2014-05-23 18:15:30 +10:00
/*
* Copyright 2013 , Michael ( Ellerman | Neuling ) , IBM Corporation .
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation ; either version
* 2 of the License , or ( at your option ) any later version .
*/
# define pr_fmt(fmt) "powernv: " fmt
# include <linux/kernel.h>
# include <linux/cpu.h>
# include <linux/cpumask.h>
# include <linux/device.h>
# include <linux/gfp.h>
# include <linux/smp.h>
# include <linux/stop_machine.h>
# include <asm/cputhreads.h>
2017-06-13 23:05:45 +10:00
# include <asm/cpuidle.h>
2014-05-23 18:15:30 +10:00
# include <asm/kvm_ppc.h>
# include <asm/machdep.h>
# include <asm/opal.h>
# include <asm/smp.h>
# include "subcore.h"
2014-08-20 08:55:19 +10:00
# include "powernv.h"
2014-05-23 18:15:30 +10:00
/*
* Split / unsplit procedure :
*
* A core can be in one of three states , unsplit , 2 - way split , and 4 - way split .
*
* The mapping to subcores_per_core is simple :
*
* State | subcores_per_core
* - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - -
* Unsplit | 1
* 2 - way split | 2
* 4 - way split | 4
*
* The core is split along thread boundaries , the mapping between subcores and
* threads is as follows :
*
* Unsplit :
* - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Subcore | 0 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Thread | 0 1 2 3 4 5 6 7 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* 2 - way split :
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Subcore | 0 | 1 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Thread | 0 1 2 3 | 4 5 6 7 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* 4 - way split :
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Subcore | 0 | 1 | 2 | 3 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Thread | 0 1 | 2 3 | 4 5 | 6 7 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
*
* Transitions
* - - - - - - - - - - -
*
* It is not possible to transition between either of the split states , the
* core must first be unsplit . The legal transitions are :
*
* - - - - - - - - - - - - - - - - - - - - - - - - - -
* | | < - - - - > | 2 - way split |
* | | - - - - - - - - - - - - - - -
* | Unsplit |
* | | - - - - - - - - - - - - - - -
* | | < - - - - > | 4 - way split |
* - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* Unsplitting
* - - - - - - - - - - -
*
* Unsplitting is the simpler procedure . It requires thread 0 to request the
* unsplit while all other threads NAP .
*
* Thread 0 clears HID0_POWER8_DYNLPARDIS ( Dynamic LPAR Disable ) . This tells
* the hardware that if all threads except 0 are napping , the hardware should
* unsplit the core .
*
* Non - zero threads are sent to a NAP loop , they don ' t exit the loop until they
* see the core unsplit .
*
* Core 0 spins waiting for the hardware to see all the other threads napping
* and perform the unsplit .
*
* Once thread 0 sees the unsplit , it IPIs the secondary threads to wake them
* out of NAP . They will then see the core unsplit and exit the NAP loop .
*
* Splitting
* - - - - - - - - -
*
* The basic splitting procedure is fairly straight forward . However it is
* complicated by the fact that after the split occurs , the newly created
* subcores are not in a fully initialised state .
*
* Most notably the subcores do not have the correct value for SDR1 , which
* means they must not be running in virtual mode when the split occurs . The
* subcores have separate timebases SPRs but these are pre - synchronised by
* opal .
*
* To begin with secondary threads are sent to an assembly routine . There they
* switch to real mode , so they are immune to the uninitialised SDR1 value .
* Once in real mode they indicate that they are in real mode , and spin waiting
* to see the core split .
*
* Thread 0 waits to see that all secondaries are in real mode , and then begins
* the splitting procedure . It firstly sets HID0_POWER8_DYNLPARDIS , which
* prevents the hardware from unsplitting . Then it sets the appropriate HID bit
* to request the split , and spins waiting to see that the split has happened .
*
* Concurrently the secondaries will notice the split . When they do they set up
* their SPRs , notably SDR1 , and then they can return to virtual mode and exit
* the procedure .
*/
/* Initialised at boot by subcore_init() */
static int subcores_per_core ;
/*
* Used to communicate to offline cpus that we want them to pop out of the
* offline loop and do a split or unsplit .
*
* 0 - no split happening
* 1 - unsplit in progress
* 2 - split to 2 in progress
* 4 - split to 4 in progress
*/
static int new_split_mode ;
static cpumask_var_t cpu_offline_mask ;
struct split_state {
u8 step ;
u8 master ;
} ;
static DEFINE_PER_CPU ( struct split_state , split_state ) ;
static void wait_for_sync_step ( int step )
{
int i , cpu = smp_processor_id ( ) ;
for ( i = cpu + 1 ; i < cpu + threads_per_core ; i + + )
while ( per_cpu ( split_state , i ) . step < step )
barrier ( ) ;
/* Order the wait loop vs any subsequent loads/stores. */
mb ( ) ;
}
2014-12-10 00:26:53 +05:30
static void update_hid_in_slw ( u64 hid0 )
{
u64 idle_states = pnv_get_supported_cpuidle_states ( ) ;
if ( idle_states & OPAL_PM_WINKLE_ENABLED ) {
/* OPAL call to patch slw with the new HID0 value */
u64 cpu_pir = hard_smp_processor_id ( ) ;
opal_slw_set_reg ( cpu_pir , SPRN_HID0 , hid0 ) ;
}
}
2014-05-23 18:15:30 +10:00
static void unsplit_core ( void )
{
u64 hid0 , mask ;
int i , cpu ;
mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE ;
cpu = smp_processor_id ( ) ;
if ( cpu_thread_in_core ( cpu ) ! = 0 ) {
while ( mfspr ( SPRN_HID0 ) & mask )
2017-06-13 23:05:45 +10:00
power7_idle_insn ( PNV_THREAD_NAP ) ;
2014-05-23 18:15:30 +10:00
per_cpu ( split_state , cpu ) . step = SYNC_STEP_UNSPLIT ;
return ;
}
hid0 = mfspr ( SPRN_HID0 ) ;
hid0 & = ~ HID0_POWER8_DYNLPARDIS ;
2015-08-05 12:38:31 +05:30
update_power8_hid0 ( hid0 ) ;
2014-12-10 00:26:53 +05:30
update_hid_in_slw ( hid0 ) ;
2014-05-23 18:15:30 +10:00
while ( mfspr ( SPRN_HID0 ) & mask )
cpu_relax ( ) ;
/* Wake secondaries out of NAP */
for ( i = cpu + 1 ; i < cpu + threads_per_core ; i + + )
smp_send_reschedule ( i ) ;
wait_for_sync_step ( SYNC_STEP_UNSPLIT ) ;
}
static void split_core ( int new_mode )
{
struct { u64 value ; u64 mask ; } split_parms [ 2 ] = {
{ HID0_POWER8_1TO2LPAR , HID0_POWER8_2LPARMODE } ,
{ HID0_POWER8_1TO4LPAR , HID0_POWER8_4LPARMODE }
} ;
int i , cpu ;
u64 hid0 ;
/* Convert new_mode (2 or 4) into an index into our parms array */
i = ( new_mode > > 1 ) - 1 ;
BUG_ON ( i < 0 | | i > 1 ) ;
cpu = smp_processor_id ( ) ;
if ( cpu_thread_in_core ( cpu ) ! = 0 ) {
split_core_secondary_loop ( & per_cpu ( split_state , cpu ) . step ) ;
return ;
}
wait_for_sync_step ( SYNC_STEP_REAL_MODE ) ;
/* Write new mode */
hid0 = mfspr ( SPRN_HID0 ) ;
hid0 | = HID0_POWER8_DYNLPARDIS | split_parms [ i ] . value ;
2015-08-05 12:38:31 +05:30
update_power8_hid0 ( hid0 ) ;
2014-12-10 00:26:53 +05:30
update_hid_in_slw ( hid0 ) ;
2014-05-23 18:15:30 +10:00
/* Wait for it to happen */
while ( ! ( mfspr ( SPRN_HID0 ) & split_parms [ i ] . mask ) )
cpu_relax ( ) ;
}
static void cpu_do_split ( int new_mode )
{
/*
* At boot subcores_per_core will be 0 , so we will always unsplit at
* boot . In the usual case where the core is already unsplit it ' s a
* nop , and this just ensures the kernel ' s notion of the mode is
* consistent with the hardware .
*/
if ( subcores_per_core ! = 1 )
unsplit_core ( ) ;
if ( new_mode ! = 1 )
split_core ( new_mode ) ;
mb ( ) ;
per_cpu ( split_state , smp_processor_id ( ) ) . step = SYNC_STEP_FINISHED ;
}
bool cpu_core_split_required ( void )
{
smp_rmb ( ) ;
if ( ! new_split_mode )
return false ;
cpu_do_split ( new_split_mode ) ;
return true ;
}
2014-12-10 00:26:53 +05:30
void update_subcore_sibling_mask ( void )
{
int cpu ;
/*
* sibling mask for the first cpu . Left shift this by required bits
* to get sibling mask for the rest of the cpus .
*/
int sibling_mask_first_cpu = ( 1 < < threads_per_subcore ) - 1 ;
for_each_possible_cpu ( cpu ) {
int tid = cpu_thread_in_core ( cpu ) ;
int offset = ( tid / threads_per_subcore ) * threads_per_subcore ;
int mask = sibling_mask_first_cpu < < offset ;
2018-02-14 01:08:12 +10:00
paca_ptrs [ cpu ] - > subcore_sibling_mask = mask ;
2014-12-10 00:26:53 +05:30
}
}
2014-05-23 18:15:30 +10:00
static int cpu_update_split_mode ( void * data )
{
int cpu , new_mode = * ( int * ) data ;
if ( this_cpu_ptr ( & split_state ) - > master ) {
new_split_mode = new_mode ;
smp_wmb ( ) ;
cpumask_andnot ( cpu_offline_mask , cpu_present_mask ,
cpu_online_mask ) ;
/* This should work even though the cpu is offline */
for_each_cpu ( cpu , cpu_offline_mask )
smp_send_reschedule ( cpu ) ;
}
cpu_do_split ( new_mode ) ;
if ( this_cpu_ptr ( & split_state ) - > master ) {
/* Wait for all cpus to finish before we touch subcores_per_core */
for_each_present_cpu ( cpu ) {
if ( cpu > = setup_max_cpus )
break ;
while ( per_cpu ( split_state , cpu ) . step < SYNC_STEP_FINISHED )
barrier ( ) ;
}
new_split_mode = 0 ;
/* Make the new mode public */
subcores_per_core = new_mode ;
threads_per_subcore = threads_per_core / subcores_per_core ;
2014-12-10 00:26:53 +05:30
update_subcore_sibling_mask ( ) ;
2014-05-23 18:15:30 +10:00
/* Make sure the new mode is written before we exit */
mb ( ) ;
}
return 0 ;
}
static int set_subcores_per_core ( int new_mode )
{
struct split_state * state ;
int cpu ;
if ( kvm_hv_mode_active ( ) ) {
pr_err ( " Unable to change split core mode while KVM active. \n " ) ;
return - EBUSY ;
}
/*
* We are only called at boot , or from the sysfs write . If that ever
* changes we ' ll need a lock here .
*/
BUG_ON ( new_mode < 1 | | new_mode > 4 | | new_mode = = 3 ) ;
for_each_present_cpu ( cpu ) {
state = & per_cpu ( split_state , cpu ) ;
state - > step = SYNC_STEP_INITIAL ;
state - > master = 0 ;
}
2017-05-24 10:15:27 +02:00
cpus_read_lock ( ) ;
2014-05-23 18:15:30 +10:00
/* This cpu will update the globals before exiting stop machine */
this_cpu_ptr ( & split_state ) - > master = 1 ;
/* Ensure state is consistent before we call the other cpus */
mb ( ) ;
2017-05-24 10:15:27 +02:00
stop_machine_cpuslocked ( cpu_update_split_mode , & new_mode ,
cpu_online_mask ) ;
2014-05-23 18:15:30 +10:00
2017-05-24 10:15:27 +02:00
cpus_read_unlock ( ) ;
2014-05-23 18:15:30 +10:00
return 0 ;
}
static ssize_t __used store_subcores_per_core ( struct device * dev ,
struct device_attribute * attr , const char * buf ,
size_t count )
{
unsigned long val ;
int rc ;
/* We are serialised by the attribute lock */
rc = sscanf ( buf , " %lx " , & val ) ;
if ( rc ! = 1 )
return - EINVAL ;
switch ( val ) {
case 1 :
case 2 :
case 4 :
if ( subcores_per_core = = val )
/* Nothing to do */
goto out ;
break ;
default :
return - EINVAL ;
}
rc = set_subcores_per_core ( val ) ;
if ( rc )
return rc ;
out :
return count ;
}
static ssize_t show_subcores_per_core ( struct device * dev ,
struct device_attribute * attr , char * buf )
{
return sprintf ( buf , " %x \n " , subcores_per_core ) ;
}
static DEVICE_ATTR ( subcores_per_core , 0644 ,
show_subcores_per_core , store_subcores_per_core ) ;
static int subcore_init ( void )
{
2017-05-25 16:33:52 +10:00
unsigned pvr_ver ;
pvr_ver = PVR_VER ( mfspr ( SPRN_PVR ) ) ;
if ( pvr_ver ! = PVR_POWER8 & &
pvr_ver ! = PVR_POWER8E & &
pvr_ver ! = PVR_POWER8NVL )
2014-05-23 18:15:30 +10:00
return 0 ;
/*
* We need all threads in a core to be present to split / unsplit so
* continue only if max_cpus are aligned to threads_per_core .
*/
if ( setup_max_cpus % threads_per_core )
return 0 ;
BUG_ON ( ! alloc_cpumask_var ( & cpu_offline_mask , GFP_KERNEL ) ) ;
set_subcores_per_core ( 1 ) ;
return device_create_file ( cpu_subsys . dev_root ,
& dev_attr_subcores_per_core ) ;
}
machine_device_initcall ( powernv , subcore_init ) ;