattern buffer. Doesn't matter if we spill
* slightly beyond since that's where the read buffer is */
for (j = 0; j < len; ) {
/* fill the buffer with counting (test a) */
for ( ; j < min(len, 32); j++)
buffer[j] = j;
k = j;
/* fill the buffer with alternating words of 0x0 and
* 0xffff (test b) */
for ( ; j < min(len, k + 32); j += 2) {
u16 *word = (u16 *)&buffer[j];
*word = (j & 0x02) ? 0x0000 : 0xffff;
}
k = j;
/* fill with crosstalk (alternating 0x5555 0xaaa)
* (test c) */
for ( ; j < min(len, k + 32); j += 2) {
u16 *word = (u16 *)&buffer[j];
*word = (j & 0x02) ? 0x5555 : 0xaaaa;
}
k = j;
/* fill with shifting bits (test d) */
for ( ; j < min(len, k + 32); j += 4) {
u32 *word = (unsigned int *)&buffer[j];
u32 roll = (pattern & 0x80000000) ? 1 : 0;
*word = pattern;
pattern = (pattern << 1) | roll;
}
/* don't bother with random data (test e) */
}
for (r = 0; r < retries; r++) {
result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
buffer, len, &sshdr);
if(result || !scsi_device_online(sdev)) {
scsi_device_set_state(sdev, SDEV_QUIESCE);
if (scsi_sense_valid(&sshdr)
&& sshdr.sense_key == ILLEGAL_REQUEST
/* INVALID FIELD IN CDB */
&& sshdr.asc == 0x24 && sshdr.ascq == 0x00)
/* This would mean that the drive lied
* to us about supporting an echo
* buffer (unfortunately some Western
* Digital drives do precisely this)
*/
return SPI_COMPARE_SKIP_TEST;
sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
return SPI_COMPARE_FAILURE;
}
memset(ptr, 0, len);
spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
ptr, len, NULL);
scsi_device_set_state(sdev, SDEV_QUIESCE);
if (memcmp(buffer, ptr, len) != 0)
return SPI_COMPARE_FAILURE;
}
return SPI_COMPARE_SUCCESS;
}
/* This is for the simplest form of Domain Validation: a read test
* on the inquiry data from the device */
static enum spi_compare_returns
spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
u8 *ptr, const int retries)
{
int r, result;
const int len = sdev->inquiry_len;
const char spi_inquiry[] = {
INQUIRY, 0, 0, 0, len, 0
};
for (r = 0; r < retries; r++) {
memset(ptr, 0, len);
result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
ptr, len, NULL);
if(result || !scsi_device_online(sdev)) {
scsi_device_set_state(sdev, SDEV_QUIESCE);
return SPI_COMPARE_FAILURE;
}
/* If we don't have the inquiry data already, the
* first read gets it */
if (ptr == buffer) {
ptr += len;
--r;
continue;
}
if (memcmp(buffer, ptr, len) != 0)
/* failure */
return SPI_COMPARE_FAILURE;
}
return SPI_COMPARE_SUCCESS;
}
static enum spi_compare_returns
spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
enum spi_compare_returns
(*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
{
struct spi_internal *i = to_spi_internal(sdev->host->transportt);
struct scsi_target *starget = sdev->sdev_target;
int period = 0, prevperiod = 0;
enum spi_compare_returns retval;
for (;;) {
int newperiod;
retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
if (retval == SPI_COMPARE_SUCCESS
|| retval == SPI_COMPARE_SKIP_TEST)
break;
/* OK, retrain, fallback */
if (i->f->get_iu)
i->f->get_iu(starget);
if (i->f->get_qas)
i->f->get_qas(starget);
if (i->f->get_period)
i->f->get_period(sdev->sdev_target);
/* Here's the fallback sequence; first try turning off
* IU, then QAS (if we can control them), then finally
* fall down the periods */
if (i->f->set_iu && spi_iu(starget)) {
starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
DV_SET(iu, 0);
} else if (i->f->set_qas && spi_qas(starget)) {
starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
DV_SET(qas, 0);
} else {
newperiod = spi_period(starget);
period = newperiod > period ? newperiod : period;
if (period < 0x0d)
period++;
else
period += period >> 1;
if (unlikely(period > 0xff || period == prevperiod)) {
/* Total failure; set to async and return */
starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
DV_SET(offset, 0);
return SPI_COMPARE_FAILURE;
}
starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
DV_SET(period, period);
prevperiod = period;
}
}
return retval;
}
static int
spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
{
int l, result;
/* first off do a test unit ready. This can error out
* because of reservations or some other reason. If it
* fails, the device won't let us write to the echo buffer
* so just return failure */
const char spi_test_unit_ready[] = {
TEST_UNIT_READY, 0, 0, 0, 0, 0
};
const char spi_read_buffer_descriptor[] = {
READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
};
/* We send a set of three TURs to clear any outstanding
* unit attention conditions if they exist (Otherwise the
* buffer tests won't be happy). If the TUR still fails
* (reservation conflict, device not ready, etc) just
* skip the write tests */
for (l = 0; ; l++) {
result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
NULL, 0, NULL);
if(result) {
if(l >= 3)
return 0;
} else {
/* TUR succeeded */
break;
}
}
result = spi_execute(sdev, spi_read_buffer_descriptor,
DMA_FROM_DEVICE, buffer, 4, NULL);
if (result)
/* Device has no echo buffer */
return 0;
return buffer[3] + ((buffer[2] & 0x1f) << 8);
}
static void
spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
{
struct spi_internal *i = to_spi_internal(sdev->host->transportt);
struct scsi_target *starget = sdev->sdev_target;
struct Scsi_Host *shost = sdev->host;
int len = sdev->inquiry_len;
int min_period = spi_min_period(starget);
int max_width = spi_max_width(starget);
/* first set us up for narrow async */
DV_SET(offset, 0);
DV_SET(width, 0);
if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
!= SPI_COMPARE_SUCCESS) {
starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
/* FIXME: should probably offline the device here? */
return;
}
if (!spi_support_wide(starget)) {
spi_max_width(starget) = 0;
max_width = 0;
}
/* test width */
if (i->f->set_width && max_width) {
i->f->set_width(starget, 1);
if (spi_dv_device_compare_inquiry(sdev, buffer,
buffer + len,
DV_LOOPS)
!= SPI_COMPARE_SUCCESS) {
starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
i->f->set_width(starget, 0);
/* Make sure we don't force wide back on by asking
* for a transfer period that requires it */
max_width = 0;
if (min_period < 10)
min_period = 10;
}
}
if (!i->f->set_period)
return;
/* device can't handle synchronous */
if (!spi_support_sync(starget) && !spi_support_dt(starget))
return;
/* len == -1 is the signal that we need to ascertain the
* presence of an echo buffer before trying to use it. len ==
* 0 means we don't have an echo buffer */
len = -1;
retry:
/* now set up to the maximum */
DV_SET(offset, spi_max_offset(starget));
DV_SET(period, min_period);
/* try QAS requests; this should be harmless to set if the
* target supports it */
if (spi_support_qas(starget) && spi_max_qas(starget)) {
DV_SET(qas, 1);
} else {
DV_SET(qas, 0);
}
if (spi_support_ius(starget) && spi_max_iu(starget) &&
min_period < 9) {
/* This u320 (or u640). Set IU transfers */
DV_SET(iu, 1);
/* Then set the optional parameters */
DV_SET(rd_strm, 1);
DV_SET(wr_flow, 1);
DV_SET(rti, 1);
if (min_period == 8)
DV_SET(pcomp_en, 1);
} else {
DV_SET(iu, 0);
}
/* now that we've done all this, actually check the bus
* signal type (if known). Some devices are stupid on
* a SE bus and still claim they can try LVD only settings */
if (i->f->get_signalling)
i->f->get_signalling(shost);
if (spi_signalling(shost) == SPI_SIGNAL_SE ||
spi_signalling(shost) == SPI_SIGNAL_HVD ||
!spi_support_dt(starget)) {
DV_SET(dt, 0);
} else {
DV_SET(dt, 1);
}
/* set width last because it will pull all the other
* parameters down to required values */
DV_SET(width, max_width);
/* Do the read only INQUIRY tests */
spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
spi_dv_device_compare_inquiry);
/* See if we actually managed to negotiate and sustain DT */
if (i->f->get_dt)
i->f->get_dt(starget);
/* see if the device has an echo buffer. If it does we can do
* the SPI pattern write tests. Because of some broken
* devices, we *only* try this on a device that has actually
* negotiated DT */
if (len == -1 && spi_dt(starget))
len = spi_dv_device_get_echo_buffer(sdev, buffer);
if (len <= 0) {
starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
return;
}
if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
len = SPI_MAX_ECHO_BUFFER_SIZE;
}
if (spi_dv_retrain(sdev, buffer, buffer + len,
spi_dv_device_echo_buffer)
== SPI_COMPARE_SKIP_TEST) {
/* OK, the stupid drive can't do a write echo buffer
* test after all, fall back to the read tests */
len = 0;
goto retry;
}
}
/** spi_dv_device - Do Domain Validation on the device
* @sdev: scsi device to validate
*
* Performs the domain validation on the given device in the
* current execution thread. Since DV operations may sleep,
* the current thread must have user context. Also no SCSI
* related locks that would deadlock I/O issued by the DV may
* be held.
*/
void
spi_dv_device(struct scsi_device *sdev)
{
struct scsi_target *starget = sdev->sdev_target;
u8 *buffer;
const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
if (unlikely(scsi_device_get(sdev)))
return;
if (unlikely(spi_dv_in_progress(starget)))
return;
spi_dv_in_progress(starget) = 1;
buffer = kzalloc(len, GFP_KERNEL);
if (unlikely(!buffer))
goto out_put;
/* We need to verify that the actual device will quiesce; the
* later target quiesce is just a nice to have */
if (unlikely(scsi_device_quiesce(sdev)))
goto out_free;
scsi_target_quiesce(starget);
spi_dv_pending(starget) = 1;
mutex_lock(&spi_dv_mutex(starget));
starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
spi_dv_device_internal(sdev, buffer);
starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
mutex_unlock(&spi_dv_mutex(starget));
spi_dv_pending(starget) = 0;
scsi_target_resume(starget);
spi_initial_dv(starget) = 1;
out_free:
kfree(buffer);
out_put:
spi_dv_in_progress(starget) = 0;
scsi_device_put(sdev);
}
EXPORT_SYMBOL(spi_dv_device);
struct work_queue_wrapper {
struct work_struct work;
struct scsi_device *sdev;
};
static void
spi_dv_device_work_wrapper(struct work_struct *work)
{
struct work_queue_wrapper *wqw =
container_of(work, struct work_queue_wrapper, work);
struct scsi_device *sdev = wqw->sdev;
kfree(wqw);
spi_dv_device(sdev);
spi_dv_pending(sdev->sdev_target) = 0;
scsi_device_put(sdev);
}
/**
* spi_schedule_dv_device - schedule domain validation to occur on the device
* @sdev: The device to validate
*
* Identical to spi_dv_device() above, except that the DV will be
* scheduled to occur in a workqueue later. All memory allocations
* are atomic, so may be called from any context including those holding
* SCSI locks.
*/
void
spi_schedule_dv_device(struct scsi_device *sdev)
{
struct work_queue_wrapper *wqw =
kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
if (unlikely(!wqw))
return;
if (unlikely(spi_dv_pending(sdev->sdev_target))) {
kfree(wqw);
return;
}
/* Set pending early (dv_device doesn't check it, only sets it) */
spi_dv_pending(sdev->sdev_target) = 1;
if (unlikely(scsi_device_get(sdev))) {
kfree(wqw);
spi_dv_pending(sdev->sdev_target) = 0;
return;
}
INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
wqw->sdev = sdev;
schedule_work(&wqw->work);
}
EXPORT_SYMBOL(spi_schedule_dv_device);
/**
* spi_display_xfer_agreement - Print the current target transfer agreement
* @starget: The target for which to display the agreement
*
* Each SPI port is required to maintain a transfer agreement for each
* other port on the bus. This function prints a one-line summary of
* the current agreement; more detailed information is available in sysfs.
*/
void spi_display_xfer_agreement(struct scsi_target *starget)
{
struct spi_transport_attrs *tp;
tp = (struct spi_transport_attrs *)&starget->starget_data;
if (tp->offset > 0 && tp->period > 0) {
unsigned int picosec, kb100;
char *scsi = "FAST-?";
char tmp[8];
if (tp->period <= SPI_STATIC_PPR) {
picosec = ppr_to_ps[tp->period];
switch (tp->period) {
case 7: scsi = "FAST-320"; break;
case 8: scsi = "FAST-160"; break;
case 9: scsi = "FAST-80"; break;
case 10:
case 11: scsi = "FAST-40"; break;
case 12: scsi = "FAST-20"; break;
}
} else {
picosec = tp->period * 4000;
if (tp->period < 25)
scsi = "FAST-20";
else if (tp->period < 50)
scsi = "FAST-10";
else
scsi = "FAST-5";
}
kb100 = (10000000 + picosec / 2) / picosec;
if (tp->width)
kb100 *= 2;
sprint_frac(tmp, picosec, 1000);
dev_info(&starget->dev,
"%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
tp->dt ? "DT" : "ST",
tp->iu ? " IU" : "",
tp->qas ? " QAS" : "",
tp->rd_strm ? " RDSTRM" : "",
tp->rti ? " RTI" : "",
tp->wr_flow ? " WRFLOW" : "",
tp->pcomp_en ? " PCOMP" : "",
tp->hold_mcs ? " HMCS" : "",
tmp, tp->offset);
} else {
dev_info(&starget->dev, "%sasynchronous\n",
tp->width ? "wide " : "");
}
}
EXPORT_SYMBOL(spi_display_xfer_agreement);
int spi_populate_width_msg(unsigned char *msg, int width)
{
msg[0] = EXTENDED_MESSAGE;
msg[1] = 2;
msg[2] = EXTENDED_WDTR;
msg[3] = width;
return 4;
}
EXPORT_SYMBOL_GPL(spi_populate_width_msg);
int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
{
msg[0] = EXTENDED_MESSAGE;
msg[1] = 3;
msg[2] = EXTENDED_SDTR;
msg[3] = period;
msg[4] = offset;
return 5;
}
EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
int width, int options)
{
msg[0] = EXTENDED_MESSAGE;
msg[1] = 6;
msg[2] = EXTENDED_PPR;
msg[3] = period;
msg[4] = 0;
msg[5] = offset;
msg[6] = width;
msg[7] = options;
return 8;
}
EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
#ifdef CONFIG_SCSI_CONSTANTS
static const char * const one_byte_msgs[] = {
/* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
/* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
/* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
/* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
/* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
/* 0x0f */ "Initiate Recovery", "Release Recovery",
/* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
/* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
};
static const char * const two_byte_msgs[] = {
/* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
/* 0x23 */ "Ignore Wide Residue", "ACA"
};
static const char * const extended_msgs[] = {
/* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
/* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
/* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
};
static void print_nego(const unsigned char *msg, int per, int off, int width)
{
if (per) {
char buf[20];
period_to_str(buf, msg[per]);
printk("period = %s ns ", buf);
}
if (off)
printk("offset = %d ", msg[off]);
if (width)
printk("width = %d ", 8 << msg[width]);
}
static void print_ptr(const unsigned char *msg, int msb, const char *desc)
{
int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
msg[msb+3];
printk("%s = %d ", desc, ptr);
}
int spi_print_msg(const unsigned char *msg)
{
int len = 1, i;
if (msg[0] == EXTENDED_MESSAGE) {
len = 2 + msg[1];
if (len == 2)
len += 256;
if (msg[2] < ARRAY_SIZE(extended_msgs))
printk ("%s ", extended_msgs[msg[2]]);
else
printk ("Extended Message, reserved code (0x%02x) ",
(int) msg[2]);
switch (msg[2]) {
case EXTENDED_MODIFY_DATA_POINTER:
print_ptr(msg, 3, "pointer");
break;
case EXTENDED_SDTR:
print_nego(msg, 3, 4, 0);
break;
case EXTENDED_WDTR:
print_nego(msg, 0, 0, 3);
break;
case EXTENDED_PPR:
print_nego(msg, 3, 5, 6);
break;
case EXTENDED_MODIFY_BIDI_DATA_PTR:
print_ptr(msg, 3, "out");
print_ptr(msg, 7, "in");
break;
default:
for (i = 2; i < len; ++i)
printk("%02x ", msg[i]);
}
/* Identify */
} else if (msg[0] & 0x80) {
printk("Identify disconnect %sallowed %s %d ",
(msg[0] & 0x40) ? "" : "not ",
(msg[0] & 0x20) ? "target routine" : "lun",
msg[0] & 0x7);
/* Normal One byte */
} else if (msg[0] < 0x1f) {
if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
printk("%s ", one_byte_msgs[msg[0]]);
else
printk("reserved (%02x) ", msg[0]);
} else if (msg[0] == 0x55) {
printk("QAS Request ");
/* Two byte */
} else if (msg[0] <= 0x2f) {
if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
msg[1]);
else
printk("reserved two byte (%02x %02x) ",
msg[0], msg[1]);
len = 2;
} else
printk("reserved ");
return len;
}
EXPORT_SYMBOL(spi_print_msg);
#else /* ifndef CONFIG_SCSI_CONSTANTS */
int spi_print_msg(const unsigned char *msg)
{
int len = 1, i;
if (msg[0] == EXTENDED_MESSAGE) {
len = 2 + msg[1];
if (len == 2)
len += 256;
for (i = 0; i < len; ++i)
printk("%02x ", msg[i]);
/* Identify */
} else if (msg[0] & 0x80) {
printk("%02x ", msg[0]);
/* Normal One byte */
} else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
printk("%02x ", msg[0]);
/* Two byte */
} else if (msg[0] <= 0x2f) {
printk("%02x %02x", msg[0], msg[1]);
len = 2;
} else
printk("%02x ", msg[0]);
return len;
}
EXPORT_SYMBOL(spi_print_msg);
#endif /* ! CONFIG_SCSI_CONSTANTS */
static int spi_device_match(struct attribute_container *cont,
struct device *dev)
{
struct scsi_device *sdev;
struct Scsi_Host *shost;
struct spi_internal *i;
if (!scsi_is_sdev_device(dev))
return 0;
sdev = to_scsi_device(dev);
shost = sdev->host;
if (!shost->transportt || shost->transportt->host_attrs.ac.class
!= &spi_host_class.class)
return 0;
/* Note: this class has no device attributes, so it has
* no per-HBA allocation and thus we don't need to distinguish
* the attribute containers for the device */
i = to_spi_internal(shost->transportt);
if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
return 0;
return 1;
}
static int spi_target_match(struct attribute_container *cont,
struct device *dev)
{
struct Scsi_Host *shost;
struct scsi_target *starget;
struct spi_internal *i;
if (!scsi_is_target_device(dev))
return 0;
shost = dev_to_shost(dev->parent);
if (!shost->transportt || shost->transportt->host_attrs.ac.class
!= &spi_host_class.class)
return 0;
i = to_spi_internal(shost->transportt);
starget = to_scsi_target(dev);
if (i->f->deny_binding && i->f->deny_binding(starget))
return 0;
return &i->t.target_attrs.ac == cont;
}
static DECLARE_TRANSPORT_CLASS(spi_transport_class,
"spi_transport",
spi_setup_transport_attrs,
NULL,
spi_target_configure);
static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
spi_device_match,
spi_device_configure);
static struct attribute *host_attributes[] = {
&dev_attr_signalling.attr,
&dev_attr_host_width.attr,
&dev_attr_hba_id.attr,
NULL
};
static struct attribute_group host_attribute_group = {
.attrs = host_attributes,
};
static int spi_host_configure(struct transport_container *tc,
struct device *dev,
struct device *cdev)
{
struct kobject *kobj = &cdev->kobj;
struct Scsi_Host *shost = transport_class_to_shost(cdev);
struct spi_internal *si = to_spi_internal(shost->transportt);
struct attribute *attr = &dev_attr_signalling.attr;
int rc = 0;
if (si->f->set_signalling)
rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
return rc;
}
/* returns true if we should be showing the variable. Also
* overloads the return by setting 1<<1 if the attribute should
* be writeable */
#define TARGET_ATTRIBUTE_HELPER(name) \
(si->f->show_##name ? S_IRUGO : 0) | \
(si->f->set_##name ? S_IWUSR : 0)
static umode_t target_attribute_is_visible(struct kobject *kobj,
struct attribute *attr, int i)
{
struct device *cdev = container_of(kobj, struct device, kobj);
struct scsi_target *starget = transport_class_to_starget(cdev);
struct Scsi_Host *shost = transport_class_to_shost(cdev);
struct spi_internal *si = to_spi_internal(shost->transportt);
if (attr == &dev_attr_period.attr &&
spi_support_sync(starget))
return TARGET_ATTRIBUTE_HELPER(period);
else if (attr == &dev_attr_min_period.attr &&
spi_support_sync(starget))
return TARGET_ATTRIBUTE_HELPER(period);
else if (attr == &dev_attr_offset.attr &&
spi_support_sync(starget))
return TARGET_ATTRIBUTE_HELPER(offset);
else if (attr == &dev_attr_max_offset.attr &&
spi_support_sync(starget))
return TARGET_ATTRIBUTE_HELPER(offset);
else if (attr == &dev_attr_width.attr &&
spi_support_wide(starget))
return TARGET_ATTRIBUTE_HELPER(width);
else if (attr == &dev_attr_max_width.attr &&
spi_support_wide(starget))
return TARGET_ATTRIBUTE_HELPER(width);
else if (attr == &dev_attr_iu.attr &&
spi_support_ius(starget))
return TARGET_ATTRIBUTE_HELPER(iu);
else if (attr == &dev_attr_max_iu.attr &&
spi_support_ius(starget))
return TARGET_ATTRIBUTE_HELPER(iu);
else if (attr == &dev_attr_dt.attr &&
spi_support_dt(starget))
return TARGET_ATTRIBUTE_HELPER(dt);
else if (attr == &dev_attr_qas.attr &&
spi_support_qas(starget))
return TARGET_ATTRIBUTE_HELPER(qas);
else if (attr == &dev_attr_max_qas.attr &&
spi_support_qas(starget))
return TARGET_ATTRIBUTE_HELPER(qas);
else if (attr == &dev_attr_wr_flow.attr &&
spi_support_ius(starget))
return TARGET_ATTRIBUTE_HELPER(wr_flow);
else if (attr == &dev_attr_rd_strm.attr &&
spi_support_ius(starget))
return TARGET_ATTRIBUTE_HELPER(rd_strm);
else if (attr == &dev_attr_rti.attr &&
spi_support_ius(starget))
return TARGET_ATTRIBUTE_HELPER(rti);
else if (attr == &dev_attr_pcomp_en.attr &&
spi_support_ius(starget))
return TARGET_ATTRIBUTE_HELPER(pcomp_en);
else if (attr == &dev_attr_hold_mcs.attr &&
spi_support_ius(starget))
return TARGET_ATTRIBUTE_HELPER(hold_mcs);
else if (attr == &dev_attr_revalidate.attr)
return S_IWUSR;
return 0;
}
static struct attribute *target_attributes[] = {
&dev_attr_period.attr,
&dev_attr_min_period.attr,
&dev_attr_offset.attr,
&dev_attr_max_offset.attr,
&dev_attr_width.attr,
&dev_attr_max_width.attr,
&dev_attr_iu.attr,
&dev_attr_max_iu.attr,
&dev_attr_dt.attr,
&dev_attr_qas.attr,
&dev_attr_max_qas.attr,
&dev_attr_wr_flow.attr,
&dev_attr_rd_strm.attr,
&dev_attr_rti.attr,
&dev_attr_pcomp_en.attr,
&dev_attr_hold_mcs.attr,
&dev_attr_revalidate.attr,
NULL
};
static struct attribute_group target_attribute_group = {
.attrs = target_attributes,
.is_visible = target_attribute_is_visible,
};
static int spi_target_configure(struct transport_container *tc,
struct device *dev,
struct device *cdev)
{
struct kobject *kobj = &cdev->kobj;
/* force an update based on parameters read from the device */
sysfs_update_group(kobj, &target_attribute_group);
return 0;
}
struct scsi_transport_template *
spi_attach_transport(struct spi_function_template *ft)
{
struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
GFP_KERNEL);
if (unlikely(!i))
return NULL;
i->t.target_attrs.ac.class = &spi_transport_class.class;
i->t.target_attrs.ac.grp = &target_attribute_group;
i->t.target_attrs.ac.match = spi_target_match;
transport_container_register(&i->t.target_attrs);
i->t.target_size = sizeof(struct spi_transport_attrs);
i->t.host_attrs.ac.class = &spi_host_class.class;
i->t.host_attrs.ac.grp = &host_attribute_group;
i->t.host_attrs.ac.match = spi_host_match;
transport_container_register(&i->t.host_attrs);
i->t.host_size = sizeof(struct spi_host_attrs);
i->f = ft;
return &i->t;
}
EXPORT_SYMBOL(spi_attach_transport);
void spi_release_transport(struct scsi_transport_template *t)
{
struct spi_internal *i = to_spi_internal(t);
transport_container_unregister(&i->t.target_attrs);
transport_container_unregister(&i->t.host_attrs);
kfree(i);
}
EXPORT_SYMBOL(spi_release_transport);
static __init int spi_transport_init(void)
{
int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
"SCSI Parallel Transport Class");
if (!error) {
int i;
for (i = 0; spi_static_device_list[i].vendor; i++)
scsi_dev_info_list_add_keyed(1, /* compatible */
spi_static_device_list[i].vendor,
spi_static_device_list[i].model,
NULL,
spi_static_device_list[i].flags,
SCSI_DEVINFO_SPI);
}
error = transport_class_register(&spi_transport_class);
if (error)
return error;
error = anon_transport_class_register(&spi_device_class);
return transport_class_register(&spi_host_class);
}
static void __exit spi_transport_exit(void)
{
transport_class_unregister(&spi_transport_class);
anon_transport_class_unregister(&spi_device_class);
transport_class_unregister(&spi_host_class);
scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
}
MODULE_AUTHOR("Martin Hicks");
MODULE_DESCRIPTION("SPI Transport Attributes");
MODULE_LICENSE("GPL");
module_init(spi_transport_init);
module_exit(spi_transport_exit);