linux/fs/xfs/xfs_inode_item.h

54 lines
1.8 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#ifndef __XFS_INODE_ITEM_H__
#define __XFS_INODE_ITEM_H__
/* kernel only definitions */
struct xfs_buf;
struct xfs_bmbt_rec;
struct xfs_inode;
struct xfs_mount;
struct xfs_inode_log_item {
struct xfs_log_item ili_item; /* common portion */
struct xfs_inode *ili_inode; /* inode ptr */
xfs: add an inode item lock The inode log item is kind of special in that it can be aggregating new changes in memory at the same time time existing changes are being written back to disk. This means there are fields in the log item that are accessed concurrently from contexts that don't share any locking at all. e.g. updating ili_last_fields occurs at flush time under the ILOCK_EXCL and flush lock at flush time, under the flush lock at IO completion time, and is read under the ILOCK_EXCL when the inode is logged. Hence there is no actual serialisation between reading the field during logging of the inode in transactions vs clearing the field in IO completion. We currently get away with this by the fact that we are only clearing fields in IO completion, and nothing bad happens if we accidentally log more of the inode than we actually modify. Worst case is we consume a tiny bit more memory and log bandwidth. However, if we want to do more complex state manipulations on the log item that requires updates at all three of these potential locations, we need to have some mechanism of serialising those operations. To do this, introduce a spinlock into the log item to serialise internal state. This could be done via the xfs_inode i_flags_lock, but this then leads to potential lock inversion issues where inode flag updates need to occur inside locks that best nest inside the inode log item locks (e.g. marking inodes stale during inode cluster freeing). Using a separate spinlock avoids these sorts of problems and simplifies future code. This does not touch the use of ili_fields in the item formatting code - that is entirely protected by the ILOCK_EXCL at this point in time, so it remains untouched. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-06-30 00:48:46 +03:00
unsigned short ili_lock_flags; /* inode lock flags */
/*
* The ili_lock protects the interactions between the dirty state and
* the flush state of the inode log item. This allows us to do atomic
* modifications of multiple state fields without having to hold a
* specific inode lock to serialise them.
*
* We need atomic changes between inode dirtying, inode flushing and
* inode completion, but these all hold different combinations of
* ILOCK and iflock and hence we need some other method of serialising
* updates to the flush state.
*/
spinlock_t ili_lock; /* flush state lock */
unsigned int ili_last_fields; /* fields when flushed */
unsigned int ili_fields; /* fields to be logged */
xfs: optimise away log forces on timestamp updates for fdatasync xfs: timestamp updates cause excessive fdatasync log traffic Sage Weil reported that a ceph test workload was writing to the log on every fdatasync during an overwrite workload. Event tracing showed that the only metadata modification being made was the timestamp updates during the write(2) syscall, but fdatasync(2) is supposed to ignore them. The key observation was that the transactions in the log all looked like this: INODE: #regs: 4 ino: 0x8b flags: 0x45 dsize: 32 And contained a flags field of 0x45 or 0x85, and had data and attribute forks following the inode core. This means that the timestamp updates were triggering dirty relogging of previously logged parts of the inode that hadn't yet been flushed back to disk. There are two parts to this problem. The first is that XFS relogs dirty regions in subsequent transactions, so it carries around the fields that have been dirtied since the last time the inode was written back to disk, not since the last time the inode was forced into the log. The second part is that on v5 filesystems, the inode change count update during inode dirtying also sets the XFS_ILOG_CORE flag, so on v5 filesystems this makes a timestamp update dirty the entire inode. As a result when fdatasync is run, it looks at the dirty fields in the inode, and sees more than just the timestamp flag, even though the only metadata change since the last fdatasync was just the timestamps. Hence we force the log on every subsequent fdatasync even though it is not needed. To fix this, add a new field to the inode log item that tracks changes since the last time fsync/fdatasync forced the log to flush the changes to the journal. This flag is updated when we dirty the inode, but we do it before updating the change count so it does not carry the "core dirty" flag from timestamp updates. The fields are zeroed when the inode is marked clean (due to writeback/freeing) or when an fsync/datasync forces the log. Hence if we only dirty the timestamps on the inode between fsync/fdatasync calls, the fdatasync will not trigger another log force. Over 100 runs of the test program: Ext4 baseline: runtime: 1.63s +/- 0.24s avg lat: 1.59ms +/- 0.24ms iops: ~2000 XFS, vanilla kernel: runtime: 2.45s +/- 0.18s avg lat: 2.39ms +/- 0.18ms log forces: ~400/s iops: ~1000 XFS, patched kernel: runtime: 1.49s +/- 0.26s avg lat: 1.46ms +/- 0.25ms log forces: ~30/s iops: ~1500 Reported-by: Sage Weil <sage@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 05:14:59 +03:00
unsigned int ili_fsync_fields; /* logged since last fsync */
xfs: add an inode item lock The inode log item is kind of special in that it can be aggregating new changes in memory at the same time time existing changes are being written back to disk. This means there are fields in the log item that are accessed concurrently from contexts that don't share any locking at all. e.g. updating ili_last_fields occurs at flush time under the ILOCK_EXCL and flush lock at flush time, under the flush lock at IO completion time, and is read under the ILOCK_EXCL when the inode is logged. Hence there is no actual serialisation between reading the field during logging of the inode in transactions vs clearing the field in IO completion. We currently get away with this by the fact that we are only clearing fields in IO completion, and nothing bad happens if we accidentally log more of the inode than we actually modify. Worst case is we consume a tiny bit more memory and log bandwidth. However, if we want to do more complex state manipulations on the log item that requires updates at all three of these potential locations, we need to have some mechanism of serialising those operations. To do this, introduce a spinlock into the log item to serialise internal state. This could be done via the xfs_inode i_flags_lock, but this then leads to potential lock inversion issues where inode flag updates need to occur inside locks that best nest inside the inode log item locks (e.g. marking inodes stale during inode cluster freeing). Using a separate spinlock avoids these sorts of problems and simplifies future code. This does not touch the use of ili_fields in the item formatting code - that is entirely protected by the ILOCK_EXCL at this point in time, so it remains untouched. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-06-30 00:48:46 +03:00
xfs_lsn_t ili_flush_lsn; /* lsn at last flush */
xfs_lsn_t ili_last_lsn; /* lsn at last transaction */
};
static inline int xfs_inode_clean(struct xfs_inode *ip)
{
return !ip->i_itemp || !(ip->i_itemp->ili_fields & XFS_ILOG_ALL);
}
extern void xfs_inode_item_init(struct xfs_inode *, struct xfs_mount *);
extern void xfs_inode_item_destroy(struct xfs_inode *);
extern void xfs_iflush_done(struct xfs_buf *);
extern void xfs_iflush_abort(struct xfs_inode *);
extern int xfs_inode_item_format_convert(xfs_log_iovec_t *,
struct xfs_inode_log_format *);
extern struct kmem_zone *xfs_ili_zone;
#endif /* __XFS_INODE_ITEM_H__ */