2014-03-21 14:44:08 +04:00
/*
* Copyright ( C ) 2010 , 2011 , 2012 , Lemote , Inc .
* Author : Chen Huacai , chenhc @ lemote . com
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation ; either version 2
* of the License , or ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
*/
# include <linux/init.h>
# include <linux/cpu.h>
# include <linux/sched.h>
# include <linux/smp.h>
# include <linux/cpufreq.h>
# include <asm/processor.h>
# include <asm/time.h>
# include <asm/clock.h>
# include <asm/tlbflush.h>
2014-03-21 14:44:09 +04:00
# include <asm/cacheflush.h>
2014-03-21 14:44:08 +04:00
# include <loongson.h>
2014-11-04 09:13:27 +03:00
# include <workarounds.h>
2014-03-21 14:44:08 +04:00
# include "smp.h"
2014-03-21 14:44:09 +04:00
DEFINE_PER_CPU ( int , cpu_state ) ;
DEFINE_PER_CPU ( uint32_t , core0_c0count ) ;
2014-06-26 07:41:30 +04:00
static void * ipi_set0_regs [ 16 ] ;
static void * ipi_clear0_regs [ 16 ] ;
static void * ipi_status0_regs [ 16 ] ;
static void * ipi_en0_regs [ 16 ] ;
static void * ipi_mailbox_buf [ 16 ] ;
2014-03-21 14:44:08 +04:00
/* read a 32bit value from ipi register */
# define loongson3_ipi_read32(addr) readl(addr)
/* read a 64bit value from ipi register */
# define loongson3_ipi_read64(addr) readq(addr)
/* write a 32bit value to ipi register */
# define loongson3_ipi_write32(action, addr) \
do { \
writel ( action , addr ) ; \
__wbflush ( ) ; \
} while ( 0 )
/* write a 64bit value to ipi register */
# define loongson3_ipi_write64(action, addr) \
do { \
writeq ( action , addr ) ; \
__wbflush ( ) ; \
} while ( 0 )
2014-06-26 07:41:30 +04:00
static void ipi_set0_regs_init ( void )
{
ipi_set0_regs [ 0 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + SET0 ) ;
ipi_set0_regs [ 1 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + SET0 ) ;
ipi_set0_regs [ 2 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + SET0 ) ;
ipi_set0_regs [ 3 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + SET0 ) ;
ipi_set0_regs [ 4 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + SET0 ) ;
ipi_set0_regs [ 5 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + SET0 ) ;
ipi_set0_regs [ 6 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + SET0 ) ;
ipi_set0_regs [ 7 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + SET0 ) ;
ipi_set0_regs [ 8 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + SET0 ) ;
ipi_set0_regs [ 9 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + SET0 ) ;
ipi_set0_regs [ 10 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + SET0 ) ;
ipi_set0_regs [ 11 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + SET0 ) ;
ipi_set0_regs [ 12 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + SET0 ) ;
ipi_set0_regs [ 13 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + SET0 ) ;
ipi_set0_regs [ 14 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + SET0 ) ;
ipi_set0_regs [ 15 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + SET0 ) ;
}
2014-03-21 14:44:08 +04:00
2014-06-26 07:41:30 +04:00
static void ipi_clear0_regs_init ( void )
{
ipi_clear0_regs [ 0 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 1 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 2 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 3 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 4 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 5 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 6 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 7 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 8 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 9 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 10 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 11 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 12 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 13 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 14 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + CLEAR0 ) ;
ipi_clear0_regs [ 15 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + CLEAR0 ) ;
}
2014-03-21 14:44:08 +04:00
2014-06-26 07:41:30 +04:00
static void ipi_status0_regs_init ( void )
{
ipi_status0_regs [ 0 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 1 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 2 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 3 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 4 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 5 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 6 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 7 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 8 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 9 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 10 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 11 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 12 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 13 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 14 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + STATUS0 ) ;
ipi_status0_regs [ 15 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + STATUS0 ) ;
}
2014-03-21 14:44:08 +04:00
2014-06-26 07:41:30 +04:00
static void ipi_en0_regs_init ( void )
{
ipi_en0_regs [ 0 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + EN0 ) ;
ipi_en0_regs [ 1 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + EN0 ) ;
ipi_en0_regs [ 2 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + EN0 ) ;
ipi_en0_regs [ 3 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + EN0 ) ;
ipi_en0_regs [ 4 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + EN0 ) ;
ipi_en0_regs [ 5 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + EN0 ) ;
ipi_en0_regs [ 6 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + EN0 ) ;
ipi_en0_regs [ 7 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + EN0 ) ;
ipi_en0_regs [ 8 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + EN0 ) ;
ipi_en0_regs [ 9 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + EN0 ) ;
ipi_en0_regs [ 10 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + EN0 ) ;
ipi_en0_regs [ 11 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + EN0 ) ;
ipi_en0_regs [ 12 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + EN0 ) ;
ipi_en0_regs [ 13 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + EN0 ) ;
ipi_en0_regs [ 14 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + EN0 ) ;
ipi_en0_regs [ 15 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + EN0 ) ;
}
2014-03-21 14:44:08 +04:00
2014-06-26 07:41:30 +04:00
static void ipi_mailbox_buf_init ( void )
{
ipi_mailbox_buf [ 0 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + BUF ) ;
ipi_mailbox_buf [ 1 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + BUF ) ;
ipi_mailbox_buf [ 2 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + BUF ) ;
ipi_mailbox_buf [ 3 ] = ( void * )
( SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + BUF ) ;
ipi_mailbox_buf [ 4 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + BUF ) ;
ipi_mailbox_buf [ 5 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + BUF ) ;
ipi_mailbox_buf [ 6 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + BUF ) ;
ipi_mailbox_buf [ 7 ] = ( void * )
( SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + BUF ) ;
ipi_mailbox_buf [ 8 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + BUF ) ;
ipi_mailbox_buf [ 9 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + BUF ) ;
ipi_mailbox_buf [ 10 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + BUF ) ;
ipi_mailbox_buf [ 11 ] = ( void * )
( SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + BUF ) ;
ipi_mailbox_buf [ 12 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + BUF ) ;
ipi_mailbox_buf [ 13 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + BUF ) ;
ipi_mailbox_buf [ 14 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + BUF ) ;
ipi_mailbox_buf [ 15 ] = ( void * )
( SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + BUF ) ;
}
2014-03-21 14:44:08 +04:00
/*
* Simple enough , just poke the appropriate ipi register
*/
static void loongson3_send_ipi_single ( int cpu , unsigned int action )
{
2014-11-04 09:13:26 +03:00
loongson3_ipi_write32 ( ( u32 ) action , ipi_set0_regs [ cpu_logical_map ( cpu ) ] ) ;
2014-03-21 14:44:08 +04:00
}
static void
loongson3_send_ipi_mask ( const struct cpumask * mask , unsigned int action )
{
unsigned int i ;
for_each_cpu ( i , mask )
2014-11-04 09:13:26 +03:00
loongson3_ipi_write32 ( ( u32 ) action , ipi_set0_regs [ cpu_logical_map ( i ) ] ) ;
2014-03-21 14:44:08 +04:00
}
void loongson3_ipi_interrupt ( struct pt_regs * regs )
{
2014-03-21 14:44:09 +04:00
int i , cpu = smp_processor_id ( ) ;
unsigned int action , c0count ;
2014-03-21 14:44:08 +04:00
/* Load the ipi register to figure out what we're supposed to do */
2014-11-04 09:13:26 +03:00
action = loongson3_ipi_read32 ( ipi_status0_regs [ cpu_logical_map ( cpu ) ] ) ;
2014-03-21 14:44:08 +04:00
/* Clear the ipi register to clear the interrupt */
2014-11-04 09:13:26 +03:00
loongson3_ipi_write32 ( ( u32 ) action , ipi_clear0_regs [ cpu_logical_map ( cpu ) ] ) ;
2014-03-21 14:44:08 +04:00
if ( action & SMP_RESCHEDULE_YOURSELF )
scheduler_ipi ( ) ;
2015-07-24 18:57:49 +03:00
if ( action & SMP_CALL_FUNCTION ) {
irq_enter ( ) ;
generic_smp_call_function_interrupt ( ) ;
irq_exit ( ) ;
}
2014-03-21 14:44:09 +04:00
if ( action & SMP_ASK_C0COUNT ) {
BUG_ON ( cpu ! = 0 ) ;
c0count = read_c0_count ( ) ;
2015-06-04 09:53:47 +03:00
for ( i = 1 ; i < num_possible_cpus ( ) ; i + + )
2014-03-21 14:44:09 +04:00
per_cpu ( core0_c0count , i ) = c0count ;
}
2014-03-21 14:44:08 +04:00
}
2014-03-21 14:44:09 +04:00
# define MAX_LOOPS 1111
2014-03-21 14:44:08 +04:00
/*
* SMP init and finish on secondary CPUs
*/
static void loongson3_init_secondary ( void )
{
int i ;
2014-03-21 14:44:09 +04:00
uint32_t initcount ;
unsigned int cpu = smp_processor_id ( ) ;
2014-03-21 14:44:08 +04:00
unsigned int imask = STATUSF_IP7 | STATUSF_IP6 |
STATUSF_IP3 | STATUSF_IP2 ;
/* Set interrupt mask, but don't enable */
change_c0_status ( ST0_IM , imask ) ;
2014-11-04 09:13:26 +03:00
for ( i = 0 ; i < num_possible_cpus ( ) ; i + + )
loongson3_ipi_write32 ( 0xffffffff , ipi_en0_regs [ cpu_logical_map ( i ) ] ) ;
2014-03-21 14:44:09 +04:00
per_cpu ( cpu_state , cpu ) = CPU_ONLINE ;
2014-11-04 09:13:26 +03:00
cpu_data [ cpu ] . core =
cpu_logical_map ( cpu ) % loongson_sysconf . cores_per_package ;
cpu_data [ cpu ] . package =
cpu_logical_map ( cpu ) / loongson_sysconf . cores_per_package ;
2014-03-21 14:44:09 +04:00
i = 0 ;
mips: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 21:30:44 +04:00
__this_cpu_write ( core0_c0count , 0 ) ;
2014-03-21 14:44:09 +04:00
loongson3_send_ipi_single ( 0 , SMP_ASK_C0COUNT ) ;
mips: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 21:30:44 +04:00
while ( ! __this_cpu_read ( core0_c0count ) ) {
2014-03-21 14:44:09 +04:00
i + + ;
cpu_relax ( ) ;
}
if ( i > MAX_LOOPS )
i = MAX_LOOPS ;
mips: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 21:30:44 +04:00
initcount = __this_cpu_read ( core0_c0count ) + i ;
2014-03-21 14:44:09 +04:00
write_c0_count ( initcount ) ;
2014-03-21 14:44:08 +04:00
}
static void loongson3_smp_finish ( void )
{
2014-11-04 09:13:26 +03:00
int cpu = smp_processor_id ( ) ;
2014-03-21 14:44:08 +04:00
write_c0_compare ( read_c0_count ( ) + mips_hpt_frequency / HZ ) ;
local_irq_enable ( ) ;
loongson3_ipi_write64 ( 0 ,
2014-11-04 09:13:26 +03:00
( void * ) ( ipi_mailbox_buf [ cpu_logical_map ( cpu ) ] + 0x0 ) ) ;
2014-03-21 14:44:08 +04:00
pr_info ( " CPU#%d finished, CP0_ST=%x \n " ,
smp_processor_id ( ) , read_c0_status ( ) ) ;
}
static void __init loongson3_smp_setup ( void )
{
2014-11-04 09:13:26 +03:00
int i = 0 , num = 0 ; /* i: physical id, num: logical id */
2014-03-21 14:44:08 +04:00
init_cpu_possible ( cpu_none_mask ) ;
/* For unified kernel, NR_CPUS is the maximum possible value,
* loongson_sysconf . nr_cpus is the really present value */
2014-11-04 09:13:26 +03:00
while ( i < loongson_sysconf . nr_cpus ) {
if ( loongson_sysconf . reserved_cpus_mask & ( 1 < < i ) ) {
/* Reserved physical CPU cores */
__cpu_number_map [ i ] = - 1 ;
} else {
__cpu_number_map [ i ] = num ;
__cpu_logical_map [ num ] = i ;
set_cpu_possible ( num , true ) ;
num + + ;
}
i + + ;
2014-03-21 14:44:08 +04:00
}
2014-11-04 09:13:26 +03:00
pr_info ( " Detected %i available CPU(s) \n " , num ) ;
while ( num < loongson_sysconf . nr_cpus ) {
__cpu_logical_map [ num ] = - 1 ;
num + + ;
}
2014-06-26 07:41:30 +04:00
ipi_set0_regs_init ( ) ;
ipi_clear0_regs_init ( ) ;
ipi_status0_regs_init ( ) ;
ipi_en0_regs_init ( ) ;
ipi_mailbox_buf_init ( ) ;
2014-11-04 09:13:26 +03:00
cpu_data [ 0 ] . core = cpu_logical_map ( 0 ) % loongson_sysconf . cores_per_package ;
cpu_data [ 0 ] . package = cpu_logical_map ( 0 ) / loongson_sysconf . cores_per_package ;
2014-03-21 14:44:08 +04:00
}
static void __init loongson3_prepare_cpus ( unsigned int max_cpus )
{
2014-03-21 14:44:09 +04:00
init_cpu_present ( cpu_possible_mask ) ;
per_cpu ( cpu_state , smp_processor_id ( ) ) = CPU_ONLINE ;
2014-03-21 14:44:08 +04:00
}
/*
* Setup the PC , SP , and GP of a secondary processor and start it runing !
*/
static void loongson3_boot_secondary ( int cpu , struct task_struct * idle )
{
unsigned long startargs [ 4 ] ;
pr_info ( " Booting CPU#%d... \n " , cpu ) ;
/* startargs[] are initial PC, SP and GP for secondary CPU */
startargs [ 0 ] = ( unsigned long ) & smp_bootstrap ;
startargs [ 1 ] = ( unsigned long ) __KSTK_TOS ( idle ) ;
startargs [ 2 ] = ( unsigned long ) task_thread_info ( idle ) ;
startargs [ 3 ] = 0 ;
pr_debug ( " CPU#%d, func_pc=%lx, sp=%lx, gp=%lx \n " ,
cpu , startargs [ 0 ] , startargs [ 1 ] , startargs [ 2 ] ) ;
2014-11-04 09:13:26 +03:00
loongson3_ipi_write64 ( startargs [ 3 ] ,
( void * ) ( ipi_mailbox_buf [ cpu_logical_map ( cpu ) ] + 0x18 ) ) ;
loongson3_ipi_write64 ( startargs [ 2 ] ,
( void * ) ( ipi_mailbox_buf [ cpu_logical_map ( cpu ) ] + 0x10 ) ) ;
loongson3_ipi_write64 ( startargs [ 1 ] ,
( void * ) ( ipi_mailbox_buf [ cpu_logical_map ( cpu ) ] + 0x8 ) ) ;
loongson3_ipi_write64 ( startargs [ 0 ] ,
( void * ) ( ipi_mailbox_buf [ cpu_logical_map ( cpu ) ] + 0x0 ) ) ;
2014-03-21 14:44:08 +04:00
}
2014-03-21 14:44:09 +04:00
# ifdef CONFIG_HOTPLUG_CPU
static int loongson3_cpu_disable ( void )
{
unsigned long flags ;
unsigned int cpu = smp_processor_id ( ) ;
if ( cpu = = 0 )
return - EBUSY ;
set_cpu_online ( cpu , false ) ;
2015-03-05 03:19:17 +03:00
cpumask_clear_cpu ( cpu , & cpu_callin_map ) ;
2014-03-21 14:44:09 +04:00
local_irq_save ( flags ) ;
fixup_irqs ( ) ;
local_irq_restore ( flags ) ;
flush_cache_all ( ) ;
local_flush_tlb_all ( ) ;
return 0 ;
}
static void loongson3_cpu_die ( unsigned int cpu )
{
while ( per_cpu ( cpu_state , cpu ) ! = CPU_DEAD )
cpu_relax ( ) ;
mb ( ) ;
}
/* To shutdown a core in Loongson 3, the target core should go to CKSEG1 and
* flush all L1 entries at first . Then , another core ( usually Core 0 ) can
* safely disable the clock of the target core . loongson3_play_dead ( ) is
* called via CKSEG1 ( uncached and unmmaped ) */
2014-06-26 07:41:30 +04:00
static void loongson3a_play_dead ( int * state_addr )
2014-03-21 14:44:09 +04:00
{
register int val ;
register long cpuid , core , node , count ;
register void * addr , * base , * initfunc ;
__asm__ __volatile__ (
" .set push \n "
" .set noreorder \n "
" li %[addr], 0x80000000 \n " /* KSEG0 */
" 1: cache 0, 0(%[addr]) \n " /* flush L1 ICache */
" cache 0, 1(%[addr]) \n "
" cache 0, 2(%[addr]) \n "
" cache 0, 3(%[addr]) \n "
" cache 1, 0(%[addr]) \n " /* flush L1 DCache */
" cache 1, 1(%[addr]) \n "
" cache 1, 2(%[addr]) \n "
" cache 1, 3(%[addr]) \n "
" addiu %[sets], %[sets], -1 \n "
" bnez %[sets], 1b \n "
" addiu %[addr], %[addr], 0x20 \n "
" li %[val], 0x7 \n " /* *state_addr = CPU_DEAD; */
" sw %[val], (%[state_addr]) \n "
" sync \n "
" cache 21, (%[state_addr]) \n " /* flush entry of *state_addr */
" .set pop \n "
: [ addr ] " =&r " ( addr ) , [ val ] " =&r " ( val )
: [ state_addr ] " r " ( state_addr ) ,
[ sets ] " r " ( cpu_data [ smp_processor_id ( ) ] . dcache . sets ) ) ;
__asm__ __volatile__ (
" .set push \n "
" .set noreorder \n "
" .set mips64 \n "
" mfc0 %[cpuid], $15, 1 \n "
" andi %[cpuid], 0x3ff \n "
" dli %[base], 0x900000003ff01000 \n "
" andi %[core], %[cpuid], 0x3 \n "
" sll %[core], 8 \n " /* get core id */
" or %[base], %[base], %[core] \n "
" andi %[node], %[cpuid], 0xc \n "
" dsll %[node], 42 \n " /* get node id */
" or %[base], %[base], %[node] \n "
" 1: li %[count], 0x100 \n " /* wait for init loop */
" 2: bnez %[count], 2b \n " /* limit mailbox access */
" addiu %[count], -1 \n "
" ld %[initfunc], 0x20(%[base]) \n " /* get PC via mailbox */
" beqz %[initfunc], 1b \n "
" nop \n "
" ld $sp, 0x28(%[base]) \n " /* get SP via mailbox */
" ld $gp, 0x30(%[base]) \n " /* get GP via mailbox */
" ld $a1, 0x38(%[base]) \n "
" jr %[initfunc] \n " /* jump to initial PC */
" nop \n "
" .set pop \n "
: [ core ] " =&r " ( core ) , [ node ] " =&r " ( node ) ,
[ base ] " =&r " ( base ) , [ cpuid ] " =&r " ( cpuid ) ,
[ count ] " =&r " ( count ) , [ initfunc ] " =&r " ( initfunc )
: /* No Input */
: " a1 " ) ;
}
2014-06-26 07:41:30 +04:00
static void loongson3b_play_dead ( int * state_addr )
{
register int val ;
register long cpuid , core , node , count ;
register void * addr , * base , * initfunc ;
__asm__ __volatile__ (
" .set push \n "
" .set noreorder \n "
" li %[addr], 0x80000000 \n " /* KSEG0 */
" 1: cache 0, 0(%[addr]) \n " /* flush L1 ICache */
" cache 0, 1(%[addr]) \n "
" cache 0, 2(%[addr]) \n "
" cache 0, 3(%[addr]) \n "
" cache 1, 0(%[addr]) \n " /* flush L1 DCache */
" cache 1, 1(%[addr]) \n "
" cache 1, 2(%[addr]) \n "
" cache 1, 3(%[addr]) \n "
" addiu %[sets], %[sets], -1 \n "
" bnez %[sets], 1b \n "
" addiu %[addr], %[addr], 0x20 \n "
" li %[val], 0x7 \n " /* *state_addr = CPU_DEAD; */
" sw %[val], (%[state_addr]) \n "
" sync \n "
" cache 21, (%[state_addr]) \n " /* flush entry of *state_addr */
" .set pop \n "
: [ addr ] " =&r " ( addr ) , [ val ] " =&r " ( val )
: [ state_addr ] " r " ( state_addr ) ,
[ sets ] " r " ( cpu_data [ smp_processor_id ( ) ] . dcache . sets ) ) ;
__asm__ __volatile__ (
" .set push \n "
" .set noreorder \n "
" .set mips64 \n "
" mfc0 %[cpuid], $15, 1 \n "
" andi %[cpuid], 0x3ff \n "
" dli %[base], 0x900000003ff01000 \n "
" andi %[core], %[cpuid], 0x3 \n "
" sll %[core], 8 \n " /* get core id */
" or %[base], %[base], %[core] \n "
" andi %[node], %[cpuid], 0xc \n "
" dsll %[node], 42 \n " /* get node id */
" or %[base], %[base], %[node] \n "
" dsrl %[node], 30 \n " /* 15:14 */
" or %[base], %[base], %[node] \n "
" 1: li %[count], 0x100 \n " /* wait for init loop */
" 2: bnez %[count], 2b \n " /* limit mailbox access */
" addiu %[count], -1 \n "
" ld %[initfunc], 0x20(%[base]) \n " /* get PC via mailbox */
" beqz %[initfunc], 1b \n "
" nop \n "
" ld $sp, 0x28(%[base]) \n " /* get SP via mailbox */
" ld $gp, 0x30(%[base]) \n " /* get GP via mailbox */
" ld $a1, 0x38(%[base]) \n "
" jr %[initfunc] \n " /* jump to initial PC */
" nop \n "
" .set pop \n "
: [ core ] " =&r " ( core ) , [ node ] " =&r " ( node ) ,
[ base ] " =&r " ( base ) , [ cpuid ] " =&r " ( cpuid ) ,
[ count ] " =&r " ( count ) , [ initfunc ] " =&r " ( initfunc )
: /* No Input */
: " a1 " ) ;
}
2014-03-21 14:44:09 +04:00
void play_dead ( void )
{
int * state_addr ;
unsigned int cpu = smp_processor_id ( ) ;
void ( * play_dead_at_ckseg1 ) ( int * ) ;
idle_task_exit ( ) ;
2014-06-26 07:41:30 +04:00
switch ( loongson_sysconf . cputype ) {
case Loongson_3A :
default :
play_dead_at_ckseg1 =
( void * ) CKSEG1ADDR ( ( unsigned long ) loongson3a_play_dead ) ;
break ;
case Loongson_3B :
play_dead_at_ckseg1 =
( void * ) CKSEG1ADDR ( ( unsigned long ) loongson3b_play_dead ) ;
break ;
}
2014-03-21 14:44:09 +04:00
state_addr = & per_cpu ( cpu_state , cpu ) ;
mb ( ) ;
play_dead_at_ckseg1 ( state_addr ) ;
}
2014-06-26 07:41:30 +04:00
void loongson3_disable_clock ( int cpu )
{
uint64_t core_id = cpu_data [ cpu ] . core ;
uint64_t package_id = cpu_data [ cpu ] . package ;
if ( loongson_sysconf . cputype = = Loongson_3A ) {
LOONGSON_CHIPCFG ( package_id ) & = ~ ( 1 < < ( 12 + core_id ) ) ;
} else if ( loongson_sysconf . cputype = = Loongson_3B ) {
2014-11-04 09:13:27 +03:00
if ( ! ( loongson_sysconf . workarounds & WORKAROUND_CPUHOTPLUG ) )
2014-06-26 07:41:30 +04:00
LOONGSON_FREQCTRL ( package_id ) & = ~ ( 1 < < ( core_id * 4 + 3 ) ) ;
}
}
void loongson3_enable_clock ( int cpu )
{
uint64_t core_id = cpu_data [ cpu ] . core ;
uint64_t package_id = cpu_data [ cpu ] . package ;
if ( loongson_sysconf . cputype = = Loongson_3A ) {
LOONGSON_CHIPCFG ( package_id ) | = 1 < < ( 12 + core_id ) ;
} else if ( loongson_sysconf . cputype = = Loongson_3B ) {
2014-11-04 09:13:27 +03:00
if ( ! ( loongson_sysconf . workarounds & WORKAROUND_CPUHOTPLUG ) )
2014-06-26 07:41:30 +04:00
LOONGSON_FREQCTRL ( package_id ) | = 1 < < ( core_id * 4 + 3 ) ;
}
}
2014-03-21 14:44:09 +04:00
# define CPU_POST_DEAD_FROZEN (CPU_POST_DEAD | CPU_TASKS_FROZEN)
static int loongson3_cpu_callback ( struct notifier_block * nfb ,
unsigned long action , void * hcpu )
{
unsigned int cpu = ( unsigned long ) hcpu ;
switch ( action ) {
case CPU_POST_DEAD :
case CPU_POST_DEAD_FROZEN :
pr_info ( " Disable clock for CPU#%d \n " , cpu ) ;
2014-06-26 07:41:30 +04:00
loongson3_disable_clock ( cpu ) ;
2014-03-21 14:44:09 +04:00
break ;
case CPU_UP_PREPARE :
case CPU_UP_PREPARE_FROZEN :
pr_info ( " Enable clock for CPU#%d \n " , cpu ) ;
2014-06-26 07:41:30 +04:00
loongson3_enable_clock ( cpu ) ;
2014-03-21 14:44:09 +04:00
break ;
}
return NOTIFY_OK ;
}
static int register_loongson3_notifier ( void )
{
hotcpu_notifier ( loongson3_cpu_callback , 0 ) ;
return 0 ;
}
early_initcall ( register_loongson3_notifier ) ;
# endif
2014-03-21 14:44:08 +04:00
struct plat_smp_ops loongson3_smp_ops = {
. send_ipi_single = loongson3_send_ipi_single ,
. send_ipi_mask = loongson3_send_ipi_mask ,
. init_secondary = loongson3_init_secondary ,
. smp_finish = loongson3_smp_finish ,
. boot_secondary = loongson3_boot_secondary ,
. smp_setup = loongson3_smp_setup ,
. prepare_cpus = loongson3_prepare_cpus ,
2014-03-21 14:44:09 +04:00
# ifdef CONFIG_HOTPLUG_CPU
. cpu_disable = loongson3_cpu_disable ,
. cpu_die = loongson3_cpu_die ,
# endif
2014-03-21 14:44:08 +04:00
} ;