linux/net/core/skbuff.c

5536 lines
136 KiB
C
Raw Normal View History

/*
* Routines having to do with the 'struct sk_buff' memory handlers.
*
* Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
* Florian La Roche <rzsfl@rz.uni-sb.de>
*
* Fixes:
* Alan Cox : Fixed the worst of the load
* balancer bugs.
* Dave Platt : Interrupt stacking fix.
* Richard Kooijman : Timestamp fixes.
* Alan Cox : Changed buffer format.
* Alan Cox : destructor hook for AF_UNIX etc.
* Linus Torvalds : Better skb_clone.
* Alan Cox : Added skb_copy.
* Alan Cox : Added all the changed routines Linus
* only put in the headers
* Ray VanTassle : Fixed --skb->lock in free
* Alan Cox : skb_copy copy arp field
* Andi Kleen : slabified it.
* Robert Olsson : Removed skb_head_pool
*
* NOTE:
* The __skb_ routines should be called with interrupts
* disabled, or you better be *real* sure that the operation is atomic
* with respect to whatever list is being frobbed (e.g. via lock_sock()
* or via disabling bottom half handlers, etc).
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* The functions in this file will not compile correctly with gcc 2.4.x
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/sctp.h>
#include <linux/netdevice.h>
#ifdef CONFIG_NET_CLS_ACT
#include <net/pkt_sched.h>
#endif
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/splice.h>
#include <linux/cache.h>
#include <linux/rtnetlink.h>
#include <linux/init.h>
#include <linux/scatterlist.h>
#include <linux/errqueue.h>
#include <linux/prefetch.h>
net: Always untag vlan-tagged traffic on input. Currently the functionality to untag traffic on input resides as part of the vlan module and is build only when VLAN support is enabled in the kernel. When VLAN is disabled, the function vlan_untag() turns into a stub and doesn't really untag the packets. This seems to create an interesting interaction between VMs supporting checksum offloading and some network drivers. There are some drivers that do not allow the user to change tx-vlan-offload feature of the driver. These drivers also seem to assume that any VLAN-tagged traffic they transmit will have the vlan information in the vlan_tci and not in the vlan header already in the skb. When transmitting skbs that already have tagged data with partial checksum set, the checksum doesn't appear to be updated correctly by the card thus resulting in a failure to establish TCP connections. The following is a packet trace taken on the receiver where a sender is a VM with a VLAN configued. The host VM is running on doest not have VLAN support and the outging interface on the host is tg3: 10:12:43.503055 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27243, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x48d9), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294837885 ecr 0,nop,wscale 7], length 0 10:12:44.505556 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27244, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x44ee), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294838888 ecr 0,nop,wscale 7], length 0 This connection finally times out. I've only access to the TG3 hardware in this configuration thus have only tested this with TG3 driver. There are a lot of other drivers that do not permit user changes to vlan acceleration features, and I don't know if they all suffere from a similar issue. The patch attempt to fix this another way. It moves the vlan header stipping code out of the vlan module and always builds it into the kernel network core. This way, even if vlan is not supported on a virtualizatoin host, the virtual machines running on top of such host will still work with VLANs enabled. CC: Patrick McHardy <kaber@trash.net> CC: Nithin Nayak Sujir <nsujir@broadcom.com> CC: Michael Chan <mchan@broadcom.com> CC: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com> Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-08 22:42:13 +04:00
#include <linux/if_vlan.h>
#include <net/protocol.h>
#include <net/dst.h>
#include <net/sock.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/xfrm.h>
#include <linux/uaccess.h>
#include <trace/events/skb.h>
#include <linux/highmem.h>
#include <linux/capability.h>
#include <linux/user_namespace.h>
struct kmem_cache *skbuff_head_cache __read_mostly;
static struct kmem_cache *skbuff_fclone_cache __read_mostly;
int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
EXPORT_SYMBOL(sysctl_max_skb_frags);
/**
* skb_panic - private function for out-of-line support
* @skb: buffer
* @sz: size
* @addr: address
* @msg: skb_over_panic or skb_under_panic
*
* Out-of-line support for skb_put() and skb_push().
* Called via the wrapper skb_over_panic() or skb_under_panic().
* Keep out of line to prevent kernel bloat.
* __builtin_return_address is not used because it is not always reliable.
*/
static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
const char msg[])
{
pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
msg, addr, skb->len, sz, skb->head, skb->data,
(unsigned long)skb->tail, (unsigned long)skb->end,
skb->dev ? skb->dev->name : "<NULL>");
BUG();
}
static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
{
skb_panic(skb, sz, addr, __func__);
}
static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
{
skb_panic(skb, sz, addr, __func__);
}
/*
* kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
* the caller if emergency pfmemalloc reserves are being used. If it is and
* the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
* may be used. Otherwise, the packet data may be discarded until enough
* memory is free
*/
#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
__kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
unsigned long ip, bool *pfmemalloc)
{
void *obj;
bool ret_pfmemalloc = false;
/*
* Try a regular allocation, when that fails and we're not entitled
* to the reserves, fail.
*/
obj = kmalloc_node_track_caller(size,
flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
node);
if (obj || !(gfp_pfmemalloc_allowed(flags)))
goto out;
/* Try again but now we are using pfmemalloc reserves */
ret_pfmemalloc = true;
obj = kmalloc_node_track_caller(size, flags, node);
out:
if (pfmemalloc)
*pfmemalloc = ret_pfmemalloc;
return obj;
}
/* Allocate a new skbuff. We do this ourselves so we can fill in a few
* 'private' fields and also do memory statistics to find all the
* [BEEP] leaks.
*
*/
/**
* __alloc_skb - allocate a network buffer
* @size: size to allocate
* @gfp_mask: allocation mask
* @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
* instead of head cache and allocate a cloned (child) skb.
* If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
* allocations in case the data is required for writeback
* @node: numa node to allocate memory on
*
* Allocate a new &sk_buff. The returned buffer has no headroom and a
* tail room of at least size bytes. The object has a reference count
* of one. The return is the buffer. On a failure the return is %NULL.
*
* Buffers may only be allocated from interrupts using a @gfp_mask of
* %GFP_ATOMIC.
*/
struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
int flags, int node)
{
struct kmem_cache *cache;
struct skb_shared_info *shinfo;
struct sk_buff *skb;
u8 *data;
bool pfmemalloc;
cache = (flags & SKB_ALLOC_FCLONE)
? skbuff_fclone_cache : skbuff_head_cache;
if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
gfp_mask |= __GFP_MEMALLOC;
/* Get the HEAD */
skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
if (!skb)
goto out;
prefetchw(skb);
/* We do our best to align skb_shared_info on a separate cache
* line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
* aligned memory blocks, unless SLUB/SLAB debug is enabled.
* Both skb->head and skb_shared_info are cache line aligned.
*/
net: Add back alignment for size for __alloc_skb Commit 87fb4b7b533073eeeaed0b6bf7c2328995f6c075 (net: more accurate skb truesize) changed the alignment of size. This can cause problems at least on some machines with NFS root: Unhandled fault: alignment exception (0x801) at 0xc183a43a Internal error: : 801 [#1] PREEMPT Modules linked in: CPU: 0 Not tainted (3.1.0-08784-g5eeee4a #733) pc : [<c02fbba0>] lr : [<c02fbb9c>] psr: 60000013 sp : c180fef8 ip : 00000000 fp : c181f580 r10: 00000000 r9 : c044b28c r8 : 00000001 r7 : c183a3a0 r6 : c1835be0 r5 : c183a412 r4 : 000001f2 r3 : 00000000 r2 : 00000000 r1 : ffffffe6 r0 : c183a43a Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment kernel Control: 0005317f Table: 10004000 DAC: 00000017 Process swapper (pid: 1, stack limit = 0xc180e270) Stack: (0xc180fef8 to 0xc1810000) fee0: 00000024 00000000 ff00: 00000000 c183b9c0 c183b8e0 c044b28c c0507ccc c019dfc4 c180ff2c c0503cf8 ff20: c180ff4c c180ff4c 00000000 c1835420 c182c740 c18349c0 c05233c0 00000000 ff40: 00000000 c00e6bb8 c180e000 00000000 c04dd82c c0507e7c c050cc18 c183b9c0 ff60: c05233c0 00000000 00000000 c01f34f4 c0430d70 c019d364 c04dd898 c04dd898 ff80: c04dd82c c0507e7c c180e000 00000000 c04c584c c01f4918 c04dd898 c04dd82c ffa0: c04ddd28 c180e000 00000000 c0008758 c181fa60 3231d82c 00000037 00000000 ffc0: 00000000 c04dd898 c04dd82c c04ddd28 00000013 00000000 00000000 00000000 ffe0: 00000000 c04b2224 00000000 c04b21a0 c001056c c001056c 00000000 00000000 Function entered at [<c02fbba0>] from [<c019dfc4>] Function entered at [<c019dfc4>] from [<c01f34f4>] Function entered at [<c01f34f4>] from [<c01f4918>] Function entered at [<c01f4918>] from [<c0008758>] Function entered at [<c0008758>] from [<c04b2224>] Function entered at [<c04b2224>] from [<c001056c>] Code: e1a00005 e3a01028 ebfa7cb0 e35a0000 (e5858028) Here PC is at __alloc_skb and &shinfo->dataref is unaligned because skb->end can be unaligned without this patch. As explained by Eric Dumazet <eric.dumazet@gmail.com>, this happens only with SLOB, and not with SLAB or SLUB: * Eric Dumazet <eric.dumazet@gmail.com> [111102 15:56]: > > Your patch is absolutely needed, I completely forgot about SLOB :( > > since, kmalloc(386) on SLOB gives exactly ksize=386 bytes, not nearest > power of two. > > [ 60.305763] malloc(size=385)->ffff880112c11e38 ksize=386 -> nsize=2 > [ 60.305921] malloc(size=385)->ffff88007c92ce28 ksize=386 -> nsize=2 > [ 60.306898] malloc(size=656)->ffff88007c44ad28 ksize=656 -> nsize=272 > [ 60.325385] malloc(size=656)->ffff88007c575868 ksize=656 -> nsize=272 > [ 60.325531] malloc(size=656)->ffff88011c777230 ksize=656 -> nsize=272 > [ 60.325701] malloc(size=656)->ffff880114011008 ksize=656 -> nsize=272 > [ 60.346716] malloc(size=385)->ffff880114142008 ksize=386 -> nsize=2 > [ 60.346900] malloc(size=385)->ffff88011c777690 ksize=386 -> nsize=2 Signed-off-by: Tony Lindgren <tony@atomide.com> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-02 17:40:28 +04:00
size = SKB_DATA_ALIGN(size);
size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
if (!data)
goto nodata;
/* kmalloc(size) might give us more room than requested.
* Put skb_shared_info exactly at the end of allocated zone,
* to allow max possible filling before reallocation.
*/
size = SKB_WITH_OVERHEAD(ksize(data));
prefetchw(data + size);
/*
* Only clear those fields we need to clear, not those that we will
* actually initialise below. Hence, don't put any more fields after
* the tail pointer in struct sk_buff!
*/
memset(skb, 0, offsetof(struct sk_buff, tail));
/* Account for allocated memory : skb + skb->head */
skb->truesize = SKB_TRUESIZE(size);
skb->pfmemalloc = pfmemalloc;
refcount_set(&skb->users, 1);
skb->head = data;
skb->data = data;
skb_reset_tail_pointer(skb);
skb->end = skb->tail + size;
skb->mac_header = (typeof(skb->mac_header))~0U;
skb->transport_header = (typeof(skb->transport_header))~0U;
/* make sure we initialize shinfo sequentially */
shinfo = skb_shinfo(skb);
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
atomic_set(&shinfo->dataref, 1);
if (flags & SKB_ALLOC_FCLONE) {
struct sk_buff_fclones *fclones;
fclones = container_of(skb, struct sk_buff_fclones, skb1);
skb->fclone = SKB_FCLONE_ORIG;
refcount_set(&fclones->fclone_ref, 1);
fclones->skb2.fclone = SKB_FCLONE_CLONE;
}
out:
return skb;
nodata:
kmem_cache_free(cache, skb);
skb = NULL;
goto out;
}
EXPORT_SYMBOL(__alloc_skb);
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
/**
net: fix crash in build_skb() When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f5892e ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-25 02:05:01 +03:00
* __build_skb - build a network buffer
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
* @data: data buffer provided by caller
net: fix crash in build_skb() When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f5892e ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-25 02:05:01 +03:00
* @frag_size: size of data, or 0 if head was kmalloced
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
*
* Allocate a new &sk_buff. Caller provides space holding head and
* skb_shared_info. @data must have been allocated by kmalloc() only if
net: fix crash in build_skb() When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f5892e ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-25 02:05:01 +03:00
* @frag_size is 0, otherwise data should come from the page allocator
* or vmalloc()
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
* The return is the new skb buffer.
* On a failure the return is %NULL, and @data is not freed.
* Notes :
* Before IO, driver allocates only data buffer where NIC put incoming frame
* Driver should add room at head (NET_SKB_PAD) and
* MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
* After IO, driver calls build_skb(), to allocate sk_buff and populate it
* before giving packet to stack.
* RX rings only contains data buffers, not full skbs.
*/
net: fix crash in build_skb() When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f5892e ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-25 02:05:01 +03:00
struct sk_buff *__build_skb(void *data, unsigned int frag_size)
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
{
struct skb_shared_info *shinfo;
struct sk_buff *skb;
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
unsigned int size = frag_size ? : ksize(data);
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
if (!skb)
return NULL;
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
memset(skb, 0, offsetof(struct sk_buff, tail));
skb->truesize = SKB_TRUESIZE(size);
refcount_set(&skb->users, 1);
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
skb->head = data;
skb->data = data;
skb_reset_tail_pointer(skb);
skb->end = skb->tail + size;
skb->mac_header = (typeof(skb->mac_header))~0U;
skb->transport_header = (typeof(skb->transport_header))~0U;
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
/* make sure we initialize shinfo sequentially */
shinfo = skb_shinfo(skb);
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
atomic_set(&shinfo->dataref, 1);
return skb;
}
net: fix crash in build_skb() When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f5892e ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-25 02:05:01 +03:00
/* build_skb() is wrapper over __build_skb(), that specifically
* takes care of skb->head and skb->pfmemalloc
* This means that if @frag_size is not zero, then @data must be backed
* by a page fragment, not kmalloc() or vmalloc()
*/
struct sk_buff *build_skb(void *data, unsigned int frag_size)
{
struct sk_buff *skb = __build_skb(data, frag_size);
if (skb && frag_size) {
skb->head_frag = 1;
mm: make page pfmemalloc check more robust Commit c48a11c7ad26 ("netvm: propagate page->pfmemalloc to skb") added checks for page->pfmemalloc to __skb_fill_page_desc(): if (page->pfmemalloc && !page->mapping) skb->pfmemalloc = true; It assumes page->mapping == NULL implies that page->pfmemalloc can be trusted. However, __delete_from_page_cache() can set set page->mapping to NULL and leave page->index value alone. Due to being in union, a non-zero page->index will be interpreted as true page->pfmemalloc. So the assumption is invalid if the networking code can see such a page. And it seems it can. We have encountered this with a NFS over loopback setup when such a page is attached to a new skbuf. There is no copying going on in this case so the page confuses __skb_fill_page_desc which interprets the index as pfmemalloc flag and the network stack drops packets that have been allocated using the reserves unless they are to be queued on sockets handling the swapping which is the case here and that leads to hangs when the nfs client waits for a response from the server which has been dropped and thus never arrive. The struct page is already heavily packed so rather than finding another hole to put it in, let's do a trick instead. We can reuse the index again but define it to an impossible value (-1UL). This is the page index so it should never see the value that large. Replace all direct users of page->pfmemalloc by page_is_pfmemalloc which will hide this nastiness from unspoiled eyes. The information will get lost if somebody wants to use page->index obviously but that was the case before and the original code expected that the information should be persisted somewhere else if that is really needed (e.g. what SLAB and SLUB do). [akpm@linux-foundation.org: fix blooper in slub] Fixes: c48a11c7ad26 ("netvm: propagate page->pfmemalloc to skb") Signed-off-by: Michal Hocko <mhocko@suse.com> Debugged-by: Vlastimil Babka <vbabka@suse.com> Debugged-by: Jiri Bohac <jbohac@suse.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> [3.6+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-22 00:11:51 +03:00
if (page_is_pfmemalloc(virt_to_head_page(data)))
net: fix crash in build_skb() When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f5892e ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-25 02:05:01 +03:00
skb->pfmemalloc = 1;
}
return skb;
}
net: introduce build_skb() One of the thing we discussed during netdev 2011 conference was the idea to change some network drivers to allocate/populate their skb at RX completion time, right before feeding the skb to network stack. In old days, we allocated skbs when populating the RX ring. This means bringing into cpu cache sk_buff and skb_shared_info cache lines (since we clear/initialize them), then 'queue' skb->data to NIC. By the time NIC fills a frame in skb->data buffer and host can process it, cpu probably threw away the cache lines from its caches, because lot of things happened between the allocation and final use. So the deal would be to allocate only the data buffer for the NIC to populate its RX ring buffer. And use build_skb() at RX completion to attach a data buffer (now filled with an ethernet frame) to a new skb, initialize the skb_shared_info portion, and give the hot skb to network stack. build_skb() is the function to allocate an skb, caller providing the data buffer that should be attached to it. Drivers are expected to call skb_reserve() right after build_skb() to adjust skb->data to the Ethernet frame (usually skipping NET_SKB_PAD and NET_IP_ALIGN, but some drivers might add a hardware provided alignment) Data provided to build_skb() MUST have been allocated by a prior kmalloc() call, with enough room to add SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) bytes at the end of the data without corrupting incoming frame. data = kmalloc(NET_SKB_PAD + NET_IP_ALIGN + 1536 + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), GFP_ATOMIC); ... skb = build_skb(data); if (!skb) { recycle_data(data); } else { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); ... } Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 10:03:34 +04:00
EXPORT_SYMBOL(build_skb);
#define NAPI_SKB_CACHE_SIZE 64
struct napi_alloc_cache {
struct page_frag_cache page;
unsigned int skb_count;
void *skb_cache[NAPI_SKB_CACHE_SIZE];
};
static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
{
struct page_frag_cache *nc;
unsigned long flags;
void *data;
local_irq_save(flags);
nc = this_cpu_ptr(&netdev_alloc_cache);
data = page_frag_alloc(nc, fragsz, gfp_mask);
local_irq_restore(flags);
return data;
}
/**
* netdev_alloc_frag - allocate a page fragment
* @fragsz: fragment size
*
* Allocates a frag from a page for receive buffer.
* Uses GFP_ATOMIC allocations.
*/
void *netdev_alloc_frag(unsigned int fragsz)
{
mm: remove __GFP_COLD As the page free path makes no distinction between cache hot and cold pages, there is no real useful ordering of pages in the free list that allocation requests can take advantage of. Juding from the users of __GFP_COLD, it is likely that a number of them are the result of copying other sites instead of actually measuring the impact. Remove the __GFP_COLD parameter which simplifies a number of paths in the page allocator. This is potentially controversial but bear in mind that the size of the per-cpu pagelists versus modern cache sizes means that the whole per-cpu list can often fit in the L3 cache. Hence, there is only a potential benefit for microbenchmarks that alloc/free pages in a tight loop. It's even worse when THP is taken into account which has little or no chance of getting a cache-hot page as the per-cpu list is bypassed and the zeroing of multiple pages will thrash the cache anyway. The truncate microbenchmarks are not shown as this patch affects the allocation path and not the free path. A page fault microbenchmark was tested but it showed no sigificant difference which is not surprising given that the __GFP_COLD branches are a miniscule percentage of the fault path. Link: http://lkml.kernel.org/r/20171018075952.10627-9-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 04:38:03 +03:00
return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
}
EXPORT_SYMBOL(netdev_alloc_frag);
static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
return page_frag_alloc(&nc->page, fragsz, gfp_mask);
}
void *napi_alloc_frag(unsigned int fragsz)
{
mm: remove __GFP_COLD As the page free path makes no distinction between cache hot and cold pages, there is no real useful ordering of pages in the free list that allocation requests can take advantage of. Juding from the users of __GFP_COLD, it is likely that a number of them are the result of copying other sites instead of actually measuring the impact. Remove the __GFP_COLD parameter which simplifies a number of paths in the page allocator. This is potentially controversial but bear in mind that the size of the per-cpu pagelists versus modern cache sizes means that the whole per-cpu list can often fit in the L3 cache. Hence, there is only a potential benefit for microbenchmarks that alloc/free pages in a tight loop. It's even worse when THP is taken into account which has little or no chance of getting a cache-hot page as the per-cpu list is bypassed and the zeroing of multiple pages will thrash the cache anyway. The truncate microbenchmarks are not shown as this patch affects the allocation path and not the free path. A page fault microbenchmark was tested but it showed no sigificant difference which is not surprising given that the __GFP_COLD branches are a miniscule percentage of the fault path. Link: http://lkml.kernel.org/r/20171018075952.10627-9-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 04:38:03 +03:00
return __napi_alloc_frag(fragsz, GFP_ATOMIC);
}
EXPORT_SYMBOL(napi_alloc_frag);
/**
* __netdev_alloc_skb - allocate an skbuff for rx on a specific device
* @dev: network device to receive on
* @len: length to allocate
* @gfp_mask: get_free_pages mask, passed to alloc_skb
*
* Allocate a new &sk_buff and assign it a usage count of one. The
* buffer has NET_SKB_PAD headroom built in. Users should allocate
* the headroom they think they need without accounting for the
* built in space. The built in space is used for optimisations.
*
* %NULL is returned if there is no free memory.
*/
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
gfp_t gfp_mask)
{
struct page_frag_cache *nc;
unsigned long flags;
struct sk_buff *skb;
bool pfmemalloc;
void *data;
len += NET_SKB_PAD;
if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 03:28:21 +03:00
(gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
if (!skb)
goto skb_fail;
goto skb_success;
}
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
len = SKB_DATA_ALIGN(len);
if (sk_memalloc_socks())
gfp_mask |= __GFP_MEMALLOC;
local_irq_save(flags);
nc = this_cpu_ptr(&netdev_alloc_cache);
data = page_frag_alloc(nc, len, gfp_mask);
pfmemalloc = nc->pfmemalloc;
local_irq_restore(flags);
if (unlikely(!data))
return NULL;
skb = __build_skb(data, len);
if (unlikely(!skb)) {
skb_free_frag(data);
return NULL;
}
/* use OR instead of assignment to avoid clearing of bits in mask */
if (pfmemalloc)
skb->pfmemalloc = 1;
skb->head_frag = 1;
skb_success:
skb_reserve(skb, NET_SKB_PAD);
skb->dev = dev;
skb_fail:
return skb;
}
EXPORT_SYMBOL(__netdev_alloc_skb);
/**
* __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
* @napi: napi instance this buffer was allocated for
* @len: length to allocate
* @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
*
* Allocate a new sk_buff for use in NAPI receive. This buffer will
* attempt to allocate the head from a special reserved region used
* only for NAPI Rx allocation. By doing this we can save several
* CPU cycles by avoiding having to disable and re-enable IRQs.
*
* %NULL is returned if there is no free memory.
*/
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
gfp_t gfp_mask)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
struct sk_buff *skb;
void *data;
len += NET_SKB_PAD + NET_IP_ALIGN;
if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 03:28:21 +03:00
(gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
if (!skb)
goto skb_fail;
goto skb_success;
}
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
len = SKB_DATA_ALIGN(len);
if (sk_memalloc_socks())
gfp_mask |= __GFP_MEMALLOC;
data = page_frag_alloc(&nc->page, len, gfp_mask);
if (unlikely(!data))
return NULL;
skb = __build_skb(data, len);
if (unlikely(!skb)) {
skb_free_frag(data);
return NULL;
}
/* use OR instead of assignment to avoid clearing of bits in mask */
if (nc->page.pfmemalloc)
skb->pfmemalloc = 1;
skb->head_frag = 1;
skb_success:
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
skb->dev = napi->dev;
skb_fail:
return skb;
}
EXPORT_SYMBOL(__napi_alloc_skb);
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
int size, unsigned int truesize)
{
skb_fill_page_desc(skb, i, page, off, size);
skb->len += size;
skb->data_len += size;
skb->truesize += truesize;
}
EXPORT_SYMBOL(skb_add_rx_frag);
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
unsigned int truesize)
{
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
skb_frag_size_add(frag, size);
skb->len += size;
skb->data_len += size;
skb->truesize += truesize;
}
EXPORT_SYMBOL(skb_coalesce_rx_frag);
static void skb_drop_list(struct sk_buff **listp)
{
kfree_skb_list(*listp);
*listp = NULL;
}
static inline void skb_drop_fraglist(struct sk_buff *skb)
{
skb_drop_list(&skb_shinfo(skb)->frag_list);
}
static void skb_clone_fraglist(struct sk_buff *skb)
{
struct sk_buff *list;
skb_walk_frags(skb, list)
skb_get(list);
}
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
static void skb_free_head(struct sk_buff *skb)
{
unsigned char *head = skb->head;
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
if (skb->head_frag)
skb_free_frag(head);
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
else
kfree(head);
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
}
static void skb_release_data(struct sk_buff *skb)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
int i;
if (skb->cloned &&
atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
&shinfo->dataref))
return;
for (i = 0; i < shinfo->nr_frags; i++)
__skb_frag_unref(&shinfo->frags[i]);
if (shinfo->frag_list)
kfree_skb_list(shinfo->frag_list);
skb_zcopy_clear(skb, true);
skb_free_head(skb);
}
/*
* Free an skbuff by memory without cleaning the state.
*/
static void kfree_skbmem(struct sk_buff *skb)
{
struct sk_buff_fclones *fclones;
switch (skb->fclone) {
case SKB_FCLONE_UNAVAILABLE:
kmem_cache_free(skbuff_head_cache, skb);
return;
case SKB_FCLONE_ORIG:
fclones = container_of(skb, struct sk_buff_fclones, skb1);
/* We usually free the clone (TX completion) before original skb
* This test would have no chance to be true for the clone,
* while here, branch prediction will be good.
*/
if (refcount_read(&fclones->fclone_ref) == 1)
goto fastpath;
break;
default: /* SKB_FCLONE_CLONE */
fclones = container_of(skb, struct sk_buff_fclones, skb2);
break;
}
if (!refcount_dec_and_test(&fclones->fclone_ref))
return;
fastpath:
kmem_cache_free(skbuff_fclone_cache, fclones);
}
void skb_release_head_state(struct sk_buff *skb)
{
skb_dst_drop(skb);
secpath_reset(skb);
if (skb->destructor) {
WARN_ON(in_irq());
skb->destructor(skb);
}
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
nf_conntrack_put(skb_nfct(skb));
#endif
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(skb->nf_bridge);
#endif
}
/* Free everything but the sk_buff shell. */
static void skb_release_all(struct sk_buff *skb)
{
skb_release_head_state(skb);
if (likely(skb->head))
skb_release_data(skb);
}
/**
* __kfree_skb - private function
* @skb: buffer
*
* Free an sk_buff. Release anything attached to the buffer.
* Clean the state. This is an internal helper function. Users should
* always call kfree_skb
*/
void __kfree_skb(struct sk_buff *skb)
{
skb_release_all(skb);
kfree_skbmem(skb);
}
EXPORT_SYMBOL(__kfree_skb);
/**
* kfree_skb - free an sk_buff
* @skb: buffer to free
*
* Drop a reference to the buffer and free it if the usage count has
* hit zero.
*/
void kfree_skb(struct sk_buff *skb)
{
if (!skb_unref(skb))
return;
trace_kfree_skb(skb, __builtin_return_address(0));
__kfree_skb(skb);
}
EXPORT_SYMBOL(kfree_skb);
void kfree_skb_list(struct sk_buff *segs)
{
while (segs) {
struct sk_buff *next = segs->next;
kfree_skb(segs);
segs = next;
}
}
EXPORT_SYMBOL(kfree_skb_list);
/**
* skb_tx_error - report an sk_buff xmit error
* @skb: buffer that triggered an error
*
* Report xmit error if a device callback is tracking this skb.
* skb must be freed afterwards.
*/
void skb_tx_error(struct sk_buff *skb)
{
skb_zcopy_clear(skb, true);
}
EXPORT_SYMBOL(skb_tx_error);
/**
* consume_skb - free an skbuff
* @skb: buffer to free
*
* Drop a ref to the buffer and free it if the usage count has hit zero
* Functions identically to kfree_skb, but kfree_skb assumes that the frame
* is being dropped after a failure and notes that
*/
void consume_skb(struct sk_buff *skb)
{
if (!skb_unref(skb))
return;
trace_consume_skb(skb);
__kfree_skb(skb);
}
EXPORT_SYMBOL(consume_skb);
/**
* consume_stateless_skb - free an skbuff, assuming it is stateless
* @skb: buffer to free
*
* Alike consume_skb(), but this variant assumes that this is the last
* skb reference and all the head states have been already dropped
*/
void __consume_stateless_skb(struct sk_buff *skb)
{
trace_consume_skb(skb);
skb_release_data(skb);
kfree_skbmem(skb);
}
void __kfree_skb_flush(void)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
/* flush skb_cache if containing objects */
if (nc->skb_count) {
kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
nc->skb_cache);
nc->skb_count = 0;
}
}
static inline void _kfree_skb_defer(struct sk_buff *skb)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
/* drop skb->head and call any destructors for packet */
skb_release_all(skb);
/* record skb to CPU local list */
nc->skb_cache[nc->skb_count++] = skb;
#ifdef CONFIG_SLUB
/* SLUB writes into objects when freeing */
prefetchw(skb);
#endif
/* flush skb_cache if it is filled */
if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
nc->skb_cache);
nc->skb_count = 0;
}
}
void __kfree_skb_defer(struct sk_buff *skb)
{
_kfree_skb_defer(skb);
}
void napi_consume_skb(struct sk_buff *skb, int budget)
{
if (unlikely(!skb))
return;
/* Zero budget indicate non-NAPI context called us, like netpoll */
if (unlikely(!budget)) {
dev_consume_skb_any(skb);
return;
}
if (!skb_unref(skb))
return;
/* if reaching here SKB is ready to free */
trace_consume_skb(skb);
/* if SKB is a clone, don't handle this case */
if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
__kfree_skb(skb);
return;
}
_kfree_skb_defer(skb);
}
EXPORT_SYMBOL(napi_consume_skb);
/* Make sure a field is enclosed inside headers_start/headers_end section */
#define CHECK_SKB_FIELD(field) \
BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
offsetof(struct sk_buff, headers_start)); \
BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
offsetof(struct sk_buff, headers_end)); \
static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
{
new->tstamp = old->tstamp;
/* We do not copy old->sk */
new->dev = old->dev;
memcpy(new->cb, old->cb, sizeof(old->cb));
skb_dst_copy(new, old);
#ifdef CONFIG_XFRM
new->sp = secpath_get(old->sp);
#endif
__nf_copy(new, old, false);
/* Note : this field could be in headers_start/headers_end section
* It is not yet because we do not want to have a 16 bit hole
*/
new->queue_mapping = old->queue_mapping;
memcpy(&new->headers_start, &old->headers_start,
offsetof(struct sk_buff, headers_end) -
offsetof(struct sk_buff, headers_start));
CHECK_SKB_FIELD(protocol);
CHECK_SKB_FIELD(csum);
CHECK_SKB_FIELD(hash);
CHECK_SKB_FIELD(priority);
CHECK_SKB_FIELD(skb_iif);
CHECK_SKB_FIELD(vlan_proto);
CHECK_SKB_FIELD(vlan_tci);
CHECK_SKB_FIELD(transport_header);
CHECK_SKB_FIELD(network_header);
CHECK_SKB_FIELD(mac_header);
CHECK_SKB_FIELD(inner_protocol);
CHECK_SKB_FIELD(inner_transport_header);
CHECK_SKB_FIELD(inner_network_header);
CHECK_SKB_FIELD(inner_mac_header);
CHECK_SKB_FIELD(mark);
#ifdef CONFIG_NETWORK_SECMARK
CHECK_SKB_FIELD(secmark);
#endif
#ifdef CONFIG_NET_RX_BUSY_POLL
CHECK_SKB_FIELD(napi_id);
#endif
xps: fix xps for stacked devices A typical qdisc setup is the following : bond0 : bonding device, using HTB hierarchy eth1/eth2 : slaves, multiqueue NIC, using MQ + FQ qdisc XPS allows to spread packets on specific tx queues, based on the cpu doing the send. Problem is that dequeues from bond0 qdisc can happen on random cpus, due to the fact that qdisc_run() can dequeue a batch of packets. CPUA -> queue packet P1 on bond0 qdisc, P1->ooo_okay=1 CPUA -> queue packet P2 on bond0 qdisc, P2->ooo_okay=0 CPUB -> dequeue packet P1 from bond0 enqueue packet on eth1/eth2 CPUC -> dequeue packet P2 from bond0 enqueue packet on eth1/eth2 using sk cache (ooo_okay is 0) get_xps_queue() then might select wrong queue for P1, since current cpu might be different than CPUA. P2 might be sent on the old queue (stored in sk->sk_tx_queue_mapping), if CPUC runs a bit faster (or CPUB spins a bit on qdisc lock) Effect of this bug is TCP reorders, and more generally not optimal TX queue placement. (A victim bulk flow can be migrated to the wrong TX queue for a while) To fix this, we have to record sender cpu number the first time dev_queue_xmit() is called for one tx skb. We can union napi_id (used on receive path) and sender_cpu, granted we clear sender_cpu in skb_scrub_packet() (credit to Willem for this union idea) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-04 10:48:24 +03:00
#ifdef CONFIG_XPS
CHECK_SKB_FIELD(sender_cpu);
#endif
#ifdef CONFIG_NET_SCHED
CHECK_SKB_FIELD(tc_index);
#endif
}
/*
* You should not add any new code to this function. Add it to
* __copy_skb_header above instead.
*/
static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
{
#define C(x) n->x = skb->x
n->next = n->prev = NULL;
n->sk = NULL;
__copy_skb_header(n, skb);
C(len);
C(data_len);
C(mac_len);
[SKBUFF]: Keep track of writable header len of headerless clones Currently NAT (and others) that want to modify cloned skbs copy them, even if in the vast majority of cases its not necessary because the skb is a clone made by TCP and the portion NAT wants to modify is actually writable because TCP release the header reference before cloning. The problem is that there is no clean way for NAT to find out how long the writable header area is, so this patch introduces skb->hdr_len to hold this length. When a headerless skb is cloned skb->hdr_len is set to the current headroom, for regular clones it is copied from the original. A new function skb_clone_writable(skb, len) returns whether the skb is writable up to len bytes from skb->data. To avoid enlarging the skb the mac_len field is reduced to 16 bit and the new hdr_len field is put in the remaining 16 bit. I've done a few rough benchmarks of NAT (not with this exact patch, but a very similar one). As expected it saves huge amounts of system time in case of sendfile, bringing it down to basically the same amount as without NAT, with sendmsg it only helps on loopback, probably because of the large MTU. Transmit a 1GB file using sendfile/sendmsg over eth0/lo with and without NAT: - sendfile eth0, no NAT: sys 0m0.388s - sendfile eth0, NAT: sys 0m1.835s - sendfile eth0: NAT + path: sys 0m0.370s (~ -80%) - sendfile lo, no NAT: sys 0m0.258s - sendfile lo, NAT: sys 0m2.609s - sendfile lo, NAT + patch: sys 0m0.260s (~ -90%) - sendmsg eth0, no NAT: sys 0m2.508s - sendmsg eth0, NAT: sys 0m2.539s - sendmsg eth0, NAT + patch: sys 0m2.445s (no change) - sendmsg lo, no NAT: sys 0m2.151s - sendmsg lo, NAT: sys 0m3.557s - sendmsg lo, NAT + patch: sys 0m2.159s (~ -40%) I expect other users can see a similar performance improvement, packet mangling iptables targets, ipip and ip_gre come to mind .. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-06-25 15:35:20 +04:00
n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
n->cloned = 1;
n->nohdr = 0;
n->destructor = NULL;
C(tail);
C(end);
C(head);
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
C(head_frag);
C(data);
C(truesize);
refcount_set(&n->users, 1);
atomic_inc(&(skb_shinfo(skb)->dataref));
skb->cloned = 1;
return n;
#undef C
}
/**
* skb_morph - morph one skb into another
* @dst: the skb to receive the contents
* @src: the skb to supply the contents
*
* This is identical to skb_clone except that the target skb is
* supplied by the user.
*
* The target skb is returned upon exit.
*/
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
{
skb_release_all(dst);
return __skb_clone(dst, src);
}
EXPORT_SYMBOL_GPL(skb_morph);
static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
{
unsigned long max_pg, num_pg, new_pg, old_pg;
struct user_struct *user;
if (capable(CAP_IPC_LOCK) || !size)
return 0;
num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
user = mmp->user ? : current_user();
do {
old_pg = atomic_long_read(&user->locked_vm);
new_pg = old_pg + num_pg;
if (new_pg > max_pg)
return -ENOBUFS;
} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
old_pg);
if (!mmp->user) {
mmp->user = get_uid(user);
mmp->num_pg = num_pg;
} else {
mmp->num_pg += num_pg;
}
return 0;
}
static void mm_unaccount_pinned_pages(struct mmpin *mmp)
{
if (mmp->user) {
atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
free_uid(mmp->user);
}
}
struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
{
struct ubuf_info *uarg;
struct sk_buff *skb;
WARN_ON_ONCE(!in_task());
if (!sock_flag(sk, SOCK_ZEROCOPY))
return NULL;
skb = sock_omalloc(sk, 0, GFP_KERNEL);
if (!skb)
return NULL;
BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
uarg = (void *)skb->cb;
uarg->mmp.user = NULL;
if (mm_account_pinned_pages(&uarg->mmp, size)) {
kfree_skb(skb);
return NULL;
}
uarg->callback = sock_zerocopy_callback;
uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
uarg->len = 1;
uarg->bytelen = size;
uarg->zerocopy = 1;
refcount_set(&uarg->refcnt, 1);
sock_hold(sk);
return uarg;
}
EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
{
return container_of((void *)uarg, struct sk_buff, cb);
}
struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
struct ubuf_info *uarg)
{
if (uarg) {
const u32 byte_limit = 1 << 19; /* limit to a few TSO */
u32 bytelen, next;
/* realloc only when socket is locked (TCP, UDP cork),
* so uarg->len and sk_zckey access is serialized
*/
if (!sock_owned_by_user(sk)) {
WARN_ON_ONCE(1);
return NULL;
}
bytelen = uarg->bytelen + size;
if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
/* TCP can create new skb to attach new uarg */
if (sk->sk_type == SOCK_STREAM)
goto new_alloc;
return NULL;
}
next = (u32)atomic_read(&sk->sk_zckey);
if ((u32)(uarg->id + uarg->len) == next) {
if (mm_account_pinned_pages(&uarg->mmp, size))
return NULL;
uarg->len++;
uarg->bytelen = bytelen;
atomic_set(&sk->sk_zckey, ++next);
sock_zerocopy_get(uarg);
return uarg;
}
}
new_alloc:
return sock_zerocopy_alloc(sk, size);
}
EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
{
struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
u32 old_lo, old_hi;
u64 sum_len;
old_lo = serr->ee.ee_info;
old_hi = serr->ee.ee_data;
sum_len = old_hi - old_lo + 1ULL + len;
if (sum_len >= (1ULL << 32))
return false;
if (lo != old_hi + 1)
return false;
serr->ee.ee_data += len;
return true;
}
void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
{
struct sk_buff *tail, *skb = skb_from_uarg(uarg);
struct sock_exterr_skb *serr;
struct sock *sk = skb->sk;
struct sk_buff_head *q;
unsigned long flags;
u32 lo, hi;
u16 len;
mm_unaccount_pinned_pages(&uarg->mmp);
/* if !len, there was only 1 call, and it was aborted
* so do not queue a completion notification
*/
if (!uarg->len || sock_flag(sk, SOCK_DEAD))
goto release;
len = uarg->len;
lo = uarg->id;
hi = uarg->id + len - 1;
serr = SKB_EXT_ERR(skb);
memset(serr, 0, sizeof(*serr));
serr->ee.ee_errno = 0;
serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
serr->ee.ee_data = hi;
serr->ee.ee_info = lo;
if (!success)
serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
q = &sk->sk_error_queue;
spin_lock_irqsave(&q->lock, flags);
tail = skb_peek_tail(q);
if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
!skb_zerocopy_notify_extend(tail, lo, len)) {
__skb_queue_tail(q, skb);
skb = NULL;
}
spin_unlock_irqrestore(&q->lock, flags);
sk->sk_error_report(sk);
release:
consume_skb(skb);
sock_put(sk);
}
EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
void sock_zerocopy_put(struct ubuf_info *uarg)
{
if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
if (uarg->callback)
uarg->callback(uarg, uarg->zerocopy);
else
consume_skb(skb_from_uarg(uarg));
}
}
EXPORT_SYMBOL_GPL(sock_zerocopy_put);
void sock_zerocopy_put_abort(struct ubuf_info *uarg)
{
if (uarg) {
struct sock *sk = skb_from_uarg(uarg)->sk;
atomic_dec(&sk->sk_zckey);
uarg->len--;
sock_zerocopy_put(uarg);
}
}
EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
struct iov_iter *from, size_t length);
int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
struct msghdr *msg, int len,
struct ubuf_info *uarg)
{
struct ubuf_info *orig_uarg = skb_zcopy(skb);
struct iov_iter orig_iter = msg->msg_iter;
int err, orig_len = skb->len;
/* An skb can only point to one uarg. This edge case happens when
* TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
*/
if (orig_uarg && uarg != orig_uarg)
return -EEXIST;
err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
struct sock *save_sk = skb->sk;
/* Streams do not free skb on error. Reset to prev state. */
msg->msg_iter = orig_iter;
skb->sk = sk;
___pskb_trim(skb, orig_len);
skb->sk = save_sk;
return err;
}
skb_zcopy_set(skb, uarg);
return skb->len - orig_len;
}
EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
gfp_t gfp_mask)
{
if (skb_zcopy(orig)) {
if (skb_zcopy(nskb)) {
/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
if (!gfp_mask) {
WARN_ON_ONCE(1);
return -ENOMEM;
}
if (skb_uarg(nskb) == skb_uarg(orig))
return 0;
if (skb_copy_ubufs(nskb, GFP_ATOMIC))
return -EIO;
}
skb_zcopy_set(nskb, skb_uarg(orig));
}
return 0;
}
/**
* skb_copy_ubufs - copy userspace skb frags buffers to kernel
* @skb: the skb to modify
* @gfp_mask: allocation priority
*
* This must be called on SKBTX_DEV_ZEROCOPY skb.
* It will copy all frags into kernel and drop the reference
* to userspace pages.
*
* If this function is called from an interrupt gfp_mask() must be
* %GFP_ATOMIC.
*
* Returns 0 on success or a negative error code on failure
* to allocate kernel memory to copy to.
*/
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
{
int num_frags = skb_shinfo(skb)->nr_frags;
struct page *page, *head = NULL;
int i, new_frags;
u32 d_off;
if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
return -EINVAL;
if (!num_frags)
goto release;
new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
for (i = 0; i < new_frags; i++) {
page = alloc_page(gfp_mask);
if (!page) {
while (head) {
struct page *next = (struct page *)page_private(head);
put_page(head);
head = next;
}
return -ENOMEM;
}
set_page_private(page, (unsigned long)head);
head = page;
}
page = head;
d_off = 0;
for (i = 0; i < num_frags; i++) {
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
u32 p_off, p_len, copied;
struct page *p;
u8 *vaddr;
skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
p, p_off, p_len, copied) {
u32 copy, done = 0;
vaddr = kmap_atomic(p);
while (done < p_len) {
if (d_off == PAGE_SIZE) {
d_off = 0;
page = (struct page *)page_private(page);
}
copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
memcpy(page_address(page) + d_off,
vaddr + p_off + done, copy);
done += copy;
d_off += copy;
}
kunmap_atomic(vaddr);
}
}
/* skb frags release userspace buffers */
for (i = 0; i < num_frags; i++)
skb_frag_unref(skb, i);
/* skb frags point to kernel buffers */
for (i = 0; i < new_frags - 1; i++) {
__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
head = (struct page *)page_private(head);
}
__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
skb_shinfo(skb)->nr_frags = new_frags;
release:
skb_zcopy_clear(skb, false);
return 0;
}
EXPORT_SYMBOL_GPL(skb_copy_ubufs);
/**
* skb_clone - duplicate an sk_buff
* @skb: buffer to clone
* @gfp_mask: allocation priority
*
* Duplicate an &sk_buff. The new one is not owned by a socket. Both
* copies share the same packet data but not structure. The new
* buffer has a reference count of 1. If the allocation fails the
* function returns %NULL otherwise the new buffer is returned.
*
* If this function is called from an interrupt gfp_mask() must be
* %GFP_ATOMIC.
*/
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
{
struct sk_buff_fclones *fclones = container_of(skb,
struct sk_buff_fclones,
skb1);
struct sk_buff *n;
if (skb_orphan_frags(skb, gfp_mask))
return NULL;
if (skb->fclone == SKB_FCLONE_ORIG &&
refcount_read(&fclones->fclone_ref) == 1) {
n = &fclones->skb2;
refcount_set(&fclones->fclone_ref, 2);
} else {
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
if (!n)
return NULL;
n->fclone = SKB_FCLONE_UNAVAILABLE;
}
return __skb_clone(n, skb);
}
EXPORT_SYMBOL(skb_clone);
static void skb_headers_offset_update(struct sk_buff *skb, int off)
{
/* Only adjust this if it actually is csum_start rather than csum */
if (skb->ip_summed == CHECKSUM_PARTIAL)
skb->csum_start += off;
/* {transport,network,mac}_header and tail are relative to skb->head */
skb->transport_header += off;
skb->network_header += off;
if (skb_mac_header_was_set(skb))
skb->mac_header += off;
skb->inner_transport_header += off;
skb->inner_network_header += off;
skb->inner_mac_header += off;
}
static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
{
__copy_skb_header(new, old);
skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
}
static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
{
if (skb_pfmemalloc(skb))
return SKB_ALLOC_RX;
return 0;
}
/**
* skb_copy - create private copy of an sk_buff
* @skb: buffer to copy
* @gfp_mask: allocation priority
*
* Make a copy of both an &sk_buff and its data. This is used when the
* caller wishes to modify the data and needs a private copy of the
* data to alter. Returns %NULL on failure or the pointer to the buffer
* on success. The returned buffer has a reference count of 1.
*
* As by-product this function converts non-linear &sk_buff to linear
* one, so that &sk_buff becomes completely private and caller is allowed
* to modify all the data of returned buffer. This means that this
* function is not recommended for use in circumstances when only
* header is going to be modified. Use pskb_copy() instead.
*/
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
{
int headerlen = skb_headroom(skb);
unsigned int size = skb_end_offset(skb) + skb->data_len;
struct sk_buff *n = __alloc_skb(size, gfp_mask,
skb_alloc_rx_flag(skb), NUMA_NO_NODE);
if (!n)
return NULL;
/* Set the data pointer */
skb_reserve(n, headerlen);
/* Set the tail pointer and length */
skb_put(n, skb->len);
BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
copy_skb_header(n, skb);
return n;
}
EXPORT_SYMBOL(skb_copy);
/**
* __pskb_copy_fclone - create copy of an sk_buff with private head.
* @skb: buffer to copy
* @headroom: headroom of new skb
* @gfp_mask: allocation priority
* @fclone: if true allocate the copy of the skb from the fclone
* cache instead of the head cache; it is recommended to set this
* to true for the cases where the copy will likely be cloned
*
* Make a copy of both an &sk_buff and part of its data, located
* in header. Fragmented data remain shared. This is used when
* the caller wishes to modify only header of &sk_buff and needs
* private copy of the header to alter. Returns %NULL on failure
* or the pointer to the buffer on success.
* The returned buffer has a reference count of 1.
*/
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
gfp_t gfp_mask, bool fclone)
{
unsigned int size = skb_headlen(skb) + headroom;
int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
if (!n)
goto out;
/* Set the data pointer */
skb_reserve(n, headroom);
/* Set the tail pointer and length */
skb_put(n, skb_headlen(skb));
/* Copy the bytes */
skb_copy_from_linear_data(skb, n->data, n->len);
n->truesize += skb->data_len;
n->data_len = skb->data_len;
n->len = skb->len;
if (skb_shinfo(skb)->nr_frags) {
int i;
if (skb_orphan_frags(skb, gfp_mask) ||
skb_zerocopy_clone(n, skb, gfp_mask)) {
kfree_skb(n);
n = NULL;
goto out;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
skb_frag_ref(skb, i);
}
skb_shinfo(n)->nr_frags = i;
}
if (skb_has_frag_list(skb)) {
skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
skb_clone_fraglist(n);
}
copy_skb_header(n, skb);
out:
return n;
}
EXPORT_SYMBOL(__pskb_copy_fclone);
/**
* pskb_expand_head - reallocate header of &sk_buff
* @skb: buffer to reallocate
* @nhead: room to add at head
* @ntail: room to add at tail
* @gfp_mask: allocation priority
*
* Expands (or creates identical copy, if @nhead and @ntail are zero)
* header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
* reference count of 1. Returns zero in the case of success or error,
* if expansion failed. In the last case, &sk_buff is not changed.
*
* All the pointers pointing into skb header may change and must be
* reloaded after call to this function.
*/
int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
gfp_t gfp_mask)
{
int i, osize = skb_end_offset(skb);
int size = osize + nhead + ntail;
long off;
u8 *data;
BUG_ON(nhead < 0);
BUG_ON(skb_shared(skb));
size = SKB_DATA_ALIGN(size);
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
gfp_mask, NUMA_NO_NODE, NULL);
if (!data)
goto nodata;
size = SKB_WITH_OVERHEAD(ksize(data));
/* Copy only real data... and, alas, header. This should be
* optimized for the cases when header is void.
*/
memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
memcpy((struct skb_shared_info *)(data + size),
skb_shinfo(skb),
offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
/*
* if shinfo is shared we must drop the old head gracefully, but if it
* is not we can just drop the old head and let the existing refcount
* be since all we did is relocate the values
*/
if (skb_cloned(skb)) {
if (skb_orphan_frags(skb, gfp_mask))
goto nofrags;
if (skb_zcopy(skb))
refcount_inc(&skb_uarg(skb)->refcnt);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
skb_frag_ref(skb, i);
if (skb_has_frag_list(skb))
skb_clone_fraglist(skb);
skb_release_data(skb);
} else {
skb_free_head(skb);
}
off = (data + nhead) - skb->head;
skb->head = data;
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 04:33:38 +04:00
skb->head_frag = 0;
skb->data += off;
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb->end = size;
off = nhead;
#else
skb->end = skb->head + size;
#endif
skb->tail += off;
skb_headers_offset_update(skb, nhead);
skb->cloned = 0;
[SKBUFF]: Keep track of writable header len of headerless clones Currently NAT (and others) that want to modify cloned skbs copy them, even if in the vast majority of cases its not necessary because the skb is a clone made by TCP and the portion NAT wants to modify is actually writable because TCP release the header reference before cloning. The problem is that there is no clean way for NAT to find out how long the writable header area is, so this patch introduces skb->hdr_len to hold this length. When a headerless skb is cloned skb->hdr_len is set to the current headroom, for regular clones it is copied from the original. A new function skb_clone_writable(skb, len) returns whether the skb is writable up to len bytes from skb->data. To avoid enlarging the skb the mac_len field is reduced to 16 bit and the new hdr_len field is put in the remaining 16 bit. I've done a few rough benchmarks of NAT (not with this exact patch, but a very similar one). As expected it saves huge amounts of system time in case of sendfile, bringing it down to basically the same amount as without NAT, with sendmsg it only helps on loopback, probably because of the large MTU. Transmit a 1GB file using sendfile/sendmsg over eth0/lo with and without NAT: - sendfile eth0, no NAT: sys 0m0.388s - sendfile eth0, NAT: sys 0m1.835s - sendfile eth0: NAT + path: sys 0m0.370s (~ -80%) - sendfile lo, no NAT: sys 0m0.258s - sendfile lo, NAT: sys 0m2.609s - sendfile lo, NAT + patch: sys 0m0.260s (~ -90%) - sendmsg eth0, no NAT: sys 0m2.508s - sendmsg eth0, NAT: sys 0m2.539s - sendmsg eth0, NAT + patch: sys 0m2.445s (no change) - sendmsg lo, no NAT: sys 0m2.151s - sendmsg lo, NAT: sys 0m3.557s - sendmsg lo, NAT + patch: sys 0m2.159s (~ -40%) I expect other users can see a similar performance improvement, packet mangling iptables targets, ipip and ip_gre come to mind .. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-06-25 15:35:20 +04:00
skb->hdr_len = 0;
skb->nohdr = 0;
atomic_set(&skb_shinfo(skb)->dataref, 1);
bpf: add meta pointer for direct access This work enables generic transfer of metadata from XDP into skb. The basic idea is that we can make use of the fact that the resulting skb must be linear and already comes with a larger headroom for supporting bpf_xdp_adjust_head(), which mangles xdp->data. Here, we base our work on a similar principle and introduce a small helper bpf_xdp_adjust_meta() for adjusting a new pointer called xdp->data_meta. Thus, the packet has a flexible and programmable room for meta data, followed by the actual packet data. struct xdp_buff is therefore laid out that we first point to data_hard_start, then data_meta directly prepended to data followed by data_end marking the end of packet. bpf_xdp_adjust_head() takes into account whether we have meta data already prepended and if so, memmove()s this along with the given offset provided there's enough room. xdp->data_meta is optional and programs are not required to use it. The rationale is that when we process the packet in XDP (e.g. as DoS filter), we can push further meta data along with it for the XDP_PASS case, and give the guarantee that a clsact ingress BPF program on the same device can pick this up for further post-processing. Since we work with skb there, we can also set skb->mark, skb->priority or other skb meta data out of BPF, thus having this scratch space generic and programmable allows for more flexibility than defining a direct 1:1 transfer of potentially new XDP members into skb (it's also more efficient as we don't need to initialize/handle each of such new members). The facility also works together with GRO aggregation. The scratch space at the head of the packet can be multiple of 4 byte up to 32 byte large. Drivers not yet supporting xdp->data_meta can simply be set up with xdp->data_meta as xdp->data + 1 as bpf_xdp_adjust_meta() will detect this and bail out, such that the subsequent match against xdp->data for later access is guaranteed to fail. The verifier treats xdp->data_meta/xdp->data the same way as we treat xdp->data/xdp->data_end pointer comparisons. The requirement for doing the compare against xdp->data is that it hasn't been modified from it's original address we got from ctx access. It may have a range marking already from prior successful xdp->data/xdp->data_end pointer comparisons though. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-25 03:25:51 +03:00
skb_metadata_clear(skb);
/* It is not generally safe to change skb->truesize.
* For the moment, we really care of rx path, or
* when skb is orphaned (not attached to a socket).
*/
if (!skb->sk || skb->destructor == sock_edemux)
skb->truesize += size - osize;
return 0;
nofrags:
kfree(data);
nodata:
return -ENOMEM;
}
EXPORT_SYMBOL(pskb_expand_head);
/* Make private copy of skb with writable head and some headroom */
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
{
struct sk_buff *skb2;
int delta = headroom - skb_headroom(skb);
if (delta <= 0)
skb2 = pskb_copy(skb, GFP_ATOMIC);
else {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
GFP_ATOMIC)) {
kfree_skb(skb2);
skb2 = NULL;
}
}
return skb2;
}
EXPORT_SYMBOL(skb_realloc_headroom);
/**
* skb_copy_expand - copy and expand sk_buff
* @skb: buffer to copy
* @newheadroom: new free bytes at head
* @newtailroom: new free bytes at tail
* @gfp_mask: allocation priority
*
* Make a copy of both an &sk_buff and its data and while doing so
* allocate additional space.
*
* This is used when the caller wishes to modify the data and needs a
* private copy of the data to alter as well as more space for new fields.
* Returns %NULL on failure or the pointer to the buffer
* on success. The returned buffer has a reference count of 1.
*
* You must pass %GFP_ATOMIC as the allocation priority if this function
* is called from an interrupt.
*/
struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
int newheadroom, int newtailroom,
gfp_t gfp_mask)
{
/*
* Allocate the copy buffer
*/
struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
gfp_mask, skb_alloc_rx_flag(skb),
NUMA_NO_NODE);
int oldheadroom = skb_headroom(skb);
int head_copy_len, head_copy_off;
if (!n)
return NULL;
skb_reserve(n, newheadroom);
/* Set the tail pointer and length */
skb_put(n, skb->len);
head_copy_len = oldheadroom;
head_copy_off = 0;
if (newheadroom <= head_copy_len)
head_copy_len = newheadroom;
else
head_copy_off = newheadroom - head_copy_len;
/* Copy the linear header and data. */
BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
skb->len + head_copy_len));
copy_skb_header(n, skb);
skb_headers_offset_update(n, newheadroom - oldheadroom);
return n;
}
EXPORT_SYMBOL(skb_copy_expand);
/**
* __skb_pad - zero pad the tail of an skb
* @skb: buffer to pad
* @pad: space to pad
* @free_on_error: free buffer on error
*
* Ensure that a buffer is followed by a padding area that is zero
* filled. Used by network drivers which may DMA or transfer data
* beyond the buffer end onto the wire.
*
* May return error in out of memory cases. The skb is freed on error
* if @free_on_error is true.
*/
int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
{
int err;
int ntail;
/* If the skbuff is non linear tailroom is always zero.. */
if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
memset(skb->data+skb->len, 0, pad);
return 0;
}
ntail = skb->data_len + pad - (skb->end - skb->tail);
if (likely(skb_cloned(skb) || ntail > 0)) {
err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
if (unlikely(err))
goto free_skb;
}
/* FIXME: The use of this function with non-linear skb's really needs
* to be audited.
*/
err = skb_linearize(skb);
if (unlikely(err))
goto free_skb;
memset(skb->data + skb->len, 0, pad);
return 0;
free_skb:
if (free_on_error)
kfree_skb(skb);
return err;
}
EXPORT_SYMBOL(__skb_pad);
/**
* pskb_put - add data to the tail of a potentially fragmented buffer
* @skb: start of the buffer to use
* @tail: tail fragment of the buffer to use
* @len: amount of data to add
*
* This function extends the used data area of the potentially
* fragmented buffer. @tail must be the last fragment of @skb -- or
* @skb itself. If this would exceed the total buffer size the kernel
* will panic. A pointer to the first byte of the extra data is
* returned.
*/
void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
{
if (tail != skb) {
skb->data_len += len;
skb->len += len;
}
return skb_put(tail, len);
}
EXPORT_SYMBOL_GPL(pskb_put);
/**
* skb_put - add data to a buffer
* @skb: buffer to use
* @len: amount of data to add
*
* This function extends the used data area of the buffer. If this would
* exceed the total buffer size the kernel will panic. A pointer to the
* first byte of the extra data is returned.
*/
void *skb_put(struct sk_buff *skb, unsigned int len)
{
void *tmp = skb_tail_pointer(skb);
SKB_LINEAR_ASSERT(skb);
skb->tail += len;
skb->len += len;
if (unlikely(skb->tail > skb->end))
skb_over_panic(skb, len, __builtin_return_address(0));
return tmp;
}
EXPORT_SYMBOL(skb_put);
/**
* skb_push - add data to the start of a buffer
* @skb: buffer to use
* @len: amount of data to add
*
* This function extends the used data area of the buffer at the buffer
* start. If this would exceed the total buffer headroom the kernel will
* panic. A pointer to the first byte of the extra data is returned.
*/
void *skb_push(struct sk_buff *skb, unsigned int len)
{
skb->data -= len;
skb->len += len;
if (unlikely(skb->data<skb->head))
skb_under_panic(skb, len, __builtin_return_address(0));
return skb->data;
}
EXPORT_SYMBOL(skb_push);
/**
* skb_pull - remove data from the start of a buffer
* @skb: buffer to use
* @len: amount of data to remove
*
* This function removes data from the start of a buffer, returning
* the memory to the headroom. A pointer to the next data in the buffer
* is returned. Once the data has been pulled future pushes will overwrite
* the old data.
*/
void *skb_pull(struct sk_buff *skb, unsigned int len)
{
return skb_pull_inline(skb, len);
}
EXPORT_SYMBOL(skb_pull);
/**
* skb_trim - remove end from a buffer
* @skb: buffer to alter
* @len: new length
*
* Cut the length of a buffer down by removing data from the tail. If
* the buffer is already under the length specified it is not modified.
* The skb must be linear.
*/
void skb_trim(struct sk_buff *skb, unsigned int len)
{
if (skb->len > len)
__skb_trim(skb, len);
}
EXPORT_SYMBOL(skb_trim);
/* Trims skb to length len. It can change skb pointers.
*/
int ___pskb_trim(struct sk_buff *skb, unsigned int len)
{
struct sk_buff **fragp;
struct sk_buff *frag;
int offset = skb_headlen(skb);
int nfrags = skb_shinfo(skb)->nr_frags;
int i;
int err;
if (skb_cloned(skb) &&
unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
return err;
i = 0;
if (offset >= len)
goto drop_pages;
for (; i < nfrags; i++) {
int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (end < len) {
offset = end;
continue;
}
skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
drop_pages:
skb_shinfo(skb)->nr_frags = i;
for (; i < nfrags; i++)
skb_frag_unref(skb, i);
if (skb_has_frag_list(skb))
skb_drop_fraglist(skb);
goto done;
}
for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
fragp = &frag->next) {
int end = offset + frag->len;
if (skb_shared(frag)) {
struct sk_buff *nfrag;
nfrag = skb_clone(frag, GFP_ATOMIC);
if (unlikely(!nfrag))
return -ENOMEM;
nfrag->next = frag->next;
consume_skb(frag);
frag = nfrag;
*fragp = frag;
}
if (end < len) {
offset = end;
continue;
}
if (end > len &&
unlikely((err = pskb_trim(frag, len - offset))))
return err;
if (frag->next)
skb_drop_list(&frag->next);
break;
}
done:
if (len > skb_headlen(skb)) {
skb->data_len -= skb->len - len;
skb->len = len;
} else {
skb->len = len;
skb->data_len = 0;
skb_set_tail_pointer(skb, len);
}
if (!skb->sk || skb->destructor == sock_edemux)
skb_condense(skb);
return 0;
}
EXPORT_SYMBOL(___pskb_trim);
/**
* __pskb_pull_tail - advance tail of skb header
* @skb: buffer to reallocate
* @delta: number of bytes to advance tail
*
* The function makes a sense only on a fragmented &sk_buff,
* it expands header moving its tail forward and copying necessary
* data from fragmented part.
*
* &sk_buff MUST have reference count of 1.
*
* Returns %NULL (and &sk_buff does not change) if pull failed
* or value of new tail of skb in the case of success.
*
* All the pointers pointing into skb header may change and must be
* reloaded after call to this function.
*/
/* Moves tail of skb head forward, copying data from fragmented part,
* when it is necessary.
* 1. It may fail due to malloc failure.
* 2. It may change skb pointers.
*
* It is pretty complicated. Luckily, it is called only in exceptional cases.
*/
void *__pskb_pull_tail(struct sk_buff *skb, int delta)
{
/* If skb has not enough free space at tail, get new one
* plus 128 bytes for future expansions. If we have enough
* room at tail, reallocate without expansion only if skb is cloned.
*/
int i, k, eat = (skb->tail + delta) - skb->end;
if (eat > 0 || skb_cloned(skb)) {
if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
GFP_ATOMIC))
return NULL;
}
BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
skb_tail_pointer(skb), delta));
/* Optimization: no fragments, no reasons to preestimate
* size of pulled pages. Superb.
*/
if (!skb_has_frag_list(skb))
goto pull_pages;
/* Estimate size of pulled pages. */
eat = delta;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (size >= eat)
goto pull_pages;
eat -= size;
}
/* If we need update frag list, we are in troubles.
* Certainly, it is possible to add an offset to skb data,
* but taking into account that pulling is expected to
* be very rare operation, it is worth to fight against
* further bloating skb head and crucify ourselves here instead.
* Pure masohism, indeed. 8)8)
*/
if (eat) {
struct sk_buff *list = skb_shinfo(skb)->frag_list;
struct sk_buff *clone = NULL;
struct sk_buff *insp = NULL;
do {
BUG_ON(!list);
if (list->len <= eat) {
/* Eaten as whole. */
eat -= list->len;
list = list->next;
insp = list;
} else {
/* Eaten partially. */
if (skb_shared(list)) {
/* Sucks! We need to fork list. :-( */
clone = skb_clone(list, GFP_ATOMIC);
if (!clone)
return NULL;
insp = list->next;
list = clone;
} else {
/* This may be pulled without
* problems. */
insp = list;
}
if (!pskb_pull(list, eat)) {
kfree_skb(clone);
return NULL;
}
break;
}
} while (eat);
/* Free pulled out fragments. */
while ((list = skb_shinfo(skb)->frag_list) != insp) {
skb_shinfo(skb)->frag_list = list->next;
kfree_skb(list);
}
/* And insert new clone at head. */
if (clone) {
clone->next = list;
skb_shinfo(skb)->frag_list = clone;
}
}
/* Success! Now we may commit changes to skb data. */
pull_pages:
eat = delta;
k = 0;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (size <= eat) {
skb_frag_unref(skb, i);
eat -= size;
} else {
skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
if (eat) {
skb_shinfo(skb)->frags[k].page_offset += eat;
skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
if (!i)
goto end;
eat = 0;
}
k++;
}
}
skb_shinfo(skb)->nr_frags = k;
end:
skb->tail += delta;
skb->data_len -= delta;
if (!skb->data_len)
skb_zcopy_clear(skb, false);
return skb_tail_pointer(skb);
}
EXPORT_SYMBOL(__pskb_pull_tail);
/**
* skb_copy_bits - copy bits from skb to kernel buffer
* @skb: source skb
* @offset: offset in source
* @to: destination buffer
* @len: number of bytes to copy
*
* Copy the specified number of bytes from the source skb to the
* destination buffer.
*
* CAUTION ! :
* If its prototype is ever changed,
* check arch/{*}/net/{*}.S files,
* since it is called from BPF assembly code.
*/
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
{
int start = skb_headlen(skb);
struct sk_buff *frag_iter;
int i, copy;
if (offset > (int)skb->len - len)
goto fault;
/* Copy header. */
if ((copy = start - offset) > 0) {
if (copy > len)
copy = len;
skb_copy_from_linear_data_offset(skb, offset, to, copy);
if ((len -= copy) == 0)
return 0;
offset += copy;
to += copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
WARN_ON(start > offset + len);
end = start + skb_frag_size(f);
if ((copy = end - offset) > 0) {
u32 p_off, p_len, copied;
struct page *p;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(f,
f->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
memcpy(to + copied, vaddr + p_off, p_len);
kunmap_atomic(vaddr);
}
if ((len -= copy) == 0)
return 0;
offset += copy;
to += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
if (copy > len)
copy = len;
if (skb_copy_bits(frag_iter, offset - start, to, copy))
goto fault;
if ((len -= copy) == 0)
return 0;
offset += copy;
to += copy;
}
start = end;
}
if (!len)
return 0;
fault:
return -EFAULT;
}
EXPORT_SYMBOL(skb_copy_bits);
/*
* Callback from splice_to_pipe(), if we need to release some pages
* at the end of the spd in case we error'ed out in filling the pipe.
*/
static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
{
net: Fix data corruption when splicing from sockets. The trick in socket splicing where we try to convert the skb->data into a page based reference using virt_to_page() does not work so well. The idea is to pass the virt_to_page() reference via the pipe buffer, and refcount the buffer using a SKB reference. But if we are splicing from a socket to a socket (via sendpage) this doesn't work. The from side processing will grab the page (and SKB) references. The sendpage() calls will grab page references only, return, and then the from side processing completes and drops the SKB ref. The page based reference to skb->data is not enough to keep the kmalloc() buffer backing it from being reused. Yet, that is all that the socket send side has at this point. This leads to data corruption if the skb->data buffer is reused by SLAB before the send side socket actually gets the TX packet out to the device. The fix employed here is to simply allocate a page and copy the skb->data bytes into that page. This will hurt performance, but there is no clear way to fix this properly without a copy at the present time, and it is important to get rid of the data corruption. With fixes from Herbert Xu. Tested-by: Willy Tarreau <w@1wt.eu> Foreseen-by: Changli Gao <xiaosuo@gmail.com> Diagnosed-by: Willy Tarreau <w@1wt.eu> Reported-by: Willy Tarreau <w@1wt.eu> Fixed-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-20 04:03:56 +03:00
put_page(spd->pages[i]);
}
static struct page *linear_to_page(struct page *page, unsigned int *len,
unsigned int *offset,
struct sock *sk)
net: Fix data corruption when splicing from sockets. The trick in socket splicing where we try to convert the skb->data into a page based reference using virt_to_page() does not work so well. The idea is to pass the virt_to_page() reference via the pipe buffer, and refcount the buffer using a SKB reference. But if we are splicing from a socket to a socket (via sendpage) this doesn't work. The from side processing will grab the page (and SKB) references. The sendpage() calls will grab page references only, return, and then the from side processing completes and drops the SKB ref. The page based reference to skb->data is not enough to keep the kmalloc() buffer backing it from being reused. Yet, that is all that the socket send side has at this point. This leads to data corruption if the skb->data buffer is reused by SLAB before the send side socket actually gets the TX packet out to the device. The fix employed here is to simply allocate a page and copy the skb->data bytes into that page. This will hurt performance, but there is no clear way to fix this properly without a copy at the present time, and it is important to get rid of the data corruption. With fixes from Herbert Xu. Tested-by: Willy Tarreau <w@1wt.eu> Foreseen-by: Changli Gao <xiaosuo@gmail.com> Diagnosed-by: Willy Tarreau <w@1wt.eu> Reported-by: Willy Tarreau <w@1wt.eu> Fixed-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-20 04:03:56 +03:00
{
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-24 03:04:42 +04:00
struct page_frag *pfrag = sk_page_frag(sk);
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-24 03:04:42 +04:00
if (!sk_page_frag_refill(sk, pfrag))
return NULL;
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-24 03:04:42 +04:00
*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-24 03:04:42 +04:00
memcpy(page_address(pfrag->page) + pfrag->offset,
page_address(page) + *offset, *len);
*offset = pfrag->offset;
pfrag->offset += *len;
net: Fix data corruption when splicing from sockets. The trick in socket splicing where we try to convert the skb->data into a page based reference using virt_to_page() does not work so well. The idea is to pass the virt_to_page() reference via the pipe buffer, and refcount the buffer using a SKB reference. But if we are splicing from a socket to a socket (via sendpage) this doesn't work. The from side processing will grab the page (and SKB) references. The sendpage() calls will grab page references only, return, and then the from side processing completes and drops the SKB ref. The page based reference to skb->data is not enough to keep the kmalloc() buffer backing it from being reused. Yet, that is all that the socket send side has at this point. This leads to data corruption if the skb->data buffer is reused by SLAB before the send side socket actually gets the TX packet out to the device. The fix employed here is to simply allocate a page and copy the skb->data bytes into that page. This will hurt performance, but there is no clear way to fix this properly without a copy at the present time, and it is important to get rid of the data corruption. With fixes from Herbert Xu. Tested-by: Willy Tarreau <w@1wt.eu> Foreseen-by: Changli Gao <xiaosuo@gmail.com> Diagnosed-by: Willy Tarreau <w@1wt.eu> Reported-by: Willy Tarreau <w@1wt.eu> Fixed-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-20 04:03:56 +03:00
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-24 03:04:42 +04:00
return pfrag->page;
}
static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
struct page *page,
unsigned int offset)
{
return spd->nr_pages &&
spd->pages[spd->nr_pages - 1] == page &&
(spd->partial[spd->nr_pages - 1].offset +
spd->partial[spd->nr_pages - 1].len == offset);
}
/*
* Fill page/offset/length into spd, if it can hold more pages.
*/
static bool spd_fill_page(struct splice_pipe_desc *spd,
struct pipe_inode_info *pipe, struct page *page,
unsigned int *len, unsigned int offset,
bool linear,
struct sock *sk)
{
if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
return true;
net: Fix data corruption when splicing from sockets. The trick in socket splicing where we try to convert the skb->data into a page based reference using virt_to_page() does not work so well. The idea is to pass the virt_to_page() reference via the pipe buffer, and refcount the buffer using a SKB reference. But if we are splicing from a socket to a socket (via sendpage) this doesn't work. The from side processing will grab the page (and SKB) references. The sendpage() calls will grab page references only, return, and then the from side processing completes and drops the SKB ref. The page based reference to skb->data is not enough to keep the kmalloc() buffer backing it from being reused. Yet, that is all that the socket send side has at this point. This leads to data corruption if the skb->data buffer is reused by SLAB before the send side socket actually gets the TX packet out to the device. The fix employed here is to simply allocate a page and copy the skb->data bytes into that page. This will hurt performance, but there is no clear way to fix this properly without a copy at the present time, and it is important to get rid of the data corruption. With fixes from Herbert Xu. Tested-by: Willy Tarreau <w@1wt.eu> Foreseen-by: Changli Gao <xiaosuo@gmail.com> Diagnosed-by: Willy Tarreau <w@1wt.eu> Reported-by: Willy Tarreau <w@1wt.eu> Fixed-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-20 04:03:56 +03:00
if (linear) {
page = linear_to_page(page, len, &offset, sk);
net: Fix data corruption when splicing from sockets. The trick in socket splicing where we try to convert the skb->data into a page based reference using virt_to_page() does not work so well. The idea is to pass the virt_to_page() reference via the pipe buffer, and refcount the buffer using a SKB reference. But if we are splicing from a socket to a socket (via sendpage) this doesn't work. The from side processing will grab the page (and SKB) references. The sendpage() calls will grab page references only, return, and then the from side processing completes and drops the SKB ref. The page based reference to skb->data is not enough to keep the kmalloc() buffer backing it from being reused. Yet, that is all that the socket send side has at this point. This leads to data corruption if the skb->data buffer is reused by SLAB before the send side socket actually gets the TX packet out to the device. The fix employed here is to simply allocate a page and copy the skb->data bytes into that page. This will hurt performance, but there is no clear way to fix this properly without a copy at the present time, and it is important to get rid of the data corruption. With fixes from Herbert Xu. Tested-by: Willy Tarreau <w@1wt.eu> Foreseen-by: Changli Gao <xiaosuo@gmail.com> Diagnosed-by: Willy Tarreau <w@1wt.eu> Reported-by: Willy Tarreau <w@1wt.eu> Fixed-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-20 04:03:56 +03:00
if (!page)
return true;
}
if (spd_can_coalesce(spd, page, offset)) {
spd->partial[spd->nr_pages - 1].len += *len;
return false;
}
get_page(page);
spd->pages[spd->nr_pages] = page;
spd->partial[spd->nr_pages].len = *len;
spd->partial[spd->nr_pages].offset = offset;
spd->nr_pages++;
net: Fix data corruption when splicing from sockets. The trick in socket splicing where we try to convert the skb->data into a page based reference using virt_to_page() does not work so well. The idea is to pass the virt_to_page() reference via the pipe buffer, and refcount the buffer using a SKB reference. But if we are splicing from a socket to a socket (via sendpage) this doesn't work. The from side processing will grab the page (and SKB) references. The sendpage() calls will grab page references only, return, and then the from side processing completes and drops the SKB ref. The page based reference to skb->data is not enough to keep the kmalloc() buffer backing it from being reused. Yet, that is all that the socket send side has at this point. This leads to data corruption if the skb->data buffer is reused by SLAB before the send side socket actually gets the TX packet out to the device. The fix employed here is to simply allocate a page and copy the skb->data bytes into that page. This will hurt performance, but there is no clear way to fix this properly without a copy at the present time, and it is important to get rid of the data corruption. With fixes from Herbert Xu. Tested-by: Willy Tarreau <w@1wt.eu> Foreseen-by: Changli Gao <xiaosuo@gmail.com> Diagnosed-by: Willy Tarreau <w@1wt.eu> Reported-by: Willy Tarreau <w@1wt.eu> Fixed-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-20 04:03:56 +03:00
return false;
}
static bool __splice_segment(struct page *page, unsigned int poff,
unsigned int plen, unsigned int *off,
unsigned int *len,
struct splice_pipe_desc *spd, bool linear,
struct sock *sk,
struct pipe_inode_info *pipe)
{
if (!*len)
return true;
/* skip this segment if already processed */
if (*off >= plen) {
*off -= plen;
return false;
}
/* ignore any bits we already processed */
poff += *off;
plen -= *off;
*off = 0;
do {
unsigned int flen = min(*len, plen);
if (spd_fill_page(spd, pipe, page, &flen, poff,
linear, sk))
return true;
poff += flen;
plen -= flen;
*len -= flen;
} while (*len && plen);
return false;
}
/*
* Map linear and fragment data from the skb to spd. It reports true if the
* pipe is full or if we already spliced the requested length.
*/
static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
unsigned int *offset, unsigned int *len,
struct splice_pipe_desc *spd, struct sock *sk)
{
int seg;
struct sk_buff *iter;
/* map the linear part :
* If skb->head_frag is set, this 'linear' part is backed by a
* fragment, and if the head is not shared with any clones then
* we can avoid a copy since we own the head portion of this page.
*/
if (__splice_segment(virt_to_page(skb->data),
(unsigned long) skb->data & (PAGE_SIZE - 1),
skb_headlen(skb),
offset, len, spd,
skb_head_is_locked(skb),
sk, pipe))
return true;
/*
* then map the fragments
*/
for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
if (__splice_segment(skb_frag_page(f),
f->page_offset, skb_frag_size(f),
offset, len, spd, false, sk, pipe))
return true;
}
skb_walk_frags(skb, iter) {
if (*offset >= iter->len) {
*offset -= iter->len;
continue;
}
/* __skb_splice_bits() only fails if the output has no room
* left, so no point in going over the frag_list for the error
* case.
*/
if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
return true;
}
return false;
}
/*
* Map data from the skb to a pipe. Should handle both the linear part,
* the fragments, and the frag list.
*/
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
struct pipe_inode_info *pipe, unsigned int tlen,
unsigned int flags)
{
struct partial_page partial[MAX_SKB_FRAGS];
struct page *pages[MAX_SKB_FRAGS];
struct splice_pipe_desc spd = {
.pages = pages,
.partial = partial,
.nr_pages_max = MAX_SKB_FRAGS,
.ops = &nosteal_pipe_buf_ops,
.spd_release = sock_spd_release,
};
int ret = 0;
__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
if (spd.nr_pages)
ret = splice_to_pipe(pipe, &spd);
return ret;
}
EXPORT_SYMBOL_GPL(skb_splice_bits);
/* Send skb data on a socket. Socket must be locked. */
int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
int len)
{
unsigned int orig_len = len;
struct sk_buff *head = skb;
unsigned short fragidx;
int slen, ret;
do_frag_list:
/* Deal with head data */
while (offset < skb_headlen(skb) && len) {
struct kvec kv;
struct msghdr msg;
slen = min_t(int, len, skb_headlen(skb) - offset);
kv.iov_base = skb->data + offset;
kv.iov_len = slen;
memset(&msg, 0, sizeof(msg));
ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
if (ret <= 0)
goto error;
offset += ret;
len -= ret;
}
/* All the data was skb head? */
if (!len)
goto out;
/* Make offset relative to start of frags */
offset -= skb_headlen(skb);
/* Find where we are in frag list */
for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
if (offset < frag->size)
break;
offset -= frag->size;
}
for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
slen = min_t(size_t, len, frag->size - offset);
while (slen) {
ret = kernel_sendpage_locked(sk, frag->page.p,
frag->page_offset + offset,
slen, MSG_DONTWAIT);
if (ret <= 0)
goto error;
len -= ret;
offset += ret;
slen -= ret;
}
offset = 0;
}
if (len) {
/* Process any frag lists */
if (skb == head) {
if (skb_has_frag_list(skb)) {
skb = skb_shinfo(skb)->frag_list;
goto do_frag_list;
}
} else if (skb->next) {
skb = skb->next;
goto do_frag_list;
}
}
out:
return orig_len - len;
error:
return orig_len == len ? ret : orig_len - len;
}
EXPORT_SYMBOL_GPL(skb_send_sock_locked);
/* Send skb data on a socket. */
int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
{
int ret = 0;
lock_sock(sk);
ret = skb_send_sock_locked(sk, skb, offset, len);
release_sock(sk);
return ret;
}
EXPORT_SYMBOL_GPL(skb_send_sock);
/**
* skb_store_bits - store bits from kernel buffer to skb
* @skb: destination buffer
* @offset: offset in destination
* @from: source buffer
* @len: number of bytes to copy
*
* Copy the specified number of bytes from the source buffer to the
* destination skb. This function handles all the messy bits of
* traversing fragment lists and such.
*/
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
{
int start = skb_headlen(skb);
struct sk_buff *frag_iter;
int i, copy;
if (offset > (int)skb->len - len)
goto fault;
if ((copy = start - offset) > 0) {
if (copy > len)
copy = len;
skb_copy_to_linear_data_offset(skb, offset, from, copy);
if ((len -= copy) == 0)
return 0;
offset += copy;
from += copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
int end;
WARN_ON(start > offset + len);
end = start + skb_frag_size(frag);
if ((copy = end - offset) > 0) {
u32 p_off, p_len, copied;
struct page *p;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(frag,
frag->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
memcpy(vaddr + p_off, from + copied, p_len);
kunmap_atomic(vaddr);
}
if ((len -= copy) == 0)
return 0;
offset += copy;
from += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
if (copy > len)
copy = len;
if (skb_store_bits(frag_iter, offset - start,
from, copy))
goto fault;
if ((len -= copy) == 0)
return 0;
offset += copy;
from += copy;
}
start = end;
}
if (!len)
return 0;
fault:
return -EFAULT;
}
EXPORT_SYMBOL(skb_store_bits);
/* Checksum skb data. */
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
__wsum csum, const struct skb_checksum_ops *ops)
{
int start = skb_headlen(skb);
int i, copy = start - offset;
struct sk_buff *frag_iter;
int pos = 0;
/* Checksum header. */
if (copy > 0) {
if (copy > len)
copy = len;
csum = ops->update(skb->data + offset, copy, csum);
if ((len -= copy) == 0)
return csum;
offset += copy;
pos = copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
WARN_ON(start > offset + len);
end = start + skb_frag_size(frag);
if ((copy = end - offset) > 0) {
u32 p_off, p_len, copied;
struct page *p;
__wsum csum2;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(frag,
frag->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
csum2 = ops->update(vaddr + p_off, p_len, 0);
kunmap_atomic(vaddr);
csum = ops->combine(csum, csum2, pos, p_len);
pos += p_len;
}
if (!(len -= copy))
return csum;
offset += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
__wsum csum2;
if (copy > len)
copy = len;
csum2 = __skb_checksum(frag_iter, offset - start,
copy, 0, ops);
csum = ops->combine(csum, csum2, pos, copy);
if ((len -= copy) == 0)
return csum;
offset += copy;
pos += copy;
}
start = end;
}
BUG_ON(len);
return csum;
}
EXPORT_SYMBOL(__skb_checksum);
__wsum skb_checksum(const struct sk_buff *skb, int offset,
int len, __wsum csum)
{
const struct skb_checksum_ops ops = {
.update = csum_partial_ext,
.combine = csum_block_add_ext,
};
return __skb_checksum(skb, offset, len, csum, &ops);
}
EXPORT_SYMBOL(skb_checksum);
/* Both of above in one bottle. */
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
u8 *to, int len, __wsum csum)
{
int start = skb_headlen(skb);
int i, copy = start - offset;
struct sk_buff *frag_iter;
int pos = 0;
/* Copy header. */
if (copy > 0) {
if (copy > len)
copy = len;
csum = csum_partial_copy_nocheck(skb->data + offset, to,
copy, csum);
if ((len -= copy) == 0)
return csum;
offset += copy;
to += copy;
pos = copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
WARN_ON(start > offset + len);
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
if ((copy = end - offset) > 0) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
u32 p_off, p_len, copied;
struct page *p;
__wsum csum2;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(frag,
frag->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
csum2 = csum_partial_copy_nocheck(vaddr + p_off,
to + copied,
p_len, 0);
kunmap_atomic(vaddr);
csum = csum_block_add(csum, csum2, pos);
pos += p_len;
}
if (!(len -= copy))
return csum;
offset += copy;
to += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
__wsum csum2;
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
if (copy > len)
copy = len;
csum2 = skb_copy_and_csum_bits(frag_iter,
offset - start,
to, copy, 0);
csum = csum_block_add(csum, csum2, pos);
if ((len -= copy) == 0)
return csum;
offset += copy;
to += copy;
pos += copy;
}
start = end;
}
BUG_ON(len);
return csum;
}
EXPORT_SYMBOL(skb_copy_and_csum_bits);
static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
{
net_warn_ratelimited(
"%s: attempt to compute crc32c without libcrc32c.ko\n",
__func__);
return 0;
}
static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
int offset, int len)
{
net_warn_ratelimited(
"%s: attempt to compute crc32c without libcrc32c.ko\n",
__func__);
return 0;
}
static const struct skb_checksum_ops default_crc32c_ops = {
.update = warn_crc32c_csum_update,
.combine = warn_crc32c_csum_combine,
};
const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
&default_crc32c_ops;
EXPORT_SYMBOL(crc32c_csum_stub);
/**
* skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
* @from: source buffer
*
* Calculates the amount of linear headroom needed in the 'to' skb passed
* into skb_zerocopy().
*/
unsigned int
skb_zerocopy_headlen(const struct sk_buff *from)
{
unsigned int hlen = 0;
if (!from->head_frag ||
skb_headlen(from) < L1_CACHE_BYTES ||
skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
hlen = skb_headlen(from);
if (skb_has_frag_list(from))
hlen = from->len;
return hlen;
}
EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
/**
* skb_zerocopy - Zero copy skb to skb
* @to: destination buffer
* @from: source buffer
* @len: number of bytes to copy from source buffer
* @hlen: size of linear headroom in destination buffer
*
* Copies up to `len` bytes from `from` to `to` by creating references
* to the frags in the source buffer.
*
* The `hlen` as calculated by skb_zerocopy_headlen() specifies the
* headroom in the `to` buffer.
*
* Return value:
* 0: everything is OK
* -ENOMEM: couldn't orphan frags of @from due to lack of memory
* -EFAULT: skb_copy_bits() found some problem with skb geometry
*/
int
skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
{
int i, j = 0;
int plen = 0; /* length of skb->head fragment */
int ret;
struct page *page;
unsigned int offset;
BUG_ON(!from->head_frag && !hlen);
/* dont bother with small payloads */
if (len <= skb_tailroom(to))
return skb_copy_bits(from, 0, skb_put(to, len), len);
if (hlen) {
ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
if (unlikely(ret))
return ret;
len -= hlen;
} else {
plen = min_t(int, skb_headlen(from), len);
if (plen) {
page = virt_to_head_page(from->head);
offset = from->data - (unsigned char *)page_address(page);
__skb_fill_page_desc(to, 0, page, offset, plen);
get_page(page);
j = 1;
len -= plen;
}
}
to->truesize += len + plen;
to->len += len + plen;
to->data_len += len + plen;
if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
skb_tx_error(from);
return -ENOMEM;
}
skb_zerocopy_clone(to, from, GFP_ATOMIC);
for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
if (!len)
break;
skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
len -= skb_shinfo(to)->frags[j].size;
skb_frag_ref(to, j);
j++;
}
skb_shinfo(to)->nr_frags = j;
return 0;
}
EXPORT_SYMBOL_GPL(skb_zerocopy);
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
{
__wsum csum;
long csstart;
if (skb->ip_summed == CHECKSUM_PARTIAL)
csstart = skb_checksum_start_offset(skb);
else
csstart = skb_headlen(skb);
BUG_ON(csstart > skb_headlen(skb));
skb_copy_from_linear_data(skb, to, csstart);
csum = 0;
if (csstart != skb->len)
csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
skb->len - csstart, 0);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
long csstuff = csstart + skb->csum_offset;
*((__sum16 *)(to + csstuff)) = csum_fold(csum);
}
}
EXPORT_SYMBOL(skb_copy_and_csum_dev);
/**
* skb_dequeue - remove from the head of the queue
* @list: list to dequeue from
*
* Remove the head of the list. The list lock is taken so the function
* may be used safely with other locking list functions. The head item is
* returned or %NULL if the list is empty.
*/
struct sk_buff *skb_dequeue(struct sk_buff_head *list)
{
unsigned long flags;
struct sk_buff *result;
spin_lock_irqsave(&list->lock, flags);
result = __skb_dequeue(list);
spin_unlock_irqrestore(&list->lock, flags);
return result;
}
EXPORT_SYMBOL(skb_dequeue);
/**
* skb_dequeue_tail - remove from the tail of the queue
* @list: list to dequeue from
*
* Remove the tail of the list. The list lock is taken so the function
* may be used safely with other locking list functions. The tail item is
* returned or %NULL if the list is empty.
*/
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
{
unsigned long flags;
struct sk_buff *result;
spin_lock_irqsave(&list->lock, flags);
result = __skb_dequeue_tail(list);
spin_unlock_irqrestore(&list->lock, flags);
return result;
}
EXPORT_SYMBOL(skb_dequeue_tail);
/**
* skb_queue_purge - empty a list
* @list: list to empty
*
* Delete all buffers on an &sk_buff list. Each buffer is removed from
* the list and one reference dropped. This function takes the list
* lock and is atomic with respect to other list locking functions.
*/
void skb_queue_purge(struct sk_buff_head *list)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(list)) != NULL)
kfree_skb(skb);
}
EXPORT_SYMBOL(skb_queue_purge);
2016-09-08 00:49:28 +03:00
/**
* skb_rbtree_purge - empty a skb rbtree
* @root: root of the rbtree to empty
*
* Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
* the list and one reference dropped. This function does not take
* any lock. Synchronization should be handled by the caller (e.g., TCP
* out-of-order queue is protected by the socket lock).
*/
void skb_rbtree_purge(struct rb_root *root)
{
struct rb_node *p = rb_first(root);
2016-09-08 00:49:28 +03:00
while (p) {
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2016-09-08 00:49:28 +03:00
p = rb_next(p);
rb_erase(&skb->rbnode, root);
kfree_skb(skb);
}
2016-09-08 00:49:28 +03:00
}
/**
* skb_queue_head - queue a buffer at the list head
* @list: list to use
* @newsk: buffer to queue
*
* Queue a buffer at the start of the list. This function takes the
* list lock and can be used safely with other locking &sk_buff functions
* safely.
*
* A buffer cannot be placed on two lists at the same time.
*/
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_queue_head(list, newsk);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_queue_head);
/**
* skb_queue_tail - queue a buffer at the list tail
* @list: list to use
* @newsk: buffer to queue
*
* Queue a buffer at the tail of the list. This function takes the
* list lock and can be used safely with other locking &sk_buff functions
* safely.
*
* A buffer cannot be placed on two lists at the same time.
*/
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_queue_tail(list, newsk);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_queue_tail);
/**
* skb_unlink - remove a buffer from a list
* @skb: buffer to remove
* @list: list to use
*
* Remove a packet from a list. The list locks are taken and this
* function is atomic with respect to other list locked calls
*
* You must know what list the SKB is on.
*/
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_unlink(skb, list);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_unlink);
/**
* skb_append - append a buffer
* @old: buffer to insert after
* @newsk: buffer to insert
* @list: list to use
*
* Place a packet after a given packet in a list. The list locks are taken
* and this function is atomic with respect to other list locked calls.
* A buffer cannot be placed on two lists at the same time.
*/
void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_queue_after(list, old, newsk);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_append);
/**
* skb_insert - insert a buffer
* @old: buffer to insert before
* @newsk: buffer to insert
* @list: list to use
*
* Place a packet before a given packet in a list. The list locks are
* taken and this function is atomic with respect to other list locked
* calls.
*
* A buffer cannot be placed on two lists at the same time.
*/
void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_insert(newsk, old->prev, old, list);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_insert);
static inline void skb_split_inside_header(struct sk_buff *skb,
struct sk_buff* skb1,
const u32 len, const int pos)
{
int i;
skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
pos - len);
/* And move data appendix as is. */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
skb_shinfo(skb)->nr_frags = 0;
skb1->data_len = skb->data_len;
skb1->len += skb1->data_len;
skb->data_len = 0;
skb->len = len;
skb_set_tail_pointer(skb, len);
}
static inline void skb_split_no_header(struct sk_buff *skb,
struct sk_buff* skb1,
const u32 len, int pos)
{
int i, k = 0;
const int nfrags = skb_shinfo(skb)->nr_frags;
skb_shinfo(skb)->nr_frags = 0;
skb1->len = skb1->data_len = skb->len - len;
skb->len = len;
skb->data_len = len - pos;
for (i = 0; i < nfrags; i++) {
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (pos + size > len) {
skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
if (pos < len) {
/* Split frag.
* We have two variants in this case:
* 1. Move all the frag to the second
* part, if it is possible. F.e.
* this approach is mandatory for TUX,
* where splitting is expensive.
* 2. Split is accurately. We make this.
*/
skb_frag_ref(skb, i);
skb_shinfo(skb1)->frags[0].page_offset += len - pos;
skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
skb_shinfo(skb)->nr_frags++;
}
k++;
} else
skb_shinfo(skb)->nr_frags++;
pos += size;
}
skb_shinfo(skb1)->nr_frags = k;
}
/**
* skb_split - Split fragmented skb to two parts at length len.
* @skb: the buffer to split
* @skb1: the buffer to receive the second part
* @len: new length for skb
*/
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
{
int pos = skb_headlen(skb);
skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
SKBTX_SHARED_FRAG;
skb_zerocopy_clone(skb1, skb, 0);
if (len < pos) /* Split line is inside header. */
skb_split_inside_header(skb, skb1, len, pos);
else /* Second chunk has no header, nothing to copy. */
skb_split_no_header(skb, skb1, len, pos);
}
EXPORT_SYMBOL(skb_split);
/* Shifting from/to a cloned skb is a no-go.
*
* Caller cannot keep skb_shinfo related pointers past calling here!
*/
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
static int skb_prepare_for_shift(struct sk_buff *skb)
{
return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
}
/**
* skb_shift - Shifts paged data partially from skb to another
* @tgt: buffer into which tail data gets added
* @skb: buffer from which the paged data comes from
* @shiftlen: shift up to this many bytes
*
* Attempts to shift up to shiftlen worth of bytes, which may be less than
* the length of the skb, from skb to tgt. Returns number bytes shifted.
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
* It's up to caller to free skb if everything was shifted.
*
* If @tgt runs out of frags, the whole operation is aborted.
*
* Skb cannot include anything else but paged data while tgt is allowed
* to have non-paged data as well.
*
* TODO: full sized shift could be optimized but that would need
* specialized skb free'er to handle frags without up-to-date nr_frags.
*/
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
{
int from, to, merge, todo;
struct skb_frag_struct *fragfrom, *fragto;
BUG_ON(shiftlen > skb->len);
tcp: enhance tcp_collapse_retrans() with skb_shift() In commit 2331ccc5b323 ("tcp: enhance tcp collapsing"), we made a first step allowing copying right skb to left skb head. Since all skbs in socket write queue are headless (but possibly the very first one), this strategy often does not work. This patch extends tcp_collapse_retrans() to perform frag shifting, thanks to skb_shift() helper. This helper needs to not BUG on non headless skbs, as callers are ok with that. Tested: Following packetdrill test now passes : 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 8> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> +.100 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 +0 write(4, ..., 200) = 200 +0 > P. 1:201(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 201:401(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 401:601(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 601:801(200) ack 1 +.001 write(4, ..., 200) = 200 +0 > P. 801:1001(200) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1001:1101(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1101:1201(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1201:1301(100) ack 1 +.001 write(4, ..., 100) = 100 +0 > P. 1301:1401(100) ack 1 +.099 < . 1:1(0) ack 201 win 257 +.001 < . 1:1(0) ack 201 win 257 <nop,nop,sack 1001:1401> +0 > P. 201:1001(800) ack 1 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-15 23:51:50 +03:00
if (skb_headlen(skb))
return 0;
if (skb_zcopy(tgt) || skb_zcopy(skb))
return 0;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
todo = shiftlen;
from = 0;
to = skb_shinfo(tgt)->nr_frags;
fragfrom = &skb_shinfo(skb)->frags[from];
/* Actual merge is delayed until the point when we know we can
* commit all, so that we don't have to undo partial changes
*/
if (!to ||
!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
fragfrom->page_offset)) {
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
merge = -1;
} else {
merge = to - 1;
todo -= skb_frag_size(fragfrom);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
if (todo < 0) {
if (skb_prepare_for_shift(skb) ||
skb_prepare_for_shift(tgt))
return 0;
/* All previous frag pointers might be stale! */
fragfrom = &skb_shinfo(skb)->frags[from];
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
fragto = &skb_shinfo(tgt)->frags[merge];
skb_frag_size_add(fragto, shiftlen);
skb_frag_size_sub(fragfrom, shiftlen);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
fragfrom->page_offset += shiftlen;
goto onlymerged;
}
from++;
}
/* Skip full, not-fitting skb to avoid expensive operations */
if ((shiftlen == skb->len) &&
(skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
return 0;
if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
return 0;
while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
if (to == MAX_SKB_FRAGS)
return 0;
fragfrom = &skb_shinfo(skb)->frags[from];
fragto = &skb_shinfo(tgt)->frags[to];
if (todo >= skb_frag_size(fragfrom)) {
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
*fragto = *fragfrom;
todo -= skb_frag_size(fragfrom);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
from++;
to++;
} else {
__skb_frag_ref(fragfrom);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
fragto->page = fragfrom->page;
fragto->page_offset = fragfrom->page_offset;
skb_frag_size_set(fragto, todo);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
fragfrom->page_offset += todo;
skb_frag_size_sub(fragfrom, todo);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
todo = 0;
to++;
break;
}
}
/* Ready to "commit" this state change to tgt */
skb_shinfo(tgt)->nr_frags = to;
if (merge >= 0) {
fragfrom = &skb_shinfo(skb)->frags[0];
fragto = &skb_shinfo(tgt)->frags[merge];
skb_frag_size_add(fragto, skb_frag_size(fragfrom));
__skb_frag_unref(fragfrom);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 08:20:15 +03:00
}
/* Reposition in the original skb */
to = 0;
while (from < skb_shinfo(skb)->nr_frags)
skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
skb_shinfo(skb)->nr_frags = to;
BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
onlymerged:
/* Most likely the tgt won't ever need its checksum anymore, skb on
* the other hand might need it if it needs to be resent
*/
tgt->ip_summed = CHECKSUM_PARTIAL;
skb->ip_summed = CHECKSUM_PARTIAL;
/* Yak, is it really working this way? Some helper please? */
skb->len -= shiftlen;
skb->data_len -= shiftlen;
skb->truesize -= shiftlen;
tgt->len += shiftlen;
tgt->data_len += shiftlen;
tgt->truesize += shiftlen;
return shiftlen;
}
/**
* skb_prepare_seq_read - Prepare a sequential read of skb data
* @skb: the buffer to read
* @from: lower offset of data to be read
* @to: upper offset of data to be read
* @st: state variable
*
* Initializes the specified state variable. Must be called before
* invoking skb_seq_read() for the first time.
*/
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
unsigned int to, struct skb_seq_state *st)
{
st->lower_offset = from;
st->upper_offset = to;
st->root_skb = st->cur_skb = skb;
st->frag_idx = st->stepped_offset = 0;
st->frag_data = NULL;
}
EXPORT_SYMBOL(skb_prepare_seq_read);
/**
* skb_seq_read - Sequentially read skb data
* @consumed: number of bytes consumed by the caller so far
* @data: destination pointer for data to be returned
* @st: state variable
*
* Reads a block of skb data at @consumed relative to the
* lower offset specified to skb_prepare_seq_read(). Assigns
* the head of the data block to @data and returns the length
* of the block or 0 if the end of the skb data or the upper
* offset has been reached.
*
* The caller is not required to consume all of the data
* returned, i.e. @consumed is typically set to the number
* of bytes already consumed and the next call to
* skb_seq_read() will return the remaining part of the block.
*
* Note 1: The size of each block of data returned can be arbitrary,
* this limitation is the cost for zerocopy sequential
* reads of potentially non linear data.
*
* Note 2: Fragment lists within fragments are not implemented
* at the moment, state->root_skb could be replaced with
* a stack for this purpose.
*/
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
struct skb_seq_state *st)
{
unsigned int block_limit, abs_offset = consumed + st->lower_offset;
skb_frag_t *frag;
if (unlikely(abs_offset >= st->upper_offset)) {
if (st->frag_data) {
kunmap_atomic(st->frag_data);
st->frag_data = NULL;
}
return 0;
}
next_skb:
block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
if (abs_offset < block_limit && !st->frag_data) {
*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
return block_limit - abs_offset;
}
if (st->frag_idx == 0 && !st->frag_data)
st->stepped_offset += skb_headlen(st->cur_skb);
while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
block_limit = skb_frag_size(frag) + st->stepped_offset;
if (abs_offset < block_limit) {
if (!st->frag_data)
st->frag_data = kmap_atomic(skb_frag_page(frag));
*data = (u8 *) st->frag_data + frag->page_offset +
(abs_offset - st->stepped_offset);
return block_limit - abs_offset;
}
if (st->frag_data) {
kunmap_atomic(st->frag_data);
st->frag_data = NULL;
}
st->frag_idx++;
st->stepped_offset += skb_frag_size(frag);
}
if (st->frag_data) {
kunmap_atomic(st->frag_data);
st->frag_data = NULL;
}
if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
net: Fix OOPS in skb_seq_read(). It oopsd for me in skb_seq_read. addr2line said it was linux-2.6/net/core/skbuff.c:2228, which is this line: while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { I added some printks in there and it looks like we hit this: } else if (st->root_skb == st->cur_skb && skb_shinfo(st->root_skb)->frag_list) { st->cur_skb = skb_shinfo(st->root_skb)->frag_list; st->frag_idx = 0; goto next_skb; } Actually I did some testing and added a few printks and found that the st->cur_skb->data was 0 and hence the ptr used by iscsi_tcp was null. This caused the kernel panic. if (abs_offset < block_limit) { - *data = st->cur_skb->data + abs_offset; + *data = st->cur_skb->data + (abs_offset - st->stepped_offset); I enabled the debug_tcp and with a few printks found that the code did not go to the next_skb label and could find that the sequence being followed was this - It hit this if condition - if (st->cur_skb->next) { st->cur_skb = st->cur_skb->next; st->frag_idx = 0; goto next_skb; And so, now the st pointer is shifted to the next skb whereas actually it should have hit the second else if first since the data is in the frag_list. else if (st->root_skb == st->cur_skb && skb_shinfo(st->root_skb)->frag_list) { st->cur_skb = skb_shinfo(st->root_skb)->frag_list; goto next_skb; } Reversing the two conditions the attached patch fixes the issue for me on top of Herbert's patches. Signed-off-by: Shyam Iyer <shyam_iyer@dell.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-30 03:12:42 +03:00
st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
st->frag_idx = 0;
goto next_skb;
net: Fix OOPS in skb_seq_read(). It oopsd for me in skb_seq_read. addr2line said it was linux-2.6/net/core/skbuff.c:2228, which is this line: while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { I added some printks in there and it looks like we hit this: } else if (st->root_skb == st->cur_skb && skb_shinfo(st->root_skb)->frag_list) { st->cur_skb = skb_shinfo(st->root_skb)->frag_list; st->frag_idx = 0; goto next_skb; } Actually I did some testing and added a few printks and found that the st->cur_skb->data was 0 and hence the ptr used by iscsi_tcp was null. This caused the kernel panic. if (abs_offset < block_limit) { - *data = st->cur_skb->data + abs_offset; + *data = st->cur_skb->data + (abs_offset - st->stepped_offset); I enabled the debug_tcp and with a few printks found that the code did not go to the next_skb label and could find that the sequence being followed was this - It hit this if condition - if (st->cur_skb->next) { st->cur_skb = st->cur_skb->next; st->frag_idx = 0; goto next_skb; And so, now the st pointer is shifted to the next skb whereas actually it should have hit the second else if first since the data is in the frag_list. else if (st->root_skb == st->cur_skb && skb_shinfo(st->root_skb)->frag_list) { st->cur_skb = skb_shinfo(st->root_skb)->frag_list; goto next_skb; } Reversing the two conditions the attached patch fixes the issue for me on top of Herbert's patches. Signed-off-by: Shyam Iyer <shyam_iyer@dell.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-30 03:12:42 +03:00
} else if (st->cur_skb->next) {
st->cur_skb = st->cur_skb->next;
st->frag_idx = 0;
goto next_skb;
}
return 0;
}
EXPORT_SYMBOL(skb_seq_read);
/**
* skb_abort_seq_read - Abort a sequential read of skb data
* @st: state variable
*
* Must be called if skb_seq_read() was not called until it
* returned 0.
*/
void skb_abort_seq_read(struct skb_seq_state *st)
{
if (st->frag_data)
kunmap_atomic(st->frag_data);
}
EXPORT_SYMBOL(skb_abort_seq_read);
#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
struct ts_config *conf,
struct ts_state *state)
{
return skb_seq_read(offset, text, TS_SKB_CB(state));
}
static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
{
skb_abort_seq_read(TS_SKB_CB(state));
}
/**
* skb_find_text - Find a text pattern in skb data
* @skb: the buffer to look in
* @from: search offset
* @to: search limit
* @config: textsearch configuration
*
* Finds a pattern in the skb data according to the specified
* textsearch configuration. Use textsearch_next() to retrieve
* subsequent occurrences of the pattern. Returns the offset
* to the first occurrence or UINT_MAX if no match was found.
*/
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
unsigned int to, struct ts_config *config)
{
struct ts_state state;
unsigned int ret;
config->get_next_block = skb_ts_get_next_block;
config->finish = skb_ts_finish;
skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
ret = textsearch_find(config, &state);
return (ret <= to - from ? ret : UINT_MAX);
}
EXPORT_SYMBOL(skb_find_text);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
/**
* skb_append_datato_frags - append the user data to a skb
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
* @sk: sock structure
* @skb: skb structure to be appended with user data.
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
* @getfrag: call back function to be used for getting the user data
* @from: pointer to user message iov
* @length: length of the iov message
*
* Description: This procedure append the user data in the fragment part
* of the skb if any page alloc fails user this procedure returns -ENOMEM
*/
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
int (*getfrag)(void *from, char *to, int offset,
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
int len, int odd, struct sk_buff *skb),
void *from, int length)
{
net: use per task frag allocator in skb_append_datato_frags Use the new per task frag allocator in skb_append_datato_frags(), to reduce number of frags and page allocator overhead. Tested: ifconfig lo mtu 16436 perf record netperf -t UDP_STREAM ; perf report before : Throughput: 32928 Mbit/s 51.79% netperf [kernel.kallsyms] [k] copy_user_generic_string 5.98% netperf [kernel.kallsyms] [k] __alloc_pages_nodemask 5.58% netperf [kernel.kallsyms] [k] get_page_from_freelist 5.01% netperf [kernel.kallsyms] [k] __rmqueue 3.74% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.87% netperf [kernel.kallsyms] [k] prep_new_page 1.42% netperf [kernel.kallsyms] [k] next_zones_zonelist 1.28% netperf [kernel.kallsyms] [k] __inc_zone_state 1.26% netperf [kernel.kallsyms] [k] alloc_pages_current 0.78% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.74% netperf [kernel.kallsyms] [k] udp_sendmsg 0.72% netperf [kernel.kallsyms] [k] zone_watermark_ok 0.68% netperf [kernel.kallsyms] [k] __cpuset_node_allowed_softwall 0.67% netperf [kernel.kallsyms] [k] fib_table_lookup 0.60% netperf [kernel.kallsyms] [k] memcpy_fromiovecend 0.55% netperf [kernel.kallsyms] [k] __udp4_lib_lookup after: Throughput: 47185 Mbit/s 61.74% netperf [kernel.kallsyms] [k] copy_user_generic_string 2.07% netperf [kernel.kallsyms] [k] prep_new_page 1.98% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.02% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.97% netperf [kernel.kallsyms] [k] enqueue_task_fair 0.97% netperf [kernel.kallsyms] [k] udp_sendmsg 0.91% netperf [kernel.kallsyms] [k] __ip_route_output_key 0.88% netperf [kernel.kallsyms] [k] __netif_receive_skb 0.87% netperf [kernel.kallsyms] [k] fib_table_lookup 0.85% netperf [kernel.kallsyms] [k] resched_task 0.78% netperf [kernel.kallsyms] [k] __udp4_lib_lookup 0.77% netperf [kernel.kallsyms] [k] _raw_spin_lock_irqsave Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-28 10:06:37 +04:00
int frg_cnt = skb_shinfo(skb)->nr_frags;
int copy;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
int offset = 0;
int ret;
net: use per task frag allocator in skb_append_datato_frags Use the new per task frag allocator in skb_append_datato_frags(), to reduce number of frags and page allocator overhead. Tested: ifconfig lo mtu 16436 perf record netperf -t UDP_STREAM ; perf report before : Throughput: 32928 Mbit/s 51.79% netperf [kernel.kallsyms] [k] copy_user_generic_string 5.98% netperf [kernel.kallsyms] [k] __alloc_pages_nodemask 5.58% netperf [kernel.kallsyms] [k] get_page_from_freelist 5.01% netperf [kernel.kallsyms] [k] __rmqueue 3.74% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.87% netperf [kernel.kallsyms] [k] prep_new_page 1.42% netperf [kernel.kallsyms] [k] next_zones_zonelist 1.28% netperf [kernel.kallsyms] [k] __inc_zone_state 1.26% netperf [kernel.kallsyms] [k] alloc_pages_current 0.78% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.74% netperf [kernel.kallsyms] [k] udp_sendmsg 0.72% netperf [kernel.kallsyms] [k] zone_watermark_ok 0.68% netperf [kernel.kallsyms] [k] __cpuset_node_allowed_softwall 0.67% netperf [kernel.kallsyms] [k] fib_table_lookup 0.60% netperf [kernel.kallsyms] [k] memcpy_fromiovecend 0.55% netperf [kernel.kallsyms] [k] __udp4_lib_lookup after: Throughput: 47185 Mbit/s 61.74% netperf [kernel.kallsyms] [k] copy_user_generic_string 2.07% netperf [kernel.kallsyms] [k] prep_new_page 1.98% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.02% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.97% netperf [kernel.kallsyms] [k] enqueue_task_fair 0.97% netperf [kernel.kallsyms] [k] udp_sendmsg 0.91% netperf [kernel.kallsyms] [k] __ip_route_output_key 0.88% netperf [kernel.kallsyms] [k] __netif_receive_skb 0.87% netperf [kernel.kallsyms] [k] fib_table_lookup 0.85% netperf [kernel.kallsyms] [k] resched_task 0.78% netperf [kernel.kallsyms] [k] __udp4_lib_lookup 0.77% netperf [kernel.kallsyms] [k] _raw_spin_lock_irqsave Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-28 10:06:37 +04:00
struct page_frag *pfrag = &current->task_frag;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
do {
/* Return error if we don't have space for new frag */
if (frg_cnt >= MAX_SKB_FRAGS)
net: use per task frag allocator in skb_append_datato_frags Use the new per task frag allocator in skb_append_datato_frags(), to reduce number of frags and page allocator overhead. Tested: ifconfig lo mtu 16436 perf record netperf -t UDP_STREAM ; perf report before : Throughput: 32928 Mbit/s 51.79% netperf [kernel.kallsyms] [k] copy_user_generic_string 5.98% netperf [kernel.kallsyms] [k] __alloc_pages_nodemask 5.58% netperf [kernel.kallsyms] [k] get_page_from_freelist 5.01% netperf [kernel.kallsyms] [k] __rmqueue 3.74% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.87% netperf [kernel.kallsyms] [k] prep_new_page 1.42% netperf [kernel.kallsyms] [k] next_zones_zonelist 1.28% netperf [kernel.kallsyms] [k] __inc_zone_state 1.26% netperf [kernel.kallsyms] [k] alloc_pages_current 0.78% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.74% netperf [kernel.kallsyms] [k] udp_sendmsg 0.72% netperf [kernel.kallsyms] [k] zone_watermark_ok 0.68% netperf [kernel.kallsyms] [k] __cpuset_node_allowed_softwall 0.67% netperf [kernel.kallsyms] [k] fib_table_lookup 0.60% netperf [kernel.kallsyms] [k] memcpy_fromiovecend 0.55% netperf [kernel.kallsyms] [k] __udp4_lib_lookup after: Throughput: 47185 Mbit/s 61.74% netperf [kernel.kallsyms] [k] copy_user_generic_string 2.07% netperf [kernel.kallsyms] [k] prep_new_page 1.98% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.02% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.97% netperf [kernel.kallsyms] [k] enqueue_task_fair 0.97% netperf [kernel.kallsyms] [k] udp_sendmsg 0.91% netperf [kernel.kallsyms] [k] __ip_route_output_key 0.88% netperf [kernel.kallsyms] [k] __netif_receive_skb 0.87% netperf [kernel.kallsyms] [k] fib_table_lookup 0.85% netperf [kernel.kallsyms] [k] resched_task 0.78% netperf [kernel.kallsyms] [k] __udp4_lib_lookup 0.77% netperf [kernel.kallsyms] [k] _raw_spin_lock_irqsave Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-28 10:06:37 +04:00
return -EMSGSIZE;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
net: use per task frag allocator in skb_append_datato_frags Use the new per task frag allocator in skb_append_datato_frags(), to reduce number of frags and page allocator overhead. Tested: ifconfig lo mtu 16436 perf record netperf -t UDP_STREAM ; perf report before : Throughput: 32928 Mbit/s 51.79% netperf [kernel.kallsyms] [k] copy_user_generic_string 5.98% netperf [kernel.kallsyms] [k] __alloc_pages_nodemask 5.58% netperf [kernel.kallsyms] [k] get_page_from_freelist 5.01% netperf [kernel.kallsyms] [k] __rmqueue 3.74% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.87% netperf [kernel.kallsyms] [k] prep_new_page 1.42% netperf [kernel.kallsyms] [k] next_zones_zonelist 1.28% netperf [kernel.kallsyms] [k] __inc_zone_state 1.26% netperf [kernel.kallsyms] [k] alloc_pages_current 0.78% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.74% netperf [kernel.kallsyms] [k] udp_sendmsg 0.72% netperf [kernel.kallsyms] [k] zone_watermark_ok 0.68% netperf [kernel.kallsyms] [k] __cpuset_node_allowed_softwall 0.67% netperf [kernel.kallsyms] [k] fib_table_lookup 0.60% netperf [kernel.kallsyms] [k] memcpy_fromiovecend 0.55% netperf [kernel.kallsyms] [k] __udp4_lib_lookup after: Throughput: 47185 Mbit/s 61.74% netperf [kernel.kallsyms] [k] copy_user_generic_string 2.07% netperf [kernel.kallsyms] [k] prep_new_page 1.98% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.02% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.97% netperf [kernel.kallsyms] [k] enqueue_task_fair 0.97% netperf [kernel.kallsyms] [k] udp_sendmsg 0.91% netperf [kernel.kallsyms] [k] __ip_route_output_key 0.88% netperf [kernel.kallsyms] [k] __netif_receive_skb 0.87% netperf [kernel.kallsyms] [k] fib_table_lookup 0.85% netperf [kernel.kallsyms] [k] resched_task 0.78% netperf [kernel.kallsyms] [k] __udp4_lib_lookup 0.77% netperf [kernel.kallsyms] [k] _raw_spin_lock_irqsave Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-28 10:06:37 +04:00
if (!sk_page_frag_refill(sk, pfrag))
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
return -ENOMEM;
/* copy the user data to page */
net: use per task frag allocator in skb_append_datato_frags Use the new per task frag allocator in skb_append_datato_frags(), to reduce number of frags and page allocator overhead. Tested: ifconfig lo mtu 16436 perf record netperf -t UDP_STREAM ; perf report before : Throughput: 32928 Mbit/s 51.79% netperf [kernel.kallsyms] [k] copy_user_generic_string 5.98% netperf [kernel.kallsyms] [k] __alloc_pages_nodemask 5.58% netperf [kernel.kallsyms] [k] get_page_from_freelist 5.01% netperf [kernel.kallsyms] [k] __rmqueue 3.74% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.87% netperf [kernel.kallsyms] [k] prep_new_page 1.42% netperf [kernel.kallsyms] [k] next_zones_zonelist 1.28% netperf [kernel.kallsyms] [k] __inc_zone_state 1.26% netperf [kernel.kallsyms] [k] alloc_pages_current 0.78% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.74% netperf [kernel.kallsyms] [k] udp_sendmsg 0.72% netperf [kernel.kallsyms] [k] zone_watermark_ok 0.68% netperf [kernel.kallsyms] [k] __cpuset_node_allowed_softwall 0.67% netperf [kernel.kallsyms] [k] fib_table_lookup 0.60% netperf [kernel.kallsyms] [k] memcpy_fromiovecend 0.55% netperf [kernel.kallsyms] [k] __udp4_lib_lookup after: Throughput: 47185 Mbit/s 61.74% netperf [kernel.kallsyms] [k] copy_user_generic_string 2.07% netperf [kernel.kallsyms] [k] prep_new_page 1.98% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.02% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.97% netperf [kernel.kallsyms] [k] enqueue_task_fair 0.97% netperf [kernel.kallsyms] [k] udp_sendmsg 0.91% netperf [kernel.kallsyms] [k] __ip_route_output_key 0.88% netperf [kernel.kallsyms] [k] __netif_receive_skb 0.87% netperf [kernel.kallsyms] [k] fib_table_lookup 0.85% netperf [kernel.kallsyms] [k] resched_task 0.78% netperf [kernel.kallsyms] [k] __udp4_lib_lookup 0.77% netperf [kernel.kallsyms] [k] _raw_spin_lock_irqsave Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-28 10:06:37 +04:00
copy = min_t(int, length, pfrag->size - pfrag->offset);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
net: use per task frag allocator in skb_append_datato_frags Use the new per task frag allocator in skb_append_datato_frags(), to reduce number of frags and page allocator overhead. Tested: ifconfig lo mtu 16436 perf record netperf -t UDP_STREAM ; perf report before : Throughput: 32928 Mbit/s 51.79% netperf [kernel.kallsyms] [k] copy_user_generic_string 5.98% netperf [kernel.kallsyms] [k] __alloc_pages_nodemask 5.58% netperf [kernel.kallsyms] [k] get_page_from_freelist 5.01% netperf [kernel.kallsyms] [k] __rmqueue 3.74% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.87% netperf [kernel.kallsyms] [k] prep_new_page 1.42% netperf [kernel.kallsyms] [k] next_zones_zonelist 1.28% netperf [kernel.kallsyms] [k] __inc_zone_state 1.26% netperf [kernel.kallsyms] [k] alloc_pages_current 0.78% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.74% netperf [kernel.kallsyms] [k] udp_sendmsg 0.72% netperf [kernel.kallsyms] [k] zone_watermark_ok 0.68% netperf [kernel.kallsyms] [k] __cpuset_node_allowed_softwall 0.67% netperf [kernel.kallsyms] [k] fib_table_lookup 0.60% netperf [kernel.kallsyms] [k] memcpy_fromiovecend 0.55% netperf [kernel.kallsyms] [k] __udp4_lib_lookup after: Throughput: 47185 Mbit/s 61.74% netperf [kernel.kallsyms] [k] copy_user_generic_string 2.07% netperf [kernel.kallsyms] [k] prep_new_page 1.98% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.02% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.97% netperf [kernel.kallsyms] [k] enqueue_task_fair 0.97% netperf [kernel.kallsyms] [k] udp_sendmsg 0.91% netperf [kernel.kallsyms] [k] __ip_route_output_key 0.88% netperf [kernel.kallsyms] [k] __netif_receive_skb 0.87% netperf [kernel.kallsyms] [k] fib_table_lookup 0.85% netperf [kernel.kallsyms] [k] resched_task 0.78% netperf [kernel.kallsyms] [k] __udp4_lib_lookup 0.77% netperf [kernel.kallsyms] [k] _raw_spin_lock_irqsave Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-28 10:06:37 +04:00
ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
offset, copy, 0, skb);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
if (ret < 0)
return -EFAULT;
/* copy was successful so update the size parameters */
net: use per task frag allocator in skb_append_datato_frags Use the new per task frag allocator in skb_append_datato_frags(), to reduce number of frags and page allocator overhead. Tested: ifconfig lo mtu 16436 perf record netperf -t UDP_STREAM ; perf report before : Throughput: 32928 Mbit/s 51.79% netperf [kernel.kallsyms] [k] copy_user_generic_string 5.98% netperf [kernel.kallsyms] [k] __alloc_pages_nodemask 5.58% netperf [kernel.kallsyms] [k] get_page_from_freelist 5.01% netperf [kernel.kallsyms] [k] __rmqueue 3.74% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.87% netperf [kernel.kallsyms] [k] prep_new_page 1.42% netperf [kernel.kallsyms] [k] next_zones_zonelist 1.28% netperf [kernel.kallsyms] [k] __inc_zone_state 1.26% netperf [kernel.kallsyms] [k] alloc_pages_current 0.78% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.74% netperf [kernel.kallsyms] [k] udp_sendmsg 0.72% netperf [kernel.kallsyms] [k] zone_watermark_ok 0.68% netperf [kernel.kallsyms] [k] __cpuset_node_allowed_softwall 0.67% netperf [kernel.kallsyms] [k] fib_table_lookup 0.60% netperf [kernel.kallsyms] [k] memcpy_fromiovecend 0.55% netperf [kernel.kallsyms] [k] __udp4_lib_lookup after: Throughput: 47185 Mbit/s 61.74% netperf [kernel.kallsyms] [k] copy_user_generic_string 2.07% netperf [kernel.kallsyms] [k] prep_new_page 1.98% netperf [kernel.kallsyms] [k] skb_append_datato_frags 1.02% netperf [kernel.kallsyms] [k] sock_alloc_send_pskb 0.97% netperf [kernel.kallsyms] [k] enqueue_task_fair 0.97% netperf [kernel.kallsyms] [k] udp_sendmsg 0.91% netperf [kernel.kallsyms] [k] __ip_route_output_key 0.88% netperf [kernel.kallsyms] [k] __netif_receive_skb 0.87% netperf [kernel.kallsyms] [k] fib_table_lookup 0.85% netperf [kernel.kallsyms] [k] resched_task 0.78% netperf [kernel.kallsyms] [k] __udp4_lib_lookup 0.77% netperf [kernel.kallsyms] [k] _raw_spin_lock_irqsave Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-28 10:06:37 +04:00
skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
copy);
frg_cnt++;
pfrag->offset += copy;
get_page(pfrag->page);
skb->truesize += copy;
refcount_add(copy, &sk->sk_wmem_alloc);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
skb->len += copy;
skb->data_len += copy;
offset += copy;
length -= copy;
} while (length > 0);
return 0;
}
EXPORT_SYMBOL(skb_append_datato_frags);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
int offset, size_t size)
{
int i = skb_shinfo(skb)->nr_frags;
if (skb_can_coalesce(skb, i, page, offset)) {
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
} else if (i < MAX_SKB_FRAGS) {
get_page(page);
skb_fill_page_desc(skb, i, page, offset, size);
} else {
return -EMSGSIZE;
}
return 0;
}
EXPORT_SYMBOL_GPL(skb_append_pagefrags);
/**
* skb_pull_rcsum - pull skb and update receive checksum
* @skb: buffer to update
* @len: length of data pulled
*
* This function performs an skb_pull on the packet and updates
* the CHECKSUM_COMPLETE checksum. It should be used on
* receive path processing instead of skb_pull unless you know
* that the checksum difference is zero (e.g., a valid IP header)
* or you are setting ip_summed to CHECKSUM_NONE.
*/
void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
{
unsigned char *data = skb->data;
BUG_ON(len > skb->len);
__skb_pull(skb, len);
skb_postpull_rcsum(skb, data, len);
return skb->data;
}
EXPORT_SYMBOL_GPL(skb_pull_rcsum);
/**
* skb_segment - Perform protocol segmentation on skb.
* @head_skb: buffer to segment
* @features: features for the output path (see dev->features)
*
* This function performs segmentation on the given skb. It returns
* a pointer to the first in a list of new skbs for the segments.
* In case of error it returns ERR_PTR(err).
*/
struct sk_buff *skb_segment(struct sk_buff *head_skb,
netdev_features_t features)
{
struct sk_buff *segs = NULL;
struct sk_buff *tail = NULL;
struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
skb_frag_t *frag = skb_shinfo(head_skb)->frags;
unsigned int mss = skb_shinfo(head_skb)->gso_size;
unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
struct sk_buff *frag_skb = head_skb;
unsigned int offset = doffset;
unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
unsigned int partial_segs = 0;
unsigned int headroom;
unsigned int len = head_skb->len;
__be16 proto;
bool csum, sg;
int nfrags = skb_shinfo(head_skb)->nr_frags;
int err = -ENOMEM;
int i = 0;
int pos;
int dummy;
net: fix UDP tunnel GSO of frag_list GRO packets This patch fixes a kernel BUG_ON in skb_segment. It is hit when testing two VMs on openvswitch with one VM acting as VXLAN gateway. During VXLAN packet GSO, skb_segment is called with skb->data pointing to inner TCP payload. skb_segment calls skb_network_protocol to retrieve the inner protocol. skb_network_protocol actually expects skb->data to point to MAC and it calls pskb_may_pull with ETH_HLEN. This ends up pulling in ETH_HLEN data from header tail. As a result, pskb_trim logic is skipped and BUG_ON is hit later. Move skb_push in front of skb_network_protocol so that skb->data lines up properly. kernel BUG at net/core/skbuff.c:2999! Call Trace: [<ffffffff816ac412>] tcp_gso_segment+0x122/0x410 [<ffffffff816bc74c>] inet_gso_segment+0x13c/0x390 [<ffffffff8164b39b>] skb_mac_gso_segment+0x9b/0x170 [<ffffffff816b3658>] skb_udp_tunnel_segment+0xd8/0x390 [<ffffffff816b3c00>] udp4_ufo_fragment+0x120/0x140 [<ffffffff816bc74c>] inet_gso_segment+0x13c/0x390 [<ffffffff8109d742>] ? default_wake_function+0x12/0x20 [<ffffffff8164b39b>] skb_mac_gso_segment+0x9b/0x170 [<ffffffff8164b4d0>] __skb_gso_segment+0x60/0xc0 [<ffffffff8164b6b3>] dev_hard_start_xmit+0x183/0x550 [<ffffffff8166c91e>] sch_direct_xmit+0xfe/0x1d0 [<ffffffff8164bc94>] __dev_queue_xmit+0x214/0x4f0 [<ffffffff8164bf90>] dev_queue_xmit+0x10/0x20 [<ffffffff81687edb>] ip_finish_output+0x66b/0x890 [<ffffffff81688a58>] ip_output+0x58/0x90 [<ffffffff816c628f>] ? fib_table_lookup+0x29f/0x350 [<ffffffff816881c9>] ip_local_out_sk+0x39/0x50 [<ffffffff816cbfad>] iptunnel_xmit+0x10d/0x130 [<ffffffffa0212200>] vxlan_xmit_skb+0x1d0/0x330 [vxlan] [<ffffffffa02a3919>] vxlan_tnl_send+0x129/0x1a0 [openvswitch] [<ffffffffa02a2cd6>] ovs_vport_send+0x26/0xa0 [openvswitch] [<ffffffffa029931e>] do_output+0x2e/0x50 [openvswitch] Signed-off-by: Wei-Chun Chao <weichunc@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-09 10:48:54 +04:00
__skb_push(head_skb, doffset);
proto = skb_network_protocol(head_skb, &dummy);
if (unlikely(!proto))
return ERR_PTR(-EINVAL);
sg = !!(features & NETIF_F_SG);
csum = !!can_checksum_protocol(features, proto);
if (sg && csum && (mss != GSO_BY_FRAGS)) {
if (!(features & NETIF_F_GSO_PARTIAL)) {
struct sk_buff *iter;
unsigned int frag_len;
if (!list_skb ||
!net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
goto normal;
/* If we get here then all the required
* GSO features except frag_list are supported.
* Try to split the SKB to multiple GSO SKBs
* with no frag_list.
* Currently we can do that only when the buffers don't
* have a linear part and all the buffers except
* the last are of the same length.
*/
frag_len = list_skb->len;
skb_walk_frags(head_skb, iter) {
if (frag_len != iter->len && iter->next)
goto normal;
if (skb_headlen(iter) && !iter->head_frag)
goto normal;
len -= iter->len;
}
if (len != frag_len)
goto normal;
}
/* GSO partial only requires that we trim off any excess that
* doesn't fit into an MSS sized block, so take care of that
* now.
*/
partial_segs = len / mss;
if (partial_segs > 1)
mss *= partial_segs;
else
partial_segs = 0;
}
normal:
headroom = skb_headroom(head_skb);
pos = skb_headlen(head_skb);
do {
struct sk_buff *nskb;
skb_frag_t *nskb_frag;
int hsize;
int size;
if (unlikely(mss == GSO_BY_FRAGS)) {
len = list_skb->len;
} else {
len = head_skb->len - offset;
if (len > mss)
len = mss;
}
hsize = skb_headlen(head_skb) - offset;
if (hsize < 0)
hsize = 0;
if (hsize > len || !sg)
hsize = len;
if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
(skb_headlen(list_skb) == len || sg)) {
BUG_ON(skb_headlen(list_skb) > len);
i = 0;
nfrags = skb_shinfo(list_skb)->nr_frags;
frag = skb_shinfo(list_skb)->frags;
frag_skb = list_skb;
pos += skb_headlen(list_skb);
while (pos < offset + len) {
BUG_ON(i >= nfrags);
size = skb_frag_size(frag);
if (pos + size > offset + len)
break;
i++;
pos += size;
frag++;
}
nskb = skb_clone(list_skb, GFP_ATOMIC);
list_skb = list_skb->next;
if (unlikely(!nskb))
goto err;
if (unlikely(pskb_trim(nskb, len))) {
kfree_skb(nskb);
goto err;
}
hsize = skb_end_offset(nskb);
if (skb_cow_head(nskb, doffset + headroom)) {
kfree_skb(nskb);
goto err;
}
nskb->truesize += skb_end_offset(nskb) - hsize;
skb_release_head_state(nskb);
__skb_push(nskb, doffset);
} else {
nskb = __alloc_skb(hsize + doffset + headroom,
GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
NUMA_NO_NODE);
if (unlikely(!nskb))
goto err;
skb_reserve(nskb, headroom);
__skb_put(nskb, doffset);
}
if (segs)
tail->next = nskb;
else
segs = nskb;
tail = nskb;
__copy_skb_header(nskb, head_skb);
skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
net: Correctly set segment mac_len in skb_segment(). When performing segmentation, the mac_len value is copied right out of the original skb. However, this value is not always set correctly (like when the packet is VLAN-tagged) and we'll end up copying a bad value. One way to demonstrate this is to configure a VM which tags packets internally and turn off VLAN acceleration on the forwarding bridge port. The packets show up corrupt like this: 16:18:24.985548 52:54:00:ab:be:25 > 52:54:00:26:ce:a3, ethertype 802.1Q (0x8100), length 1518: vlan 100, p 0, ethertype 0x05e0, 0x0000: 8cdb 1c7c 8cdb 0064 4006 b59d 0a00 6402 ...|...d@.....d. 0x0010: 0a00 6401 9e0d b441 0a5e 64ec 0330 14fa ..d....A.^d..0.. 0x0020: 29e3 01c9 f871 0000 0101 080a 000a e833)....q.........3 0x0030: 000f 8c75 6e65 7470 6572 6600 6e65 7470 ...unetperf.netp 0x0040: 6572 6600 6e65 7470 6572 6600 6e65 7470 erf.netperf.netp 0x0050: 6572 6600 6e65 7470 6572 6600 6e65 7470 erf.netperf.netp 0x0060: 6572 6600 6e65 7470 6572 6600 6e65 7470 erf.netperf.netp ... This also leads to awful throughput as GSO packets are dropped and cause retransmissions. The solution is to set the mac_len using the values already available in then new skb. We've already adjusted all of the header offset, so we might as well correctly figure out the mac_len using skb_reset_mac_len(). After this change, packets are segmented correctly and performance is restored. CC: Eric Dumazet <edumazet@google.com> Signed-off-by: Vlad Yasevich <vyasevic@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 18:33:06 +04:00
skb_reset_mac_len(nskb);
skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
nskb->data - tnl_hlen,
doffset + tnl_hlen);
if (nskb->len == len + doffset)
net: Loosen constraints for recalculating checksum in skb_segment() This is a generic solution to resolve a specific problem that I have observed. If the encapsulation of an skb changes then ability to offload checksums may also change. In particular it may be necessary to perform checksumming in software. An example of such a case is where a non-GRE packet is received but is to be encapsulated and transmitted as GRE. Another example relates to my proposed support for for packets that are non-MPLS when received but MPLS when transmitted. The cost of this change is that the value of the csum variable may be checked when it previously was not. In the case where the csum variable is true this is pure overhead. In the case where the csum variable is false it leads to software checksumming, which I believe also leads to correct checksums in transmitted packets for the cases described above. Further analysis: This patch relies on the return value of can_checksum_protocol() being correct and in turn the return value of skb_network_protocol(), used to provide the protocol parameter of can_checksum_protocol(), being correct. It also relies on the features passed to skb_segment() and in turn to can_checksum_protocol() being correct. I believe that this problem has not been observed for VLANs because it appears that almost all drivers, the exception being xgbe, set vlan_features such that that the checksum offload support for VLAN packets is greater than or equal to that of non-VLAN packets. I wonder if the code in xgbe may be an oversight and the hardware does support checksumming of VLAN packets. If so it may be worth updating the vlan_features of the driver as this patch will force such checksums to be performed in software rather than hardware. Signed-off-by: Simon Horman <horms@verge.net.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-19 19:46:49 +04:00
goto perform_csum_check;
if (!sg) {
if (!nskb->remcsum_offload)
nskb->ip_summed = CHECKSUM_NONE;
SKB_GSO_CB(nskb)->csum =
skb_copy_and_csum_bits(head_skb, offset,
skb_put(nskb, len),
len, 0);
SKB_GSO_CB(nskb)->csum_start =
skb_headroom(nskb) + doffset;
continue;
}
nskb_frag = skb_shinfo(nskb)->frags;
skb_copy_from_linear_data_offset(head_skb, offset,
skb_put(nskb, hsize), hsize);
skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
SKBTX_SHARED_FRAG;
if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
goto err;
while (pos < offset + len) {
if (i >= nfrags) {
BUG_ON(skb_headlen(list_skb));
i = 0;
nfrags = skb_shinfo(list_skb)->nr_frags;
frag = skb_shinfo(list_skb)->frags;
frag_skb = list_skb;
BUG_ON(!nfrags);
if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
skb_zerocopy_clone(nskb, frag_skb,
GFP_ATOMIC))
goto err;
list_skb = list_skb->next;
}
if (unlikely(skb_shinfo(nskb)->nr_frags >=
MAX_SKB_FRAGS)) {
net_warn_ratelimited(
"skb_segment: too many frags: %u %u\n",
pos, mss);
goto err;
}
*nskb_frag = *frag;
__skb_frag_ref(nskb_frag);
size = skb_frag_size(nskb_frag);
if (pos < offset) {
nskb_frag->page_offset += offset - pos;
skb_frag_size_sub(nskb_frag, offset - pos);
}
skb_shinfo(nskb)->nr_frags++;
if (pos + size <= offset + len) {
i++;
frag++;
pos += size;
} else {
skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
goto skip_fraglist;
}
nskb_frag++;
}
skip_fraglist:
nskb->data_len = len - hsize;
nskb->len += nskb->data_len;
nskb->truesize += nskb->data_len;
net: Loosen constraints for recalculating checksum in skb_segment() This is a generic solution to resolve a specific problem that I have observed. If the encapsulation of an skb changes then ability to offload checksums may also change. In particular it may be necessary to perform checksumming in software. An example of such a case is where a non-GRE packet is received but is to be encapsulated and transmitted as GRE. Another example relates to my proposed support for for packets that are non-MPLS when received but MPLS when transmitted. The cost of this change is that the value of the csum variable may be checked when it previously was not. In the case where the csum variable is true this is pure overhead. In the case where the csum variable is false it leads to software checksumming, which I believe also leads to correct checksums in transmitted packets for the cases described above. Further analysis: This patch relies on the return value of can_checksum_protocol() being correct and in turn the return value of skb_network_protocol(), used to provide the protocol parameter of can_checksum_protocol(), being correct. It also relies on the features passed to skb_segment() and in turn to can_checksum_protocol() being correct. I believe that this problem has not been observed for VLANs because it appears that almost all drivers, the exception being xgbe, set vlan_features such that that the checksum offload support for VLAN packets is greater than or equal to that of non-VLAN packets. I wonder if the code in xgbe may be an oversight and the hardware does support checksumming of VLAN packets. If so it may be worth updating the vlan_features of the driver as this patch will force such checksums to be performed in software rather than hardware. Signed-off-by: Simon Horman <horms@verge.net.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-19 19:46:49 +04:00
perform_csum_check:
if (!csum) {
if (skb_has_shared_frag(nskb)) {
err = __skb_linearize(nskb);
if (err)
goto err;
}
if (!nskb->remcsum_offload)
nskb->ip_summed = CHECKSUM_NONE;
SKB_GSO_CB(nskb)->csum =
skb_checksum(nskb, doffset,
nskb->len - doffset, 0);
SKB_GSO_CB(nskb)->csum_start =
skb_headroom(nskb) + doffset;
}
} while ((offset += len) < head_skb->len);
/* Some callers want to get the end of the list.
* Put it in segs->prev to avoid walking the list.
* (see validate_xmit_skb_list() for example)
*/
segs->prev = tail;
if (partial_segs) {
struct sk_buff *iter;
int type = skb_shinfo(head_skb)->gso_type;
unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
/* Update type to add partial and then remove dodgy if set */
type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
type &= ~SKB_GSO_DODGY;
/* Update GSO info and prepare to start updating headers on
* our way back down the stack of protocols.
*/
for (iter = segs; iter; iter = iter->next) {
skb_shinfo(iter)->gso_size = gso_size;
skb_shinfo(iter)->gso_segs = partial_segs;
skb_shinfo(iter)->gso_type = type;
SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
}
if (tail->len - doffset <= gso_size)
skb_shinfo(tail)->gso_size = 0;
else if (tail != segs)
skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
}
/* Following permits correct backpressure, for protocols
* using skb_set_owner_w().
* Idea is to tranfert ownership from head_skb to last segment.
*/
if (head_skb->destructor == sock_wfree) {
swap(tail->truesize, head_skb->truesize);
swap(tail->destructor, head_skb->destructor);
swap(tail->sk, head_skb->sk);
}
return segs;
err:
kfree_skb_list(segs);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(skb_segment);
int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
{
struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
unsigned int offset = skb_gro_offset(skb);
unsigned int headlen = skb_headlen(skb);
unsigned int len = skb_gro_len(skb);
struct sk_buff *lp, *p = *head;
unsigned int delta_truesize;
if (unlikely(p->len + len >= 65536))
return -E2BIG;
lp = NAPI_GRO_CB(p)->last;
pinfo = skb_shinfo(lp);
if (headlen <= offset) {
skb_frag_t *frag;
skb_frag_t *frag2;
int i = skbinfo->nr_frags;
int nr_frags = pinfo->nr_frags + i;
if (nr_frags > MAX_SKB_FRAGS)
goto merge;
offset -= headlen;
pinfo->nr_frags = nr_frags;
skbinfo->nr_frags = 0;
frag = pinfo->frags + nr_frags;
frag2 = skbinfo->frags + i;
do {
*--frag = *--frag2;
} while (--i);
frag->page_offset += offset;
skb_frag_size_sub(frag, offset);
/* all fragments truesize : remove (head size + sk_buff) */
delta_truesize = skb->truesize -
SKB_TRUESIZE(skb_end_offset(skb));
skb->truesize -= skb->data_len;
skb->len -= skb->data_len;
skb->data_len = 0;
NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
goto done;
} else if (skb->head_frag) {
int nr_frags = pinfo->nr_frags;
skb_frag_t *frag = pinfo->frags + nr_frags;
struct page *page = virt_to_head_page(skb->head);
unsigned int first_size = headlen - offset;
unsigned int first_offset;
if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
goto merge;
first_offset = skb->data -
(unsigned char *)page_address(page) +
offset;
pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
frag->page.p = page;
frag->page_offset = first_offset;
skb_frag_size_set(frag, first_size);
memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
/* We dont need to clear skbinfo->nr_frags here */
delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
goto done;
}
merge:
delta_truesize = skb->truesize;
if (offset > headlen) {
GRO: fix merging a paged skb after non-paged skbs Suppose that several linear skbs of the same flow were received by GRO. They were thus merged into one skb with a frag_list. Then a new skb of the same flow arrives, but it is a paged skb with data starting in its frags[]. Before adding the skb to the frag_list skb_gro_receive() will of course adjust the skb to throw away the headers. It correctly modifies the page_offset and size of the frag, but it leaves incorrect information in the skb: ->data_len is not decreased at all. ->len is decreased only by headlen, as if no change were done to the frag. Later in a receiving process this causes skb_copy_datagram_iovec() to return -EFAULT and this is seen in userspace as the result of the recv() syscall. In practice the bug can be reproduced with the sfc driver. By default the driver uses an adaptive scheme when it switches between using napi_gro_receive() (with skbs) and napi_gro_frags() (with pages). The bug is reproduced when under rx load with enough successful GRO merging the driver decides to switch from the former to the latter. Manual control is also possible, so reproducing this is easy with netcat: - on machine1 (with sfc): nc -l 12345 > /dev/null - on machine2: nc machine1 12345 < /dev/zero - on machine1: echo 1 > /sys/module/sfc/parameters/rx_alloc_method # use skbs echo 2 > /sys/module/sfc/parameters/rx_alloc_method # use pages - See that nc has quit suddenly. [v2: Modified by Eric Dumazet to avoid advancing skb->data past the end and to use a temporary variable.] Signed-off-by: Michal Schmidt <mschmidt@redhat.com> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-24 15:08:48 +03:00
unsigned int eat = offset - headlen;
skbinfo->frags[0].page_offset += eat;
skb_frag_size_sub(&skbinfo->frags[0], eat);
GRO: fix merging a paged skb after non-paged skbs Suppose that several linear skbs of the same flow were received by GRO. They were thus merged into one skb with a frag_list. Then a new skb of the same flow arrives, but it is a paged skb with data starting in its frags[]. Before adding the skb to the frag_list skb_gro_receive() will of course adjust the skb to throw away the headers. It correctly modifies the page_offset and size of the frag, but it leaves incorrect information in the skb: ->data_len is not decreased at all. ->len is decreased only by headlen, as if no change were done to the frag. Later in a receiving process this causes skb_copy_datagram_iovec() to return -EFAULT and this is seen in userspace as the result of the recv() syscall. In practice the bug can be reproduced with the sfc driver. By default the driver uses an adaptive scheme when it switches between using napi_gro_receive() (with skbs) and napi_gro_frags() (with pages). The bug is reproduced when under rx load with enough successful GRO merging the driver decides to switch from the former to the latter. Manual control is also possible, so reproducing this is easy with netcat: - on machine1 (with sfc): nc -l 12345 > /dev/null - on machine2: nc machine1 12345 < /dev/zero - on machine1: echo 1 > /sys/module/sfc/parameters/rx_alloc_method # use skbs echo 2 > /sys/module/sfc/parameters/rx_alloc_method # use pages - See that nc has quit suddenly. [v2: Modified by Eric Dumazet to avoid advancing skb->data past the end and to use a temporary variable.] Signed-off-by: Michal Schmidt <mschmidt@redhat.com> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-24 15:08:48 +03:00
skb->data_len -= eat;
skb->len -= eat;
offset = headlen;
}
__skb_pull(skb, offset);
if (NAPI_GRO_CB(p)->last == p)
skb_shinfo(p)->frag_list = skb;
else
NAPI_GRO_CB(p)->last->next = skb;
NAPI_GRO_CB(p)->last = skb;
__skb_header_release(skb);
lp = p;
done:
NAPI_GRO_CB(p)->count++;
p->data_len += len;
p->truesize += delta_truesize;
p->len += len;
if (lp != p) {
lp->data_len += len;
lp->truesize += delta_truesize;
lp->len += len;
}
NAPI_GRO_CB(skb)->same_flow = 1;
return 0;
}
EXPORT_SYMBOL_GPL(skb_gro_receive);
void __init skb_init(void)
{
net: Whitelist the skbuff_head_cache "cb" field Most callers of put_cmsg() use a "sizeof(foo)" for the length argument. Within put_cmsg(), a copy_to_user() call is made with a dynamic size, as a result of the cmsg header calculations. This means that hardened usercopy will examine the copy, even though it was technically a fixed size and should be implicitly whitelisted. All the put_cmsg() calls being built from values in skbuff_head_cache are coming out of the protocol-defined "cb" field, so whitelist this field entirely instead of creating per-use bounce buffers, for which there are concerns about performance. Original report was: Bad or missing usercopy whitelist? Kernel memory exposure attempt detected from SLAB object 'skbuff_head_cache' (offset 64, size 16)! WARNING: CPU: 0 PID: 3663 at mm/usercopy.c:81 usercopy_warn+0xdb/0x100 mm/usercopy.c:76 ... __check_heap_object+0x89/0xc0 mm/slab.c:4426 check_heap_object mm/usercopy.c:236 [inline] __check_object_size+0x272/0x530 mm/usercopy.c:259 check_object_size include/linux/thread_info.h:112 [inline] check_copy_size include/linux/thread_info.h:143 [inline] copy_to_user include/linux/uaccess.h:154 [inline] put_cmsg+0x233/0x3f0 net/core/scm.c:242 sock_recv_errqueue+0x200/0x3e0 net/core/sock.c:2913 packet_recvmsg+0xb2e/0x17a0 net/packet/af_packet.c:3296 sock_recvmsg_nosec net/socket.c:803 [inline] sock_recvmsg+0xc9/0x110 net/socket.c:810 ___sys_recvmsg+0x2a4/0x640 net/socket.c:2179 __sys_recvmmsg+0x2a9/0xaf0 net/socket.c:2287 SYSC_recvmmsg net/socket.c:2368 [inline] SyS_recvmmsg+0xc4/0x160 net/socket.c:2352 entry_SYSCALL_64_fastpath+0x29/0xa0 Reported-by: syzbot+e2d6cfb305e9f3911dea@syzkaller.appspotmail.com Fixes: 6d07d1cd300f ("usercopy: Restrict non-usercopy caches to size 0") Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-08 04:44:38 +03:00
skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
sizeof(struct sk_buff),
0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
net: Whitelist the skbuff_head_cache "cb" field Most callers of put_cmsg() use a "sizeof(foo)" for the length argument. Within put_cmsg(), a copy_to_user() call is made with a dynamic size, as a result of the cmsg header calculations. This means that hardened usercopy will examine the copy, even though it was technically a fixed size and should be implicitly whitelisted. All the put_cmsg() calls being built from values in skbuff_head_cache are coming out of the protocol-defined "cb" field, so whitelist this field entirely instead of creating per-use bounce buffers, for which there are concerns about performance. Original report was: Bad or missing usercopy whitelist? Kernel memory exposure attempt detected from SLAB object 'skbuff_head_cache' (offset 64, size 16)! WARNING: CPU: 0 PID: 3663 at mm/usercopy.c:81 usercopy_warn+0xdb/0x100 mm/usercopy.c:76 ... __check_heap_object+0x89/0xc0 mm/slab.c:4426 check_heap_object mm/usercopy.c:236 [inline] __check_object_size+0x272/0x530 mm/usercopy.c:259 check_object_size include/linux/thread_info.h:112 [inline] check_copy_size include/linux/thread_info.h:143 [inline] copy_to_user include/linux/uaccess.h:154 [inline] put_cmsg+0x233/0x3f0 net/core/scm.c:242 sock_recv_errqueue+0x200/0x3e0 net/core/sock.c:2913 packet_recvmsg+0xb2e/0x17a0 net/packet/af_packet.c:3296 sock_recvmsg_nosec net/socket.c:803 [inline] sock_recvmsg+0xc9/0x110 net/socket.c:810 ___sys_recvmsg+0x2a4/0x640 net/socket.c:2179 __sys_recvmmsg+0x2a9/0xaf0 net/socket.c:2287 SYSC_recvmmsg net/socket.c:2368 [inline] SyS_recvmmsg+0xc4/0x160 net/socket.c:2352 entry_SYSCALL_64_fastpath+0x29/0xa0 Reported-by: syzbot+e2d6cfb305e9f3911dea@syzkaller.appspotmail.com Fixes: 6d07d1cd300f ("usercopy: Restrict non-usercopy caches to size 0") Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-08 04:44:38 +03:00
offsetof(struct sk_buff, cb),
sizeof_field(struct sk_buff, cb),
NULL);
skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
sizeof(struct sk_buff_fclones),
0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
NULL);
}
static int
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
unsigned int recursion_level)
{
int start = skb_headlen(skb);
int i, copy = start - offset;
struct sk_buff *frag_iter;
int elt = 0;
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
if (unlikely(recursion_level >= 24))
return -EMSGSIZE;
if (copy > 0) {
if (copy > len)
copy = len;
sg_set_buf(sg, skb->data + offset, copy);
elt++;
if ((len -= copy) == 0)
return elt;
offset += copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
WARN_ON(start > offset + len);
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
if ((copy = end - offset) > 0) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
if (unlikely(elt && sg_is_last(&sg[elt - 1])))
return -EMSGSIZE;
if (copy > len)
copy = len;
sg_set_page(&sg[elt], skb_frag_page(frag), copy,
frag->page_offset+offset-start);
elt++;
if (!(len -= copy))
return elt;
offset += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
int end, ret;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
if (unlikely(elt && sg_is_last(&sg[elt - 1])))
return -EMSGSIZE;
if (copy > len)
copy = len;
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
copy, recursion_level + 1);
if (unlikely(ret < 0))
return ret;
elt += ret;
if ((len -= copy) == 0)
return elt;
offset += copy;
}
start = end;
}
BUG_ON(len);
return elt;
}
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
/**
* skb_to_sgvec - Fill a scatter-gather list from a socket buffer
* @skb: Socket buffer containing the buffers to be mapped
* @sg: The scatter-gather list to map into
* @offset: The offset into the buffer's contents to start mapping
* @len: Length of buffer space to be mapped
*
* Fill the specified scatter-gather list with mappings/pointers into a
* region of the buffer space attached to a socket buffer. Returns either
* the number of scatterlist items used, or -EMSGSIZE if the contents
* could not fit.
*/
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
{
int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
if (nsg <= 0)
return nsg;
sg_mark_end(&sg[nsg - 1]);
return nsg;
}
EXPORT_SYMBOL_GPL(skb_to_sgvec);
/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
* sglist without mark the sg which contain last skb data as the end.
* So the caller can mannipulate sg list as will when padding new data after
* the first call without calling sg_unmark_end to expend sg list.
*
* Scenario to use skb_to_sgvec_nomark:
* 1. sg_init_table
* 2. skb_to_sgvec_nomark(payload1)
* 3. skb_to_sgvec_nomark(payload2)
*
* This is equivalent to:
* 1. sg_init_table
* 2. skb_to_sgvec(payload1)
* 3. sg_unmark_end
* 4. skb_to_sgvec(payload2)
*
* When mapping mutilple payload conditionally, skb_to_sgvec_nomark
* is more preferable.
*/
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
int offset, int len)
{
skbuff: return -EMSGSIZE in skb_to_sgvec to prevent overflow This is a defense-in-depth measure in response to bugs like 4d6fa57b4dab ("macsec: avoid heap overflow in skb_to_sgvec"). There's not only a potential overflow of sglist items, but also a stack overflow potential, so we fix this by limiting the amount of recursion this function is allowed to do. Not actually providing a bounded base case is a future disaster that we can easily avoid here. As a small matter of house keeping, we take this opportunity to move the documentation comment over the actual function the documentation is for. While this could be implemented by using an explicit stack of skbuffs, when implementing this, the function complexity increased considerably, and I don't think such complexity and bloat is actually worth it. So, instead I built this and tested it on x86, x86_64, ARM, ARM64, and MIPS, and measured the stack usage there. I also reverted the recent MIPS changes that give it a separate IRQ stack, so that I could experience some worst-case situations. I found that limiting it to 24 layers deep yielded a good stack usage with room for safety, as well as being much deeper than any driver actually ever creates. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Howells <dhowells@redhat.com> Cc: Sabrina Dubroca <sd@queasysnail.net> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 05:16:22 +03:00
return __skb_to_sgvec(skb, sg, offset, len, 0);
}
EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
/**
* skb_cow_data - Check that a socket buffer's data buffers are writable
* @skb: The socket buffer to check.
* @tailbits: Amount of trailing space to be added
* @trailer: Returned pointer to the skb where the @tailbits space begins
*
* Make sure that the data buffers attached to a socket buffer are
* writable. If they are not, private copies are made of the data buffers
* and the socket buffer is set to use these instead.
*
* If @tailbits is given, make sure that there is space to write @tailbits
* bytes of data beyond current end of socket buffer. @trailer will be
* set to point to the skb in which this space begins.
*
* The number of scatterlist elements required to completely map the
* COW'd and extended socket buffer will be returned.
*/
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
{
int copyflag;
int elt;
struct sk_buff *skb1, **skb_p;
/* If skb is cloned or its head is paged, reallocate
* head pulling out all the pages (pages are considered not writable
* at the moment even if they are anonymous).
*/
if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
__pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
return -ENOMEM;
/* Easy case. Most of packets will go this way. */
if (!skb_has_frag_list(skb)) {
/* A little of trouble, not enough of space for trailer.
* This should not happen, when stack is tuned to generate
* good frames. OK, on miss we reallocate and reserve even more
* space, 128 bytes is fair. */
if (skb_tailroom(skb) < tailbits &&
pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
return -ENOMEM;
/* Voila! */
*trailer = skb;
return 1;
}
/* Misery. We are in troubles, going to mincer fragments... */
elt = 1;
skb_p = &skb_shinfo(skb)->frag_list;
copyflag = 0;
while ((skb1 = *skb_p) != NULL) {
int ntail = 0;
/* The fragment is partially pulled by someone,
* this can happen on input. Copy it and everything
* after it. */
if (skb_shared(skb1))
copyflag = 1;
/* If the skb is the last, worry about trailer. */
if (skb1->next == NULL && tailbits) {
if (skb_shinfo(skb1)->nr_frags ||
skb_has_frag_list(skb1) ||
skb_tailroom(skb1) < tailbits)
ntail = tailbits + 128;
}
if (copyflag ||
skb_cloned(skb1) ||
ntail ||
skb_shinfo(skb1)->nr_frags ||
skb_has_frag_list(skb1)) {
struct sk_buff *skb2;
/* Fuck, we are miserable poor guys... */
if (ntail == 0)
skb2 = skb_copy(skb1, GFP_ATOMIC);
else
skb2 = skb_copy_expand(skb1,
skb_headroom(skb1),
ntail,
GFP_ATOMIC);
if (unlikely(skb2 == NULL))
return -ENOMEM;
if (skb1->sk)
skb_set_owner_w(skb2, skb1->sk);
/* Looking around. Are we still alive?
* OK, link new skb, drop old one */
skb2->next = skb1->next;
*skb_p = skb2;
kfree_skb(skb1);
skb1 = skb2;
}
elt++;
*trailer = skb1;
skb_p = &skb1->next;
}
return elt;
}
EXPORT_SYMBOL_GPL(skb_cow_data);
static void sock_rmem_free(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
}
static void skb_set_err_queue(struct sk_buff *skb)
{
/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
* So, it is safe to (mis)use it to mark skbs on the error queue.
*/
skb->pkt_type = PACKET_OUTGOING;
BUILD_BUG_ON(PACKET_OUTGOING == 0);
}
/*
* Note: We dont mem charge error packets (no sk_forward_alloc changes)
*/
int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
{
if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
(unsigned int)sk->sk_rcvbuf)
return -ENOMEM;
skb_orphan(skb);
skb->sk = sk;
skb->destructor = sock_rmem_free;
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
skb_set_err_queue(skb);
net: add skb_dst_force() in sock_queue_err_skb() Commit 7fee226ad239 (add a noref bit on skb dst) forgot to use skb_dst_force() on packets queued in sk_error_queue This triggers following warning, for applications using IP_CMSG_PKTINFO receiving one error status ------------[ cut here ]------------ WARNING: at include/linux/skbuff.h:457 ip_cmsg_recv_pktinfo+0xa6/0xb0() Hardware name: 2669UYD Modules linked in: isofs vboxnetadp vboxnetflt nfsd ebtable_nat ebtables lib80211_crypt_ccmp uinput xcbc hdaps tp_smapi thinkpad_ec radeonfb fb_ddc radeon ttm drm_kms_helper drm ipw2200 intel_agp intel_gtt libipw i2c_algo_bit i2c_i801 agpgart rng_core cfbfillrect cfbcopyarea cfbimgblt video raid10 raid1 raid0 linear md_mod vboxdrv Pid: 4697, comm: miredo Not tainted 2.6.39-rc6-00569-g5895198-dirty #22 Call Trace: [<c17746b6>] ? printk+0x1d/0x1f [<c1058302>] warn_slowpath_common+0x72/0xa0 [<c15bbca6>] ? ip_cmsg_recv_pktinfo+0xa6/0xb0 [<c15bbca6>] ? ip_cmsg_recv_pktinfo+0xa6/0xb0 [<c1058350>] warn_slowpath_null+0x20/0x30 [<c15bbca6>] ip_cmsg_recv_pktinfo+0xa6/0xb0 [<c15bbdd7>] ip_cmsg_recv+0x127/0x260 [<c154f82d>] ? skb_dequeue+0x4d/0x70 [<c1555523>] ? skb_copy_datagram_iovec+0x53/0x300 [<c178e834>] ? sub_preempt_count+0x24/0x50 [<c15bdd2d>] ip_recv_error+0x23d/0x270 [<c15de554>] udp_recvmsg+0x264/0x2b0 [<c15ea659>] inet_recvmsg+0xd9/0x130 [<c1547752>] sock_recvmsg+0xf2/0x120 [<c11179cb>] ? might_fault+0x4b/0xa0 [<c15546bc>] ? verify_iovec+0x4c/0xc0 [<c1547660>] ? sock_recvmsg_nosec+0x100/0x100 [<c1548294>] __sys_recvmsg+0x114/0x1e0 [<c1093895>] ? __lock_acquire+0x365/0x780 [<c1148b66>] ? fget_light+0xa6/0x3e0 [<c1148b7f>] ? fget_light+0xbf/0x3e0 [<c1148aee>] ? fget_light+0x2e/0x3e0 [<c1549f29>] sys_recvmsg+0x39/0x60 Close bug https://bugzilla.kernel.org/show_bug.cgi?id=34622 Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-18 10:21:31 +04:00
/* before exiting rcu section, make sure dst is refcounted */
skb_dst_force(skb);
skb_queue_tail(&sk->sk_error_queue, skb);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
return 0;
}
EXPORT_SYMBOL(sock_queue_err_skb);
static bool is_icmp_err_skb(const struct sk_buff *skb)
{
return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
}
struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
{
struct sk_buff_head *q = &sk->sk_error_queue;
struct sk_buff *skb, *skb_next = NULL;
bool icmp_next = false;
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
skb = __skb_dequeue(q);
if (skb && (skb_next = skb_peek(q))) {
icmp_next = is_icmp_err_skb(skb_next);
if (icmp_next)
sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
}
spin_unlock_irqrestore(&q->lock, flags);
if (is_icmp_err_skb(skb) && !icmp_next)
sk->sk_err = 0;
if (skb_next)
sk->sk_error_report(sk);
return skb;
}
EXPORT_SYMBOL(sock_dequeue_err_skb);
/**
* skb_clone_sk - create clone of skb, and take reference to socket
* @skb: the skb to clone
*
* This function creates a clone of a buffer that holds a reference on
* sk_refcnt. Buffers created via this function are meant to be
* returned using sock_queue_err_skb, or free via kfree_skb.
*
* When passing buffers allocated with this function to sock_queue_err_skb
* it is necessary to wrap the call with sock_hold/sock_put in order to
* prevent the socket from being released prior to being enqueued on
* the sk_error_queue.
*/
struct sk_buff *skb_clone_sk(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
struct sk_buff *clone;
if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
return NULL;
clone = skb_clone(skb, GFP_ATOMIC);
if (!clone) {
sock_put(sk);
return NULL;
}
clone->sk = sk;
clone->destructor = sock_efree;
return clone;
}
EXPORT_SYMBOL(skb_clone_sk);
static void __skb_complete_tx_timestamp(struct sk_buff *skb,
struct sock *sk,
int tstype,
bool opt_stats)
{
struct sock_exterr_skb *serr;
int err;
BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
serr = SKB_EXT_ERR(skb);
memset(serr, 0, sizeof(*serr));
serr->ee.ee_errno = ENOMSG;
serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
serr->ee.ee_info = tstype;
serr->opt_stats = opt_stats;
serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
net-timestamp: TCP timestamping TCP timestamping extends SO_TIMESTAMPING to bytestreams. Bytestreams do not have a 1:1 relationship between send() buffers and network packets. The feature interprets a send call on a bytestream as a request for a timestamp for the last byte in that send() buffer. The choice corresponds to a request for a timestamp when all bytes in the buffer have been sent. That assumption depends on in-order kernel transmission. This is the common case. That said, it is possible to construct a traffic shaping tree that would result in reordering. The guarantee is strong, then, but not ironclad. This implementation supports send and sendpages (splice). GSO replaces one large packet with multiple smaller packets. This patch also copies the option into the correct smaller packet. This patch does not yet support timestamping on data in an initial TCP Fast Open SYN, because that takes a very different data path. If ID generation in ee_data is enabled, bytestream timestamps return a byte offset, instead of the packet counter for datagrams. The implementation supports a single timestamp per packet. It silenty replaces requests for previous timestamps. To avoid missing tstamps, flush the tcp queue by disabling Nagle, cork and autocork. Missing tstamps can be detected by offset when the ee_data ID is enabled. Implementation details: - On GSO, the timestamping code can be included in the main loop. I moved it into its own loop to reduce the impact on the common case to a single branch. - To avoid leaking the absolute seqno to userspace, the offset returned in ee_data must always be relative. It is an offset between an skb and sk field. The first is always set (also for GSO & ACK). The second must also never be uninitialized. Only allow the ID option on sockets in the ESTABLISHED state, for which the seqno is available. Never reset it to zero (instead, move it to the current seqno when reenabling the option). Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-05 06:11:49 +04:00
if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
serr->ee.ee_data = skb_shinfo(skb)->tskey;
if (sk->sk_protocol == IPPROTO_TCP &&
sk->sk_type == SOCK_STREAM)
net-timestamp: TCP timestamping TCP timestamping extends SO_TIMESTAMPING to bytestreams. Bytestreams do not have a 1:1 relationship between send() buffers and network packets. The feature interprets a send call on a bytestream as a request for a timestamp for the last byte in that send() buffer. The choice corresponds to a request for a timestamp when all bytes in the buffer have been sent. That assumption depends on in-order kernel transmission. This is the common case. That said, it is possible to construct a traffic shaping tree that would result in reordering. The guarantee is strong, then, but not ironclad. This implementation supports send and sendpages (splice). GSO replaces one large packet with multiple smaller packets. This patch also copies the option into the correct smaller packet. This patch does not yet support timestamping on data in an initial TCP Fast Open SYN, because that takes a very different data path. If ID generation in ee_data is enabled, bytestream timestamps return a byte offset, instead of the packet counter for datagrams. The implementation supports a single timestamp per packet. It silenty replaces requests for previous timestamps. To avoid missing tstamps, flush the tcp queue by disabling Nagle, cork and autocork. Missing tstamps can be detected by offset when the ee_data ID is enabled. Implementation details: - On GSO, the timestamping code can be included in the main loop. I moved it into its own loop to reduce the impact on the common case to a single branch. - To avoid leaking the absolute seqno to userspace, the offset returned in ee_data must always be relative. It is an offset between an skb and sk field. The first is always set (also for GSO & ACK). The second must also never be uninitialized. Only allow the ID option on sockets in the ESTABLISHED state, for which the seqno is available. Never reset it to zero (instead, move it to the current seqno when reenabling the option). Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-05 06:11:49 +04:00
serr->ee.ee_data -= sk->sk_tskey;
}
err = sock_queue_err_skb(sk, skb);
if (err)
kfree_skb(skb);
}
static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
{
bool ret;
if (likely(sysctl_tstamp_allow_data || tsonly))
return true;
read_lock_bh(&sk->sk_callback_lock);
ret = sk->sk_socket && sk->sk_socket->file &&
file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
read_unlock_bh(&sk->sk_callback_lock);
return ret;
}
void skb_complete_tx_timestamp(struct sk_buff *skb,
struct skb_shared_hwtstamps *hwtstamps)
{
struct sock *sk = skb->sk;
if (!skb_may_tx_timestamp(sk, false))
goto err;
/* Take a reference to prevent skb_orphan() from freeing the socket,
* but only if the socket refcount is not zero.
*/
if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
*skb_hwtstamps(skb) = *hwtstamps;
__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
sock_put(sk);
return;
}
err:
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
void __skb_tstamp_tx(struct sk_buff *orig_skb,
struct skb_shared_hwtstamps *hwtstamps,
struct sock *sk, int tstype)
{
struct sk_buff *skb;
bool tsonly, opt_stats = false;
if (!sk)
return;
if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
return;
tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
if (!skb_may_tx_timestamp(sk, tsonly))
return;
if (tsonly) {
#ifdef CONFIG_INET
if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
sk->sk_protocol == IPPROTO_TCP &&
sk->sk_type == SOCK_STREAM) {
skb = tcp_get_timestamping_opt_stats(sk);
opt_stats = true;
} else
#endif
skb = alloc_skb(0, GFP_ATOMIC);
} else {
skb = skb_clone(orig_skb, GFP_ATOMIC);
}
if (!skb)
return;
if (tsonly) {
skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
SKBTX_ANY_TSTAMP;
skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
}
if (hwtstamps)
*skb_hwtstamps(skb) = *hwtstamps;
else
skb->tstamp = ktime_get_real();
__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
}
EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
void skb_tstamp_tx(struct sk_buff *orig_skb,
struct skb_shared_hwtstamps *hwtstamps)
{
return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
SCM_TSTAMP_SND);
}
EXPORT_SYMBOL_GPL(skb_tstamp_tx);
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
{
struct sock *sk = skb->sk;
struct sock_exterr_skb *serr;
int err = 1;
skb->wifi_acked_valid = 1;
skb->wifi_acked = acked;
serr = SKB_EXT_ERR(skb);
memset(serr, 0, sizeof(*serr));
serr->ee.ee_errno = ENOMSG;
serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
/* Take a reference to prevent skb_orphan() from freeing the socket,
* but only if the socket refcount is not zero.
*/
if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
err = sock_queue_err_skb(sk, skb);
sock_put(sk);
}
if (err)
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
/**
* skb_partial_csum_set - set up and verify partial csum values for packet
* @skb: the skb to set
* @start: the number of bytes after skb->data to start checksumming.
* @off: the offset from start to place the checksum.
*
* For untrusted partially-checksummed packets, we need to make sure the values
* for skb->csum_start and skb->csum_offset are valid so we don't oops.
*
* This function checks and sets those values and skb->ip_summed: if this
* returns false you should drop the packet.
*/
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
{
if (unlikely(start > skb_headlen(skb)) ||
unlikely((int)start + off > skb_headlen(skb) - 2)) {
net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
start, off, skb_headlen(skb));
return false;
}
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb_headroom(skb) + start;
skb->csum_offset = off;
skb_set_transport_header(skb, start);
return true;
}
EXPORT_SYMBOL_GPL(skb_partial_csum_set);
static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
unsigned int max)
{
if (skb_headlen(skb) >= len)
return 0;
/* If we need to pullup then pullup to the max, so we
* won't need to do it again.
*/
if (max > skb->len)
max = skb->len;
if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
return -ENOMEM;
if (skb_headlen(skb) < len)
return -EPROTO;
return 0;
}
#define MAX_TCP_HDR_LEN (15 * 4)
static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
typeof(IPPROTO_IP) proto,
unsigned int off)
{
switch (proto) {
int err;
case IPPROTO_TCP:
err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
off + MAX_TCP_HDR_LEN);
if (!err && !skb_partial_csum_set(skb, off,
offsetof(struct tcphdr,
check)))
err = -EPROTO;
return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
case IPPROTO_UDP:
err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
off + sizeof(struct udphdr));
if (!err && !skb_partial_csum_set(skb, off,
offsetof(struct udphdr,
check)))
err = -EPROTO;
return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
}
return ERR_PTR(-EPROTO);
}
/* This value should be large enough to cover a tagged ethernet header plus
* maximally sized IP and TCP or UDP headers.
*/
#define MAX_IP_HDR_LEN 128
static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
{
unsigned int off;
bool fragment;
__sum16 *csum;
int err;
fragment = false;
err = skb_maybe_pull_tail(skb,
sizeof(struct iphdr),
MAX_IP_HDR_LEN);
if (err < 0)
goto out;
if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
fragment = true;
off = ip_hdrlen(skb);
err = -EPROTO;
if (fragment)
goto out;
csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
if (IS_ERR(csum))
return PTR_ERR(csum);
if (recalculate)
*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
skb->len - off,
ip_hdr(skb)->protocol, 0);
err = 0;
out:
return err;
}
/* This value should be large enough to cover a tagged ethernet header plus
* an IPv6 header, all options, and a maximal TCP or UDP header.
*/
#define MAX_IPV6_HDR_LEN 256
#define OPT_HDR(type, skb, off) \
(type *)(skb_network_header(skb) + (off))
static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
{
int err;
u8 nexthdr;
unsigned int off;
unsigned int len;
bool fragment;
bool done;
__sum16 *csum;
fragment = false;
done = false;
off = sizeof(struct ipv6hdr);
err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
nexthdr = ipv6_hdr(skb)->nexthdr;
len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
while (off <= len && !done) {
switch (nexthdr) {
case IPPROTO_DSTOPTS:
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING: {
struct ipv6_opt_hdr *hp;
err = skb_maybe_pull_tail(skb,
off +
sizeof(struct ipv6_opt_hdr),
MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
nexthdr = hp->nexthdr;
off += ipv6_optlen(hp);
break;
}
case IPPROTO_AH: {
struct ip_auth_hdr *hp;
err = skb_maybe_pull_tail(skb,
off +
sizeof(struct ip_auth_hdr),
MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
hp = OPT_HDR(struct ip_auth_hdr, skb, off);
nexthdr = hp->nexthdr;
off += ipv6_authlen(hp);
break;
}
case IPPROTO_FRAGMENT: {
struct frag_hdr *hp;
err = skb_maybe_pull_tail(skb,
off +
sizeof(struct frag_hdr),
MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
hp = OPT_HDR(struct frag_hdr, skb, off);
if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
fragment = true;
nexthdr = hp->nexthdr;
off += sizeof(struct frag_hdr);
break;
}
default:
done = true;
break;
}
}
err = -EPROTO;
if (!done || fragment)
goto out;
csum = skb_checksum_setup_ip(skb, nexthdr, off);
if (IS_ERR(csum))
return PTR_ERR(csum);
if (recalculate)
*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
skb->len - off, nexthdr, 0);
err = 0;
out:
return err;
}
/**
* skb_checksum_setup - set up partial checksum offset
* @skb: the skb to set up
* @recalculate: if true the pseudo-header checksum will be recalculated
*/
int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
{
int err;
switch (skb->protocol) {
case htons(ETH_P_IP):
err = skb_checksum_setup_ipv4(skb, recalculate);
break;
case htons(ETH_P_IPV6):
err = skb_checksum_setup_ipv6(skb, recalculate);
break;
default:
err = -EPROTO;
break;
}
return err;
}
EXPORT_SYMBOL(skb_checksum_setup);
/**
* skb_checksum_maybe_trim - maybe trims the given skb
* @skb: the skb to check
* @transport_len: the data length beyond the network header
*
* Checks whether the given skb has data beyond the given transport length.
* If so, returns a cloned skb trimmed to this transport length.
* Otherwise returns the provided skb. Returns NULL in error cases
* (e.g. transport_len exceeds skb length or out-of-memory).
*
* Caller needs to set the skb transport header and free any returned skb if it
* differs from the provided skb.
*/
static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
unsigned int transport_len)
{
struct sk_buff *skb_chk;
unsigned int len = skb_transport_offset(skb) + transport_len;
int ret;
if (skb->len < len)
return NULL;
else if (skb->len == len)
return skb;
skb_chk = skb_clone(skb, GFP_ATOMIC);
if (!skb_chk)
return NULL;
ret = pskb_trim_rcsum(skb_chk, len);
if (ret) {
kfree_skb(skb_chk);
return NULL;
}
return skb_chk;
}
/**
* skb_checksum_trimmed - validate checksum of an skb
* @skb: the skb to check
* @transport_len: the data length beyond the network header
* @skb_chkf: checksum function to use
*
* Applies the given checksum function skb_chkf to the provided skb.
* Returns a checked and maybe trimmed skb. Returns NULL on error.
*
* If the skb has data beyond the given transport length, then a
* trimmed & cloned skb is checked and returned.
*
* Caller needs to set the skb transport header and free any returned skb if it
* differs from the provided skb.
*/
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
unsigned int transport_len,
__sum16(*skb_chkf)(struct sk_buff *skb))
{
struct sk_buff *skb_chk;
unsigned int offset = skb_transport_offset(skb);
__sum16 ret;
skb_chk = skb_checksum_maybe_trim(skb, transport_len);
if (!skb_chk)
goto err;
if (!pskb_may_pull(skb_chk, offset))
goto err;
2016-02-24 06:21:42 +03:00
skb_pull_rcsum(skb_chk, offset);
ret = skb_chkf(skb_chk);
2016-02-24 06:21:42 +03:00
skb_push_rcsum(skb_chk, offset);
if (ret)
goto err;
return skb_chk;
err:
if (skb_chk && skb_chk != skb)
kfree_skb(skb_chk);
return NULL;
}
EXPORT_SYMBOL(skb_checksum_trimmed);
void __skb_warn_lro_forwarding(const struct sk_buff *skb)
{
net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
skb->dev->name);
}
EXPORT_SYMBOL(__skb_warn_lro_forwarding);
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
{
if (head_stolen) {
skb_release_head_state(skb);
kmem_cache_free(skbuff_head_cache, skb);
} else {
__kfree_skb(skb);
}
}
EXPORT_SYMBOL(kfree_skb_partial);
/**
* skb_try_coalesce - try to merge skb to prior one
* @to: prior buffer
* @from: buffer to add
* @fragstolen: pointer to boolean
* @delta_truesize: how much more was allocated than was requested
*/
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
bool *fragstolen, int *delta_truesize)
{
struct skb_shared_info *to_shinfo, *from_shinfo;
int i, delta, len = from->len;
*fragstolen = false;
if (skb_cloned(to))
return false;
if (len <= skb_tailroom(to)) {
if (len)
BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
*delta_truesize = 0;
return true;
}
to_shinfo = skb_shinfo(to);
from_shinfo = skb_shinfo(from);
if (to_shinfo->frag_list || from_shinfo->frag_list)
return false;
if (skb_zcopy(to) || skb_zcopy(from))
return false;
if (skb_headlen(from) != 0) {
struct page *page;
unsigned int offset;
if (to_shinfo->nr_frags +
from_shinfo->nr_frags >= MAX_SKB_FRAGS)
return false;
if (skb_head_is_locked(from))
return false;
delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
page = virt_to_head_page(from->head);
offset = from->data - (unsigned char *)page_address(page);
skb_fill_page_desc(to, to_shinfo->nr_frags,
page, offset, skb_headlen(from));
*fragstolen = true;
} else {
if (to_shinfo->nr_frags +
from_shinfo->nr_frags > MAX_SKB_FRAGS)
return false;
delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
}
WARN_ON_ONCE(delta < len);
memcpy(to_shinfo->frags + to_shinfo->nr_frags,
from_shinfo->frags,
from_shinfo->nr_frags * sizeof(skb_frag_t));
to_shinfo->nr_frags += from_shinfo->nr_frags;
if (!skb_cloned(from))
from_shinfo->nr_frags = 0;
/* if the skb is not cloned this does nothing
* since we set nr_frags to 0.
*/
for (i = 0; i < from_shinfo->nr_frags; i++)
__skb_frag_ref(&from_shinfo->frags[i]);
to->truesize += delta;
to->len += len;
to->data_len += len;
*delta_truesize = delta;
return true;
}
EXPORT_SYMBOL(skb_try_coalesce);
/**
* skb_scrub_packet - scrub an skb
*
* @skb: buffer to clean
* @xnet: packet is crossing netns
*
* skb_scrub_packet can be used after encapsulating or decapsulting a packet
* into/from a tunnel. Some information have to be cleared during these
* operations.
* skb_scrub_packet can also be used to clean a skb before injecting it in
* another namespace (@xnet == true). We have to clear all information in the
* skb that could impact namespace isolation.
*/
void skb_scrub_packet(struct sk_buff *skb, bool xnet)
{
skb->tstamp = 0;
skb->pkt_type = PACKET_HOST;
skb->skb_iif = 0;
skb->ignore_df = 0;
skb_dst_drop(skb);
secpath_reset(skb);
nf_reset(skb);
nf_reset_trace(skb);
skbuff: Do not scrub skb mark within the same name space On Wed, Apr 15, 2015 at 05:41:26PM +0200, Nicolas Dichtel wrote: > Le 15/04/2015 15:57, Herbert Xu a écrit : > >On Wed, Apr 15, 2015 at 06:22:29PM +0800, Herbert Xu wrote: > [snip] > >Subject: skbuff: Do not scrub skb mark within the same name space > > > >The commit ea23192e8e577dfc51e0f4fc5ca113af334edff9 ("tunnels: > Maybe add a Fixes tag? > Fixes: ea23192e8e57 ("tunnels: harmonize cleanup done on skb on rx path") > > >harmonize cleanup done on skb on rx path") broke anyone trying to > >use netfilter marking across IPv4 tunnels. While most of the > >fields that are cleared by skb_scrub_packet don't matter, the > >netfilter mark must be preserved. > > > >This patch rearranges skb_scurb_packet to preserve the mark field. > nit: s/scurb/scrub > > Else it's fine for me. Sure. PS I used the wrong email for James the first time around. So let me repeat the question here. Should secmark be preserved or cleared across tunnels within the same name space? In fact, do our security models even support name spaces? ---8<--- The commit ea23192e8e577dfc51e0f4fc5ca113af334edff9 ("tunnels: harmonize cleanup done on skb on rx path") broke anyone trying to use netfilter marking across IPv4 tunnels. While most of the fields that are cleared by skb_scrub_packet don't matter, the netfilter mark must be preserved. This patch rearranges skb_scrub_packet to preserve the mark field. Fixes: ea23192e8e57 ("tunnels: harmonize cleanup done on skb on rx path") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-16 04:03:27 +03:00
if (!xnet)
return;
ipvs_reset(skb);
skbuff: Do not scrub skb mark within the same name space On Wed, Apr 15, 2015 at 05:41:26PM +0200, Nicolas Dichtel wrote: > Le 15/04/2015 15:57, Herbert Xu a écrit : > >On Wed, Apr 15, 2015 at 06:22:29PM +0800, Herbert Xu wrote: > [snip] > >Subject: skbuff: Do not scrub skb mark within the same name space > > > >The commit ea23192e8e577dfc51e0f4fc5ca113af334edff9 ("tunnels: > Maybe add a Fixes tag? > Fixes: ea23192e8e57 ("tunnels: harmonize cleanup done on skb on rx path") > > >harmonize cleanup done on skb on rx path") broke anyone trying to > >use netfilter marking across IPv4 tunnels. While most of the > >fields that are cleared by skb_scrub_packet don't matter, the > >netfilter mark must be preserved. > > > >This patch rearranges skb_scurb_packet to preserve the mark field. > nit: s/scurb/scrub > > Else it's fine for me. Sure. PS I used the wrong email for James the first time around. So let me repeat the question here. Should secmark be preserved or cleared across tunnels within the same name space? In fact, do our security models even support name spaces? ---8<--- The commit ea23192e8e577dfc51e0f4fc5ca113af334edff9 ("tunnels: harmonize cleanup done on skb on rx path") broke anyone trying to use netfilter marking across IPv4 tunnels. While most of the fields that are cleared by skb_scrub_packet don't matter, the netfilter mark must be preserved. This patch rearranges skb_scrub_packet to preserve the mark field. Fixes: ea23192e8e57 ("tunnels: harmonize cleanup done on skb on rx path") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-16 04:03:27 +03:00
skb_orphan(skb);
skb->mark = 0;
}
EXPORT_SYMBOL_GPL(skb_scrub_packet);
/**
* skb_gso_transport_seglen - Return length of individual segments of a gso packet
*
* @skb: GSO skb
*
* skb_gso_transport_seglen is used to determine the real size of the
* individual segments, including Layer4 headers (TCP/UDP).
*
* The MAC/L2 or network (IP, IPv6) headers are not accounted for.
*/
static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
{
const struct skb_shared_info *shinfo = skb_shinfo(skb);
unsigned int thlen = 0;
if (skb->encapsulation) {
thlen = skb_inner_transport_header(skb) -
skb_transport_header(skb);
if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
thlen += inner_tcp_hdrlen(skb);
} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
thlen = tcp_hdrlen(skb);
} else if (unlikely(skb_is_gso_sctp(skb))) {
thlen = sizeof(struct sctphdr);
}
/* UFO sets gso_size to the size of the fragmentation
* payload, i.e. the size of the L4 (UDP) header is already
* accounted for.
*/
return thlen + shinfo->gso_size;
}
/**
* skb_gso_network_seglen - Return length of individual segments of a gso packet
*
* @skb: GSO skb
*
* skb_gso_network_seglen is used to determine the real size of the
* individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
*
* The MAC/L2 header is not accounted for.
*/
static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
unsigned int hdr_len = skb_transport_header(skb) -
skb_network_header(skb);
return hdr_len + skb_gso_transport_seglen(skb);
}
/**
* skb_gso_mac_seglen - Return length of individual segments of a gso packet
*
* @skb: GSO skb
*
* skb_gso_mac_seglen is used to determine the real size of the
* individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
* headers (TCP/UDP).
*/
static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
{
unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
return hdr_len + skb_gso_transport_seglen(skb);
}
net: Always untag vlan-tagged traffic on input. Currently the functionality to untag traffic on input resides as part of the vlan module and is build only when VLAN support is enabled in the kernel. When VLAN is disabled, the function vlan_untag() turns into a stub and doesn't really untag the packets. This seems to create an interesting interaction between VMs supporting checksum offloading and some network drivers. There are some drivers that do not allow the user to change tx-vlan-offload feature of the driver. These drivers also seem to assume that any VLAN-tagged traffic they transmit will have the vlan information in the vlan_tci and not in the vlan header already in the skb. When transmitting skbs that already have tagged data with partial checksum set, the checksum doesn't appear to be updated correctly by the card thus resulting in a failure to establish TCP connections. The following is a packet trace taken on the receiver where a sender is a VM with a VLAN configued. The host VM is running on doest not have VLAN support and the outging interface on the host is tg3: 10:12:43.503055 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27243, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x48d9), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294837885 ecr 0,nop,wscale 7], length 0 10:12:44.505556 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27244, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x44ee), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294838888 ecr 0,nop,wscale 7], length 0 This connection finally times out. I've only access to the TG3 hardware in this configuration thus have only tested this with TG3 driver. There are a lot of other drivers that do not permit user changes to vlan acceleration features, and I don't know if they all suffere from a similar issue. The patch attempt to fix this another way. It moves the vlan header stipping code out of the vlan module and always builds it into the kernel network core. This way, even if vlan is not supported on a virtualizatoin host, the virtual machines running on top of such host will still work with VLANs enabled. CC: Patrick McHardy <kaber@trash.net> CC: Nithin Nayak Sujir <nsujir@broadcom.com> CC: Michael Chan <mchan@broadcom.com> CC: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com> Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-08 22:42:13 +04:00
/**
* skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
*
* There are a couple of instances where we have a GSO skb, and we
* want to determine what size it would be after it is segmented.
*
* We might want to check:
* - L3+L4+payload size (e.g. IP forwarding)
* - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
*
* This is a helper to do that correctly considering GSO_BY_FRAGS.
*
* @seg_len: The segmented length (from skb_gso_*_seglen). In the
* GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
*
* @max_len: The maximum permissible length.
*
* Returns true if the segmented length <= max length.
*/
static inline bool skb_gso_size_check(const struct sk_buff *skb,
unsigned int seg_len,
unsigned int max_len) {
const struct skb_shared_info *shinfo = skb_shinfo(skb);
const struct sk_buff *iter;
if (shinfo->gso_size != GSO_BY_FRAGS)
return seg_len <= max_len;
/* Undo this so we can re-use header sizes */
seg_len -= GSO_BY_FRAGS;
skb_walk_frags(skb, iter) {
if (seg_len + skb_headlen(iter) > max_len)
return false;
}
return true;
}
/**
* skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
*
* @skb: GSO skb
* @mtu: MTU to validate against
*
* skb_gso_validate_network_len validates if a given skb will fit a
* wanted MTU once split. It considers L3 headers, L4 headers, and the
* payload.
*/
bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
{
return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
}
EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
/**
* skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
*
* @skb: GSO skb
* @len: length to validate against
*
* skb_gso_validate_mac_len validates if a given skb will fit a wanted
* length once split, including L2, L3 and L4 headers and the payload.
*/
bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
{
return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
}
EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
net: Always untag vlan-tagged traffic on input. Currently the functionality to untag traffic on input resides as part of the vlan module and is build only when VLAN support is enabled in the kernel. When VLAN is disabled, the function vlan_untag() turns into a stub and doesn't really untag the packets. This seems to create an interesting interaction between VMs supporting checksum offloading and some network drivers. There are some drivers that do not allow the user to change tx-vlan-offload feature of the driver. These drivers also seem to assume that any VLAN-tagged traffic they transmit will have the vlan information in the vlan_tci and not in the vlan header already in the skb. When transmitting skbs that already have tagged data with partial checksum set, the checksum doesn't appear to be updated correctly by the card thus resulting in a failure to establish TCP connections. The following is a packet trace taken on the receiver where a sender is a VM with a VLAN configued. The host VM is running on doest not have VLAN support and the outging interface on the host is tg3: 10:12:43.503055 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27243, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x48d9), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294837885 ecr 0,nop,wscale 7], length 0 10:12:44.505556 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27244, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x44ee), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294838888 ecr 0,nop,wscale 7], length 0 This connection finally times out. I've only access to the TG3 hardware in this configuration thus have only tested this with TG3 driver. There are a lot of other drivers that do not permit user changes to vlan acceleration features, and I don't know if they all suffere from a similar issue. The patch attempt to fix this another way. It moves the vlan header stipping code out of the vlan module and always builds it into the kernel network core. This way, even if vlan is not supported on a virtualizatoin host, the virtual machines running on top of such host will still work with VLANs enabled. CC: Patrick McHardy <kaber@trash.net> CC: Nithin Nayak Sujir <nsujir@broadcom.com> CC: Michael Chan <mchan@broadcom.com> CC: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com> Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-08 22:42:13 +04:00
static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
{
net: Fix vlan untag for bridge and vlan_dev with reorder_hdr off When we have a bridge with vlan_filtering on and a vlan device on top of it, packets would be corrupted in skb_vlan_untag() called from br_dev_xmit(). The problem sits in skb_reorder_vlan_header() used in skb_vlan_untag(), which makes use of skb->mac_len. In this function mac_len is meant for handling rx path with vlan devices with reorder_header disabled, but in tx path mac_len is typically 0 and cannot be used, which is the problem in this case. The current code even does not properly handle rx path (skb_vlan_untag() called from __netif_receive_skb_core()) with reorder_header off actually. In rx path single tag case, it works as follows: - Before skb_reorder_vlan_header() mac_header data v v +-------------------+-------------+------+---- | ETH | VLAN | ETH | | ADDRS | TPID | TCI | TYPE | +-------------------+-------------+------+---- <-------- mac_len ---------> <-------------> to be removed - After skb_reorder_vlan_header() mac_header data v v +-------------------+------+---- | ETH | ETH | | ADDRS | TYPE | +-------------------+------+---- <-------- mac_len ---------> This is ok, but in rx double tag case, it corrupts packets: - Before skb_reorder_vlan_header() mac_header data v v +-------------------+-------------+-------------+------+---- | ETH | VLAN | VLAN | ETH | | ADDRS | TPID | TCI | TPID | TCI | TYPE | +-------------------+-------------+-------------+------+---- <--------------- mac_len ----------------> <-------------> should be removed <---------------------------> actually will be removed - After skb_reorder_vlan_header() mac_header data v v +-------------------+------+---- | ETH | ETH | | ADDRS | TYPE | +-------------------+------+---- <--------------- mac_len ----------------> So, two of vlan tags are both removed while only inner one should be removed and mac_header (and mac_len) is broken. skb_vlan_untag() is meant for removing the vlan header at (skb->data - 2), so use skb->data and skb->mac_header to calculate the right offset. Reported-by: Brandon Carpenter <brandon.carpenter@cypherpath.com> Fixes: a6e18ff11170 ("vlan: Fix untag operations of stacked vlans with REORDER_HEADER off") Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 08:51:27 +03:00
int mac_len;
net: Always untag vlan-tagged traffic on input. Currently the functionality to untag traffic on input resides as part of the vlan module and is build only when VLAN support is enabled in the kernel. When VLAN is disabled, the function vlan_untag() turns into a stub and doesn't really untag the packets. This seems to create an interesting interaction between VMs supporting checksum offloading and some network drivers. There are some drivers that do not allow the user to change tx-vlan-offload feature of the driver. These drivers also seem to assume that any VLAN-tagged traffic they transmit will have the vlan information in the vlan_tci and not in the vlan header already in the skb. When transmitting skbs that already have tagged data with partial checksum set, the checksum doesn't appear to be updated correctly by the card thus resulting in a failure to establish TCP connections. The following is a packet trace taken on the receiver where a sender is a VM with a VLAN configued. The host VM is running on doest not have VLAN support and the outging interface on the host is tg3: 10:12:43.503055 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27243, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x48d9), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294837885 ecr 0,nop,wscale 7], length 0 10:12:44.505556 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27244, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x44ee), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294838888 ecr 0,nop,wscale 7], length 0 This connection finally times out. I've only access to the TG3 hardware in this configuration thus have only tested this with TG3 driver. There are a lot of other drivers that do not permit user changes to vlan acceleration features, and I don't know if they all suffere from a similar issue. The patch attempt to fix this another way. It moves the vlan header stipping code out of the vlan module and always builds it into the kernel network core. This way, even if vlan is not supported on a virtualizatoin host, the virtual machines running on top of such host will still work with VLANs enabled. CC: Patrick McHardy <kaber@trash.net> CC: Nithin Nayak Sujir <nsujir@broadcom.com> CC: Michael Chan <mchan@broadcom.com> CC: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com> Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-08 22:42:13 +04:00
if (skb_cow(skb, skb_headroom(skb)) < 0) {
kfree_skb(skb);
return NULL;
}
net: Fix vlan untag for bridge and vlan_dev with reorder_hdr off When we have a bridge with vlan_filtering on and a vlan device on top of it, packets would be corrupted in skb_vlan_untag() called from br_dev_xmit(). The problem sits in skb_reorder_vlan_header() used in skb_vlan_untag(), which makes use of skb->mac_len. In this function mac_len is meant for handling rx path with vlan devices with reorder_header disabled, but in tx path mac_len is typically 0 and cannot be used, which is the problem in this case. The current code even does not properly handle rx path (skb_vlan_untag() called from __netif_receive_skb_core()) with reorder_header off actually. In rx path single tag case, it works as follows: - Before skb_reorder_vlan_header() mac_header data v v +-------------------+-------------+------+---- | ETH | VLAN | ETH | | ADDRS | TPID | TCI | TYPE | +-------------------+-------------+------+---- <-------- mac_len ---------> <-------------> to be removed - After skb_reorder_vlan_header() mac_header data v v +-------------------+------+---- | ETH | ETH | | ADDRS | TYPE | +-------------------+------+---- <-------- mac_len ---------> This is ok, but in rx double tag case, it corrupts packets: - Before skb_reorder_vlan_header() mac_header data v v +-------------------+-------------+-------------+------+---- | ETH | VLAN | VLAN | ETH | | ADDRS | TPID | TCI | TPID | TCI | TYPE | +-------------------+-------------+-------------+------+---- <--------------- mac_len ----------------> <-------------> should be removed <---------------------------> actually will be removed - After skb_reorder_vlan_header() mac_header data v v +-------------------+------+---- | ETH | ETH | | ADDRS | TYPE | +-------------------+------+---- <--------------- mac_len ----------------> So, two of vlan tags are both removed while only inner one should be removed and mac_header (and mac_len) is broken. skb_vlan_untag() is meant for removing the vlan header at (skb->data - 2), so use skb->data and skb->mac_header to calculate the right offset. Reported-by: Brandon Carpenter <brandon.carpenter@cypherpath.com> Fixes: a6e18ff11170 ("vlan: Fix untag operations of stacked vlans with REORDER_HEADER off") Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 08:51:27 +03:00
mac_len = skb->data - skb_mac_header(skb);
memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
mac_len - VLAN_HLEN - ETH_TLEN);
net: Always untag vlan-tagged traffic on input. Currently the functionality to untag traffic on input resides as part of the vlan module and is build only when VLAN support is enabled in the kernel. When VLAN is disabled, the function vlan_untag() turns into a stub and doesn't really untag the packets. This seems to create an interesting interaction between VMs supporting checksum offloading and some network drivers. There are some drivers that do not allow the user to change tx-vlan-offload feature of the driver. These drivers also seem to assume that any VLAN-tagged traffic they transmit will have the vlan information in the vlan_tci and not in the vlan header already in the skb. When transmitting skbs that already have tagged data with partial checksum set, the checksum doesn't appear to be updated correctly by the card thus resulting in a failure to establish TCP connections. The following is a packet trace taken on the receiver where a sender is a VM with a VLAN configued. The host VM is running on doest not have VLAN support and the outging interface on the host is tg3: 10:12:43.503055 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27243, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x48d9), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294837885 ecr 0,nop,wscale 7], length 0 10:12:44.505556 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27244, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x44ee), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294838888 ecr 0,nop,wscale 7], length 0 This connection finally times out. I've only access to the TG3 hardware in this configuration thus have only tested this with TG3 driver. There are a lot of other drivers that do not permit user changes to vlan acceleration features, and I don't know if they all suffere from a similar issue. The patch attempt to fix this another way. It moves the vlan header stipping code out of the vlan module and always builds it into the kernel network core. This way, even if vlan is not supported on a virtualizatoin host, the virtual machines running on top of such host will still work with VLANs enabled. CC: Patrick McHardy <kaber@trash.net> CC: Nithin Nayak Sujir <nsujir@broadcom.com> CC: Michael Chan <mchan@broadcom.com> CC: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com> Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-08 22:42:13 +04:00
skb->mac_header += VLAN_HLEN;
return skb;
}
struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
{
struct vlan_hdr *vhdr;
u16 vlan_tci;
if (unlikely(skb_vlan_tag_present(skb))) {
net: Always untag vlan-tagged traffic on input. Currently the functionality to untag traffic on input resides as part of the vlan module and is build only when VLAN support is enabled in the kernel. When VLAN is disabled, the function vlan_untag() turns into a stub and doesn't really untag the packets. This seems to create an interesting interaction between VMs supporting checksum offloading and some network drivers. There are some drivers that do not allow the user to change tx-vlan-offload feature of the driver. These drivers also seem to assume that any VLAN-tagged traffic they transmit will have the vlan information in the vlan_tci and not in the vlan header already in the skb. When transmitting skbs that already have tagged data with partial checksum set, the checksum doesn't appear to be updated correctly by the card thus resulting in a failure to establish TCP connections. The following is a packet trace taken on the receiver where a sender is a VM with a VLAN configued. The host VM is running on doest not have VLAN support and the outging interface on the host is tg3: 10:12:43.503055 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27243, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x48d9), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294837885 ecr 0,nop,wscale 7], length 0 10:12:44.505556 52:54:00:ae:42:3f > 28:d2:44:7d:c2:de, ethertype 802.1Q (0x8100), length 78: vlan 100, p 0, ethertype IPv4, (tos 0x0, ttl 64, id 27244, offset 0, flags [DF], proto TCP (6), length 60) 10.0.100.1.58545 > 10.0.100.10.ircu-2: Flags [S], cksum 0xdc39 (incorrect -> 0x44ee), seq 1069378582, win 29200, options [mss 1460,sackOK,TS val 4294838888 ecr 0,nop,wscale 7], length 0 This connection finally times out. I've only access to the TG3 hardware in this configuration thus have only tested this with TG3 driver. There are a lot of other drivers that do not permit user changes to vlan acceleration features, and I don't know if they all suffere from a similar issue. The patch attempt to fix this another way. It moves the vlan header stipping code out of the vlan module and always builds it into the kernel network core. This way, even if vlan is not supported on a virtualizatoin host, the virtual machines running on top of such host will still work with VLANs enabled. CC: Patrick McHardy <kaber@trash.net> CC: Nithin Nayak Sujir <nsujir@broadcom.com> CC: Michael Chan <mchan@broadcom.com> CC: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com> Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-08 22:42:13 +04:00
/* vlan_tci is already set-up so leave this for another time */
return skb;
}
skb = skb_share_check(skb, GFP_ATOMIC);
if (unlikely(!skb))
goto err_free;
if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
goto err_free;
vhdr = (struct vlan_hdr *)skb->data;
vlan_tci = ntohs(vhdr->h_vlan_TCI);
__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
skb_pull_rcsum(skb, VLAN_HLEN);
vlan_set_encap_proto(skb, vhdr);
skb = skb_reorder_vlan_header(skb);
if (unlikely(!skb))
goto err_free;
skb_reset_network_header(skb);
skb_reset_transport_header(skb);
skb_reset_mac_len(skb);
return skb;
err_free:
kfree_skb(skb);
return NULL;
}
EXPORT_SYMBOL(skb_vlan_untag);
int skb_ensure_writable(struct sk_buff *skb, int write_len)
{
if (!pskb_may_pull(skb, write_len))
return -ENOMEM;
if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
return 0;
return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}
EXPORT_SYMBOL(skb_ensure_writable);
/* remove VLAN header from packet and update csum accordingly.
* expects a non skb_vlan_tag_present skb with a vlan tag payload
*/
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
{
struct vlan_hdr *vhdr;
int offset = skb->data - skb_mac_header(skb);
int err;
if (WARN_ONCE(offset,
"__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
offset)) {
return -EINVAL;
}
err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
if (unlikely(err))
return err;
skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
*vlan_tci = ntohs(vhdr->h_vlan_TCI);
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
__skb_pull(skb, VLAN_HLEN);
vlan_set_encap_proto(skb, vhdr);
skb->mac_header += VLAN_HLEN;
if (skb_network_offset(skb) < ETH_HLEN)
skb_set_network_header(skb, ETH_HLEN);
skb_reset_mac_len(skb);
return err;
}
EXPORT_SYMBOL(__skb_vlan_pop);
/* Pop a vlan tag either from hwaccel or from payload.
* Expects skb->data at mac header.
*/
int skb_vlan_pop(struct sk_buff *skb)
{
u16 vlan_tci;
__be16 vlan_proto;
int err;
if (likely(skb_vlan_tag_present(skb))) {
skb->vlan_tci = 0;
} else {
if (unlikely(!eth_type_vlan(skb->protocol)))
return 0;
err = __skb_vlan_pop(skb, &vlan_tci);
if (err)
return err;
}
/* move next vlan tag to hw accel tag */
if (likely(!eth_type_vlan(skb->protocol)))
return 0;
vlan_proto = skb->protocol;
err = __skb_vlan_pop(skb, &vlan_tci);
if (unlikely(err))
return err;
__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
return 0;
}
EXPORT_SYMBOL(skb_vlan_pop);
/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
* Expects skb->data at mac header.
*/
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
{
if (skb_vlan_tag_present(skb)) {
int offset = skb->data - skb_mac_header(skb);
int err;
if (WARN_ONCE(offset,
"skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
offset)) {
return -EINVAL;
}
err = __vlan_insert_tag(skb, skb->vlan_proto,
skb_vlan_tag_get(skb));
if (err)
return err;
skb->protocol = skb->vlan_proto;
skb->mac_len += VLAN_HLEN;
skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
}
__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
return 0;
}
EXPORT_SYMBOL(skb_vlan_push);
/**
* alloc_skb_with_frags - allocate skb with page frags
*
* @header_len: size of linear part
* @data_len: needed length in frags
* @max_page_order: max page order desired.
* @errcode: pointer to error code if any
* @gfp_mask: allocation mask
*
* This can be used to allocate a paged skb, given a maximal order for frags.
*/
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
unsigned long data_len,
int max_page_order,
int *errcode,
gfp_t gfp_mask)
{
int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
unsigned long chunk;
struct sk_buff *skb;
struct page *page;
gfp_t gfp_head;
int i;
*errcode = -EMSGSIZE;
/* Note this test could be relaxed, if we succeed to allocate
* high order pages...
*/
if (npages > MAX_SKB_FRAGS)
return NULL;
gfp_head = gfp_mask;
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 03:28:21 +03:00
if (gfp_head & __GFP_DIRECT_RECLAIM)
mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic __GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to the page allocator. This has been true but only for allocations requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always ignored for smaller sizes. This is a bit unfortunate because there is no way to express the same semantic for those requests and they are considered too important to fail so they might end up looping in the page allocator for ever, similarly to GFP_NOFAIL requests. Now that the whole tree has been cleaned up and accidental or misled usage of __GFP_REPEAT flag has been removed for !costly requests we can give the original flag a better name and more importantly a more useful semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user that the allocator would try really hard but there is no promise of a success. This will work independent of the order and overrides the default allocator behavior. Page allocator users have several levels of guarantee vs. cost options (take GFP_KERNEL as an example) - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_ attempt to free memory at all. The most light weight mode which even doesn't kick the background reclaim. Should be used carefully because it might deplete the memory and the next user might hit the more aggressive reclaim - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic allocation without any attempt to free memory from the current context but can wake kswapd to reclaim memory if the zone is below the low watermark. Can be used from either atomic contexts or when the request is a performance optimization and there is another fallback for a slow path. - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) - non sleeping allocation with an expensive fallback so it can access some portion of memory reserves. Usually used from interrupt/bh context with an expensive slow path fallback. - GFP_KERNEL - both background and direct reclaim are allowed and the _default_ page allocator behavior is used. That means that !costly allocation requests are basically nofail but there is no guarantee of that behavior so failures have to be checked properly by callers (e.g. OOM killer victim is allowed to fail currently). - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior and all allocation requests fail early rather than cause disruptive reclaim (one round of reclaim in this implementation). The OOM killer is not invoked. - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator behavior and all allocation requests try really hard. The request will fail if the reclaim cannot make any progress. The OOM killer won't be triggered. - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior and all allocation requests will loop endlessly until they succeed. This might be really dangerous especially for larger orders. Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL because they already had their semantic. No new users are added. __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if there is no progress and we have already passed the OOM point. This means that all the reclaim opportunities have been exhausted except the most disruptive one (the OOM killer) and a user defined fallback behavior is more sensible than keep retrying in the page allocator. [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c] [mhocko@suse.com: semantic fix] Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz [mhocko@kernel.org: address other thing spotted by Vlastimil] Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 00:36:45 +03:00
gfp_head |= __GFP_RETRY_MAYFAIL;
*errcode = -ENOBUFS;
skb = alloc_skb(header_len, gfp_head);
if (!skb)
return NULL;
skb->truesize += npages << PAGE_SHIFT;
for (i = 0; npages > 0; i++) {
int order = max_page_order;
while (order) {
if (npages >= 1 << order) {
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 03:28:21 +03:00
page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
__GFP_COMP |
__GFP_NOWARN |
__GFP_NORETRY,
order);
if (page)
goto fill_page;
/* Do not retry other high order allocations */
order = 1;
max_page_order = 0;
}
order--;
}
page = alloc_page(gfp_mask);
if (!page)
goto failure;
fill_page:
chunk = min_t(unsigned long, data_len,
PAGE_SIZE << order);
skb_fill_page_desc(skb, i, page, 0, chunk);
data_len -= chunk;
npages -= 1 << order;
}
return skb;
failure:
kfree_skb(skb);
return NULL;
}
EXPORT_SYMBOL(alloc_skb_with_frags);
/* carve out the first off bytes from skb when off < headlen */
static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
const int headlen, gfp_t gfp_mask)
{
int i;
int size = skb_end_offset(skb);
int new_hlen = headlen - off;
u8 *data;
size = SKB_DATA_ALIGN(size);
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
data = kmalloc_reserve(size +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
gfp_mask, NUMA_NO_NODE, NULL);
if (!data)
return -ENOMEM;
size = SKB_WITH_OVERHEAD(ksize(data));
/* Copy real data, and all frags */
skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
skb->len -= off;
memcpy((struct skb_shared_info *)(data + size),
skb_shinfo(skb),
offsetof(struct skb_shared_info,
frags[skb_shinfo(skb)->nr_frags]));
if (skb_cloned(skb)) {
/* drop the old head gracefully */
if (skb_orphan_frags(skb, gfp_mask)) {
kfree(data);
return -ENOMEM;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
skb_frag_ref(skb, i);
if (skb_has_frag_list(skb))
skb_clone_fraglist(skb);
skb_release_data(skb);
} else {
/* we can reuse existing recount- all we did was
* relocate values
*/
skb_free_head(skb);
}
skb->head = data;
skb->data = data;
skb->head_frag = 0;
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb->end = size;
#else
skb->end = skb->head + size;
#endif
skb_set_tail_pointer(skb, skb_headlen(skb));
skb_headers_offset_update(skb, 0);
skb->cloned = 0;
skb->hdr_len = 0;
skb->nohdr = 0;
atomic_set(&skb_shinfo(skb)->dataref, 1);
return 0;
}
static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
/* carve out the first eat bytes from skb's frag_list. May recurse into
* pskb_carve()
*/
static int pskb_carve_frag_list(struct sk_buff *skb,
struct skb_shared_info *shinfo, int eat,
gfp_t gfp_mask)
{
struct sk_buff *list = shinfo->frag_list;
struct sk_buff *clone = NULL;
struct sk_buff *insp = NULL;
do {
if (!list) {
pr_err("Not enough bytes to eat. Want %d\n", eat);
return -EFAULT;
}
if (list->len <= eat) {
/* Eaten as whole. */
eat -= list->len;
list = list->next;
insp = list;
} else {
/* Eaten partially. */
if (skb_shared(list)) {
clone = skb_clone(list, gfp_mask);
if (!clone)
return -ENOMEM;
insp = list->next;
list = clone;
} else {
/* This may be pulled without problems. */
insp = list;
}
if (pskb_carve(list, eat, gfp_mask) < 0) {
kfree_skb(clone);
return -ENOMEM;
}
break;
}
} while (eat);
/* Free pulled out fragments. */
while ((list = shinfo->frag_list) != insp) {
shinfo->frag_list = list->next;
kfree_skb(list);
}
/* And insert new clone at head. */
if (clone) {
clone->next = list;
shinfo->frag_list = clone;
}
return 0;
}
/* carve off first len bytes from skb. Split line (off) is in the
* non-linear part of skb
*/
static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
int pos, gfp_t gfp_mask)
{
int i, k = 0;
int size = skb_end_offset(skb);
u8 *data;
const int nfrags = skb_shinfo(skb)->nr_frags;
struct skb_shared_info *shinfo;
size = SKB_DATA_ALIGN(size);
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
data = kmalloc_reserve(size +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
gfp_mask, NUMA_NO_NODE, NULL);
if (!data)
return -ENOMEM;
size = SKB_WITH_OVERHEAD(ksize(data));
memcpy((struct skb_shared_info *)(data + size),
skb_shinfo(skb), offsetof(struct skb_shared_info,
frags[skb_shinfo(skb)->nr_frags]));
if (skb_orphan_frags(skb, gfp_mask)) {
kfree(data);
return -ENOMEM;
}
shinfo = (struct skb_shared_info *)(data + size);
for (i = 0; i < nfrags; i++) {
int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (pos + fsize > off) {
shinfo->frags[k] = skb_shinfo(skb)->frags[i];
if (pos < off) {
/* Split frag.
* We have two variants in this case:
* 1. Move all the frag to the second
* part, if it is possible. F.e.
* this approach is mandatory for TUX,
* where splitting is expensive.
* 2. Split is accurately. We make this.
*/
shinfo->frags[0].page_offset += off - pos;
skb_frag_size_sub(&shinfo->frags[0], off - pos);
}
skb_frag_ref(skb, i);
k++;
}
pos += fsize;
}
shinfo->nr_frags = k;
if (skb_has_frag_list(skb))
skb_clone_fraglist(skb);
if (k == 0) {
/* split line is in frag list */
pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
}
skb_release_data(skb);
skb->head = data;
skb->head_frag = 0;
skb->data = data;
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb->end = size;
#else
skb->end = skb->head + size;
#endif
skb_reset_tail_pointer(skb);
skb_headers_offset_update(skb, 0);
skb->cloned = 0;
skb->hdr_len = 0;
skb->nohdr = 0;
skb->len -= off;
skb->data_len = skb->len;
atomic_set(&skb_shinfo(skb)->dataref, 1);
return 0;
}
/* remove len bytes from the beginning of the skb */
static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
{
int headlen = skb_headlen(skb);
if (len < headlen)
return pskb_carve_inside_header(skb, len, headlen, gfp);
else
return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
}
/* Extract to_copy bytes starting at off from skb, and return this in
* a new skb
*/
struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
int to_copy, gfp_t gfp)
{
struct sk_buff *clone = skb_clone(skb, gfp);
if (!clone)
return NULL;
if (pskb_carve(clone, off, gfp) < 0 ||
pskb_trim(clone, to_copy)) {
kfree_skb(clone);
return NULL;
}
return clone;
}
EXPORT_SYMBOL(pskb_extract);
/**
* skb_condense - try to get rid of fragments/frag_list if possible
* @skb: buffer
*
* Can be used to save memory before skb is added to a busy queue.
* If packet has bytes in frags and enough tail room in skb->head,
* pull all of them, so that we can free the frags right now and adjust
* truesize.
* Notes:
* We do not reallocate skb->head thus can not fail.
* Caller must re-evaluate skb->truesize if needed.
*/
void skb_condense(struct sk_buff *skb)
{
if (skb->data_len) {
if (skb->data_len > skb->end - skb->tail ||
skb_cloned(skb))
return;
/* Nice, we can free page frag(s) right now */
__pskb_pull_tail(skb, skb->data_len);
}
/* At this point, skb->truesize might be over estimated,
* because skb had a fragment, and fragments do not tell
* their truesize.
* When we pulled its content into skb->head, fragment
* was freed, but __pskb_pull_tail() could not possibly
* adjust skb->truesize, not knowing the frag truesize.
*/
skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
}