linux/fs/xfs/xfs_aops.c

2028 lines
55 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_iomap.h"
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 02:14:59 +03:00
#include "xfs_trace.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_bmap_btree.h"
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/gfp.h>
#include <linux/mpage.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 02:14:59 +03:00
void
xfs_count_page_state(
struct page *page,
int *delalloc,
int *unwritten)
{
struct buffer_head *bh, *head;
*delalloc = *unwritten = 0;
bh = head = page_buffers(page);
do {
if (buffer_unwritten(bh))
(*unwritten) = 1;
else if (buffer_delay(bh))
(*delalloc) = 1;
} while ((bh = bh->b_this_page) != head);
}
STATIC struct block_device *
xfs_find_bdev_for_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
if (XFS_IS_REALTIME_INODE(ip))
return mp->m_rtdev_targp->bt_bdev;
else
return mp->m_ddev_targp->bt_bdev;
}
/*
* We're now finished for good with this ioend structure.
* Update the page state via the associated buffer_heads,
* release holds on the inode and bio, and finally free
* up memory. Do not use the ioend after this.
*/
STATIC void
xfs_destroy_ioend(
xfs_ioend_t *ioend)
{
struct buffer_head *bh, *next;
for (bh = ioend->io_buffer_head; bh; bh = next) {
next = bh->b_private;
bh->b_end_io(bh, !ioend->io_error);
}
mempool_free(ioend, xfs_ioend_pool);
}
/*
* Fast and loose check if this write could update the on-disk inode size.
*/
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
return ioend->io_offset + ioend->io_size >
XFS_I(ioend->io_inode)->i_d.di_size;
}
STATIC int
xfs_setfilesize_trans_alloc(
struct xfs_ioend *ioend)
{
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
struct xfs_trans *tp;
int error;
tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
if (error) {
xfs_trans_cancel(tp);
return error;
}
ioend->io_append_trans = tp;
/*
xfs: fix direct IO nested transaction deadlock. The direct IO path can do a nested transaction reservation when writing past the EOF. The first transaction is the append transaction for setting the filesize at IO completion, but we can also need a transaction for allocation of blocks. If the log is low on space due to reservations and small log, the append transaction can be granted after wating for space as the only active transaction in the system. This then attempts a reservation for an allocation, which there isn't space in the log for, and the reservation sleeps. The result is that there is nothing left in the system to wake up all the processes waiting for log space to come free. The stack trace that shows this deadlock is relatively innocuous: xlog_grant_head_wait xlog_grant_head_check xfs_log_reserve xfs_trans_reserve xfs_iomap_write_direct __xfs_get_blocks xfs_get_blocks_direct do_blockdev_direct_IO __blockdev_direct_IO xfs_vm_direct_IO generic_file_direct_write xfs_file_dio_aio_writ xfs_file_aio_write do_sync_write vfs_write This was discovered on a filesystem with a log of only 10MB, and a log stripe unit of 256k whih increased the base reservations by 512k. Hence a allocation transaction requires 1.2MB of log space to be available instead of only 260k, and so greatly increased the chance that there wouldn't be enough log space available for the nested transaction to succeed. The key to reproducing it is this mkfs command: mkfs.xfs -f -d agcount=16,su=256k,sw=12 -l su=256k,size=2560b $SCRATCH_DEV The test case was a 1000 fsstress processes running with random freeze and unfreezes every few seconds. Thanks to Eryu Guan (eguan@redhat.com) for writing the test that found this on a system with a somewhat unique default configuration.... cc: <stable@vger.kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Andrew Dahl <adahl@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-28 06:01:00 +04:00
* We may pass freeze protection with a transaction. So tell lockdep
* we released it.
*/
__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
/*
* We hand off the transaction to the completion thread now, so
* clear the flag here.
*/
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
return 0;
}
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
/*
* Update on-disk file size now that data has been written to disk.
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
*/
STATIC int
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
xfs_setfilesize(
struct xfs_inode *ip,
struct xfs_trans *tp,
xfs_off_t offset,
size_t size)
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
{
xfs_fsize_t isize;
xfs_ilock(ip, XFS_ILOCK_EXCL);
isize = xfs_new_eof(ip, offset + size);
if (!isize) {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_trans_cancel(tp);
return 0;
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
}
trace_xfs_setfilesize(ip, offset, size);
ip->i_d.di_size = isize;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
return xfs_trans_commit(tp);
}
STATIC int
xfs_setfilesize_ioend(
struct xfs_ioend *ioend)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_trans *tp = ioend->io_append_trans;
/*
* The transaction may have been allocated in the I/O submission thread,
* thus we need to mark ourselves as being in a transaction manually.
* Similarly for freeze protection.
*/
current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
/* we abort the update if there was an IO error */
if (ioend->io_error) {
xfs_trans_cancel(tp);
return ioend->io_error;
}
return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
}
/*
* Schedule IO completion handling on the final put of an ioend.
*
* If there is no work to do we might as well call it a day and free the
* ioend right now.
*/
STATIC void
xfs_finish_ioend(
struct xfs_ioend *ioend)
{
if (atomic_dec_and_test(&ioend->io_remaining)) {
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
if (ioend->io_type == XFS_IO_UNWRITTEN)
queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
else if (ioend->io_append_trans)
queue_work(mp->m_data_workqueue, &ioend->io_work);
else
xfs_destroy_ioend(ioend);
}
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
}
/*
* IO write completion.
*/
STATIC void
xfs_end_io(
struct work_struct *work)
{
xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
struct xfs_inode *ip = XFS_I(ioend->io_inode);
int error = 0;
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
ioend->io_error = -EIO;
goto done;
}
/*
* For unwritten extents we need to issue transactions to convert a
* range to normal written extens after the data I/O has finished.
* Detecting and handling completion IO errors is done individually
* for each case as different cleanup operations need to be performed
* on error.
*/
if (ioend->io_type == XFS_IO_UNWRITTEN) {
if (ioend->io_error)
goto done;
xfs: fix direct IO nested transaction deadlock. The direct IO path can do a nested transaction reservation when writing past the EOF. The first transaction is the append transaction for setting the filesize at IO completion, but we can also need a transaction for allocation of blocks. If the log is low on space due to reservations and small log, the append transaction can be granted after wating for space as the only active transaction in the system. This then attempts a reservation for an allocation, which there isn't space in the log for, and the reservation sleeps. The result is that there is nothing left in the system to wake up all the processes waiting for log space to come free. The stack trace that shows this deadlock is relatively innocuous: xlog_grant_head_wait xlog_grant_head_check xfs_log_reserve xfs_trans_reserve xfs_iomap_write_direct __xfs_get_blocks xfs_get_blocks_direct do_blockdev_direct_IO __blockdev_direct_IO xfs_vm_direct_IO generic_file_direct_write xfs_file_dio_aio_writ xfs_file_aio_write do_sync_write vfs_write This was discovered on a filesystem with a log of only 10MB, and a log stripe unit of 256k whih increased the base reservations by 512k. Hence a allocation transaction requires 1.2MB of log space to be available instead of only 260k, and so greatly increased the chance that there wouldn't be enough log space available for the nested transaction to succeed. The key to reproducing it is this mkfs command: mkfs.xfs -f -d agcount=16,su=256k,sw=12 -l su=256k,size=2560b $SCRATCH_DEV The test case was a 1000 fsstress processes running with random freeze and unfreezes every few seconds. Thanks to Eryu Guan (eguan@redhat.com) for writing the test that found this on a system with a somewhat unique default configuration.... cc: <stable@vger.kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Andrew Dahl <adahl@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-28 06:01:00 +04:00
error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
ioend->io_size);
} else if (ioend->io_append_trans) {
error = xfs_setfilesize_ioend(ioend);
} else {
ASSERT(!xfs_ioend_is_append(ioend));
}
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
done:
xfs: fix direct IO nested transaction deadlock. The direct IO path can do a nested transaction reservation when writing past the EOF. The first transaction is the append transaction for setting the filesize at IO completion, but we can also need a transaction for allocation of blocks. If the log is low on space due to reservations and small log, the append transaction can be granted after wating for space as the only active transaction in the system. This then attempts a reservation for an allocation, which there isn't space in the log for, and the reservation sleeps. The result is that there is nothing left in the system to wake up all the processes waiting for log space to come free. The stack trace that shows this deadlock is relatively innocuous: xlog_grant_head_wait xlog_grant_head_check xfs_log_reserve xfs_trans_reserve xfs_iomap_write_direct __xfs_get_blocks xfs_get_blocks_direct do_blockdev_direct_IO __blockdev_direct_IO xfs_vm_direct_IO generic_file_direct_write xfs_file_dio_aio_writ xfs_file_aio_write do_sync_write vfs_write This was discovered on a filesystem with a log of only 10MB, and a log stripe unit of 256k whih increased the base reservations by 512k. Hence a allocation transaction requires 1.2MB of log space to be available instead of only 260k, and so greatly increased the chance that there wouldn't be enough log space available for the nested transaction to succeed. The key to reproducing it is this mkfs command: mkfs.xfs -f -d agcount=16,su=256k,sw=12 -l su=256k,size=2560b $SCRATCH_DEV The test case was a 1000 fsstress processes running with random freeze and unfreezes every few seconds. Thanks to Eryu Guan (eguan@redhat.com) for writing the test that found this on a system with a somewhat unique default configuration.... cc: <stable@vger.kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Andrew Dahl <adahl@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-28 06:01:00 +04:00
if (error)
ioend->io_error = error;
xfs_destroy_ioend(ioend);
}
/*
* Allocate and initialise an IO completion structure.
* We need to track unwritten extent write completion here initially.
* We'll need to extend this for updating the ondisk inode size later
* (vs. incore size).
*/
STATIC xfs_ioend_t *
xfs_alloc_ioend(
struct inode *inode,
unsigned int type)
{
xfs_ioend_t *ioend;
ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
/*
* Set the count to 1 initially, which will prevent an I/O
* completion callback from happening before we have started
* all the I/O from calling the completion routine too early.
*/
atomic_set(&ioend->io_remaining, 1);
ioend->io_error = 0;
ioend->io_list = NULL;
ioend->io_type = type;
ioend->io_inode = inode;
ioend->io_buffer_head = NULL;
ioend->io_buffer_tail = NULL;
ioend->io_offset = 0;
ioend->io_size = 0;
ioend->io_append_trans = NULL;
INIT_WORK(&ioend->io_work, xfs_end_io);
return ioend;
}
STATIC int
xfs_map_blocks(
struct inode *inode,
loff_t offset,
struct xfs_bmbt_irec *imap,
int type,
int nonblocking)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t count = 1 << inode->i_blkbits;
xfs_fileoff_t offset_fsb, end_fsb;
int error = 0;
int bmapi_flags = XFS_BMAPI_ENTIRE;
int nimaps = 1;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (type == XFS_IO_UNWRITTEN)
bmapi_flags |= XFS_BMAPI_IGSTATE;
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
if (nonblocking)
return -EAGAIN;
xfs_ilock(ip, XFS_ILOCK_SHARED);
}
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
(ip->i_df.if_flags & XFS_IFEXTENTS));
ASSERT(offset <= mp->m_super->s_maxbytes);
if (offset + count > mp->m_super->s_maxbytes)
count = mp->m_super->s_maxbytes - offset;
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
offset_fsb = XFS_B_TO_FSBT(mp, offset);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
imap, &nimaps, bmapi_flags);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (error)
return error;
if (type == XFS_IO_DELALLOC &&
(!nimaps || isnullstartblock(imap->br_startblock))) {
error = xfs_iomap_write_allocate(ip, offset, imap);
if (!error)
trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
return error;
}
#ifdef DEBUG
if (type == XFS_IO_UNWRITTEN) {
ASSERT(nimaps);
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
}
#endif
if (nimaps)
trace_xfs_map_blocks_found(ip, offset, count, type, imap);
return 0;
}
STATIC int
xfs_imap_valid(
struct inode *inode,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
offset >>= inode->i_blkbits;
return offset >= imap->br_startoff &&
offset < imap->br_startoff + imap->br_blockcount;
}
/*
* BIO completion handler for buffered IO.
*/
STATIC void
xfs_end_bio(
struct bio *bio)
{
xfs_ioend_t *ioend = bio->bi_private;
xfs: updates for 4.3-rc1 This update contains: o large rework of EFI/EFD lifecycle handling to fix log recovery corruption issues, crashes and unmount hangs o separate metadata UUID on disk to enable changing boot label UUID for v5 filesystems o fixes for gcc miscompilation on certain platforms and optimisation levels o remote attribute allocation and recovery corruption fixes o inode lockdep annotation rework to fix bugs with too many subclasses o directory inode locking changes to prevent lockdep false positives o a handful of minor corruption fixes o various other small cleanups and bug fixes -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQIcBAABAgAGBQJV7VlyAAoJEK3oKUf0dfodLDAQAMTYAERZGp8sI1ZZo9qTtMis HE3X7X1jpA2/CrSlsQtw5FEahl9NDoVZKInEFzpDeFogloOwLy+aNz6F9s6SQvSO p7r+Tkv8k5WCWCpYhm6N5yVSwMRkCVBJ9+DsxKeabQaNobu2nBRYWA7RcTPbwhL6 eZZ41NT/1x4Di3MppjRcSHMRxq+DOYsoTj7ey2tB3jFK4w99pfhBqhMsxOMCyThQ g61Rj/IIwbUKWDZNBP1vdG9y8eN9xEan7+uQRJYpwjrdPAXeZMg9J0U5dIoZXmOA o7UDvyhxZP06vZGG52rMCMWl5kWbEyFGAa/bzh+L+O3/5DZAdoJQxZUF00AsLaxQ 2kQ4L8vUEuGvPpUcFFopSjvpJmjmdg4O8KCkxKp4bcONA+2Z108e68zVxffnQPgm 0d2msqRRHCVRSw+o52Nf8R1A29cjhShyxBq4Xw154zrK2lJNwWWx36LG+XgrW2R6 CHXj2OoMvQZIJWpbhwZqJCcl1dmhcjES082Wvb+RyKvvcQzerOjb5p2R7uqwXVg+ uR27KstQ3tJ3J+hmq2FwhB7E2GMnvYDL9qt+3RgMIJrM7rxAOB0b/QS+yO9hzgQH /I0KzyX72Lcwwxqd0aWLqlqoIWfn44eBK+V2vdXFRNTeWu3kDEW9q0JRQjxVBsFt /SMKetOh+gj7yAs+kgOh =Eikc -----END PGP SIGNATURE----- Merge tag 'xfs-for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs Pull xfs updates from Dave Chinner: "There isn't a whole lot to this update - it's mostly bug fixes and they are spread pretty much all over XFS. There are some corruption fixes, some fixes for log recovery, some fixes that prevent unount from hanging, a lockdep annotation rework for inode locking to prevent false positives and the usual random bunch of cleanups and minor improvements. Deatils: - large rework of EFI/EFD lifecycle handling to fix log recovery corruption issues, crashes and unmount hangs - separate metadata UUID on disk to enable changing boot label UUID for v5 filesystems - fixes for gcc miscompilation on certain platforms and optimisation levels - remote attribute allocation and recovery corruption fixes - inode lockdep annotation rework to fix bugs with too many subclasses - directory inode locking changes to prevent lockdep false positives - a handful of minor corruption fixes - various other small cleanups and bug fixes" * tag 'xfs-for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (42 commits) xfs: fix error gotos in xfs_setattr_nonsize xfs: add mssing inode cache attempts counter increment xfs: return errors from partial I/O failures to files libxfs: bad magic number should set da block buffer error xfs: fix non-debug build warnings xfs: collapse allocsize and biosize mount option handling xfs: Fix file type directory corruption for btree directories xfs: lockdep annotations throw warnings on non-debug builds xfs: Fix uninitialized return value in xfs_alloc_fix_freelist() xfs: inode lockdep annotations broke non-lockdep build xfs: flush entire file on dio read/write to cached file xfs: Fix xfs_attr_leafblock definition libxfs: readahead of dir3 data blocks should use the read verifier xfs: stop holding ILOCK over filldir callbacks xfs: clean up inode lockdep annotations xfs: swap leaf buffer into path struct atomically during path shift xfs: relocate sparse inode mount warning xfs: dquots should be stamped with sb_meta_uuid xfs: log recovery needs to validate against sb_meta_uuid xfs: growfs not aware of sb_meta_uuid ...
2015-09-07 23:28:32 +03:00
if (!ioend->io_error)
ioend->io_error = bio->bi_error;
/* Toss bio and pass work off to an xfsdatad thread */
bio->bi_private = NULL;
bio->bi_end_io = NULL;
bio_put(bio);
xfs_finish_ioend(ioend);
}
STATIC void
xfs_submit_ioend_bio(
struct writeback_control *wbc,
xfs_ioend_t *ioend,
struct bio *bio)
{
atomic_inc(&ioend->io_remaining);
bio->bi_private = ioend;
bio->bi_end_io = xfs_end_bio;
submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
}
STATIC struct bio *
xfs_alloc_ioend_bio(
struct buffer_head *bh)
{
struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
ASSERT(bio->bi_private == NULL);
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 02:44:27 +04:00
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
bio->bi_bdev = bh->b_bdev;
return bio;
}
STATIC void
xfs_start_buffer_writeback(
struct buffer_head *bh)
{
ASSERT(buffer_mapped(bh));
ASSERT(buffer_locked(bh));
ASSERT(!buffer_delay(bh));
ASSERT(!buffer_unwritten(bh));
mark_buffer_async_write(bh);
set_buffer_uptodate(bh);
clear_buffer_dirty(bh);
}
STATIC void
xfs_start_page_writeback(
struct page *page,
int clear_dirty,
int buffers)
{
ASSERT(PageLocked(page));
ASSERT(!PageWriteback(page));
xfs: ensure WB_SYNC_ALL writeback handles partial pages correctly XFS has been having trouble with stray delayed allocation extents beyond EOF for a long time. Recent changes to the collapse range code has triggered erroneous EBUSY errors on page invalidtion for block size smaller than page size filesystems. These have been caused by dirty buffers beyond EOF on a partial page which do not get written to disk during a sync. The issue is that write-ahead in xfs_cluster_write() finds such a partial page and handles it by leaving the page dirty but pushing it into a writeback state. This used to work just fine, as the write_cache_pages() code would then find the dirty partial page in the next mapping tree lookup as the dirty tag is still set. Unfortunately, when we moved to a mark and sweep approach to writeback to fix other writeback sync issues, we broken this. THe act of marking the page as under writeback now clears the TOWRITE tag in the radix tree, even though the page is still dirty. This causes the TOWRITE tag to be cleared, and hence the next lookup on the mapping tree does not find the dirty partial page and so doesn't try to write it again. This same writeback bug was found recently in ext4 and fixed in commit 1c8349a ("ext4: fix data integrity sync in ordered mode") without communication to the wider filesystem community. We can use exactly the same fix here so the TOWRITE flag is not cleared on partial page writes. cc: stable@vger.kernel.org # dependent on 1c8349a17137b93f0a83f276c764a6df1b9a116e Root-cause-found-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-23 09:36:27 +04:00
/*
* if the page was not fully cleaned, we need to ensure that the higher
* layers come back to it correctly. That means we need to keep the page
* dirty, and for WB_SYNC_ALL writeback we need to ensure the
* PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
* write this page in this writeback sweep will be made.
*/
if (clear_dirty) {
clear_page_dirty_for_io(page);
xfs: ensure WB_SYNC_ALL writeback handles partial pages correctly XFS has been having trouble with stray delayed allocation extents beyond EOF for a long time. Recent changes to the collapse range code has triggered erroneous EBUSY errors on page invalidtion for block size smaller than page size filesystems. These have been caused by dirty buffers beyond EOF on a partial page which do not get written to disk during a sync. The issue is that write-ahead in xfs_cluster_write() finds such a partial page and handles it by leaving the page dirty but pushing it into a writeback state. This used to work just fine, as the write_cache_pages() code would then find the dirty partial page in the next mapping tree lookup as the dirty tag is still set. Unfortunately, when we moved to a mark and sweep approach to writeback to fix other writeback sync issues, we broken this. THe act of marking the page as under writeback now clears the TOWRITE tag in the radix tree, even though the page is still dirty. This causes the TOWRITE tag to be cleared, and hence the next lookup on the mapping tree does not find the dirty partial page and so doesn't try to write it again. This same writeback bug was found recently in ext4 and fixed in commit 1c8349a ("ext4: fix data integrity sync in ordered mode") without communication to the wider filesystem community. We can use exactly the same fix here so the TOWRITE flag is not cleared on partial page writes. cc: stable@vger.kernel.org # dependent on 1c8349a17137b93f0a83f276c764a6df1b9a116e Root-cause-found-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-23 09:36:27 +04:00
set_page_writeback(page);
} else
set_page_writeback_keepwrite(page);
unlock_page(page);
xfs: ensure WB_SYNC_ALL writeback handles partial pages correctly XFS has been having trouble with stray delayed allocation extents beyond EOF for a long time. Recent changes to the collapse range code has triggered erroneous EBUSY errors on page invalidtion for block size smaller than page size filesystems. These have been caused by dirty buffers beyond EOF on a partial page which do not get written to disk during a sync. The issue is that write-ahead in xfs_cluster_write() finds such a partial page and handles it by leaving the page dirty but pushing it into a writeback state. This used to work just fine, as the write_cache_pages() code would then find the dirty partial page in the next mapping tree lookup as the dirty tag is still set. Unfortunately, when we moved to a mark and sweep approach to writeback to fix other writeback sync issues, we broken this. THe act of marking the page as under writeback now clears the TOWRITE tag in the radix tree, even though the page is still dirty. This causes the TOWRITE tag to be cleared, and hence the next lookup on the mapping tree does not find the dirty partial page and so doesn't try to write it again. This same writeback bug was found recently in ext4 and fixed in commit 1c8349a ("ext4: fix data integrity sync in ordered mode") without communication to the wider filesystem community. We can use exactly the same fix here so the TOWRITE flag is not cleared on partial page writes. cc: stable@vger.kernel.org # dependent on 1c8349a17137b93f0a83f276c764a6df1b9a116e Root-cause-found-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-23 09:36:27 +04:00
writeback: remove pages_skipped accounting in __block_write_full_page() Miklos Szeredi <miklos@szeredi.hu> and me identified a writeback bug: > The following strange behavior can be observed: > > 1. large file is written > 2. after 30 seconds, nr_dirty goes down by 1024 > 3. then for some time (< 30 sec) nothing happens (disk idle) > 4. then nr_dirty again goes down by 1024 > 5. repeat from 3. until whole file is written > > So basically a 4Mbyte chunk of the file is written every 30 seconds. > I'm quite sure this is not the intended behavior. It can be produced by the following test scheme: # cat bin/test-writeback.sh grep nr_dirty /proc/vmstat echo 1 > /proc/sys/fs/inode_debug dd if=/dev/zero of=/var/x bs=1K count=204800& while true; do grep nr_dirty /proc/vmstat; sleep 1; done # bin/test-writeback.sh nr_dirty 19207 nr_dirty 19207 nr_dirty 30924 204800+0 records in 204800+0 records out 209715200 bytes (210 MB) copied, 1.58363 seconds, 132 MB/s nr_dirty 47150 nr_dirty 47141 nr_dirty 47142 nr_dirty 47142 nr_dirty 47142 nr_dirty 47142 nr_dirty 47205 nr_dirty 47214 nr_dirty 47214 nr_dirty 47214 nr_dirty 47214 nr_dirty 47214 nr_dirty 47215 nr_dirty 47216 nr_dirty 47216 nr_dirty 47216 nr_dirty 47154 nr_dirty 47143 nr_dirty 47143 nr_dirty 47143 nr_dirty 47143 nr_dirty 47143 nr_dirty 47142 nr_dirty 47142 nr_dirty 47142 nr_dirty 47142 nr_dirty 47134 nr_dirty 47134 nr_dirty 47135 nr_dirty 47135 nr_dirty 47135 nr_dirty 46097 <== -1038 nr_dirty 46098 nr_dirty 46098 nr_dirty 46098 [...] nr_dirty 46091 nr_dirty 46092 nr_dirty 46092 nr_dirty 45069 <== -1023 nr_dirty 45056 nr_dirty 45056 nr_dirty 45056 [...] nr_dirty 37822 nr_dirty 36799 <== -1023 [...] nr_dirty 36781 nr_dirty 35758 <== -1023 [...] nr_dirty 34708 nr_dirty 33672 <== -1024 [...] nr_dirty 33692 nr_dirty 32669 <== -1023 % ls -li /var/x 847824 -rw-r--r-- 1 root root 200M 2007-08-12 04:12 /var/x % dmesg|grep 847824 # generated by a debug printk [ 529.263184] redirtied inode 847824 line 548 [ 564.250872] redirtied inode 847824 line 548 [ 594.272797] redirtied inode 847824 line 548 [ 629.231330] redirtied inode 847824 line 548 [ 659.224674] redirtied inode 847824 line 548 [ 689.219890] redirtied inode 847824 line 548 [ 724.226655] redirtied inode 847824 line 548 [ 759.198568] redirtied inode 847824 line 548 # line 548 in fs/fs-writeback.c: 543 if (wbc->pages_skipped != pages_skipped) { 544 /* 545 * writeback is not making progress due to locked 546 * buffers. Skip this inode for now. 547 */ 548 redirty_tail(inode); 549 } More debug efforts show that __block_write_full_page() never has the chance to call submit_bh() for that big dirty file: the buffer head is *clean*. So basicly no page io is issued by __block_write_full_page(), hence pages_skipped goes up. Also the comment in generic_sync_sb_inodes(): 544 /* 545 * writeback is not making progress due to locked 546 * buffers. Skip this inode for now. 547 */ and the comment in __block_write_full_page(): 1713 /* 1714 * The page was marked dirty, but the buffers were 1715 * clean. Someone wrote them back by hand with 1716 * ll_rw_block/submit_bh. A rare case. 1717 */ do not quite agree with each other. The page writeback should be skipped for 'locked buffer', but here it is 'clean buffer'! This patch fixes this bug. Though I'm not sure why __block_write_full_page() is called only to do nothing and who actually issued the writeback for us. This is the two possible new behaviors after the patch: 1) pretty nice: wait 30s and write ALL:) 2) not so good: - during the dd: ~16M - after 30s: ~4M - after 5s: ~4M - after 5s: ~176M The next patch will fix case (2). Cc: David Chinner <dgc@sgi.com> Cc: Ken Chen <kenchen@google.com> Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 10:30:42 +04:00
/* If no buffers on the page are to be written, finish it here */
if (!buffers)
end_page_writeback(page);
}
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
{
return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
}
/*
* Submit all of the bios for all of the ioends we have saved up, covering the
* initial writepage page and also any probed pages.
*
* Because we may have multiple ioends spanning a page, we need to start
* writeback on all the buffers before we submit them for I/O. If we mark the
* buffers as we got, then we can end up with a page that only has buffers
* marked async write and I/O complete on can occur before we mark the other
* buffers async write.
*
* The end result of this is that we trip a bug in end_page_writeback() because
* we call it twice for the one page as the code in end_buffer_async_write()
* assumes that all buffers on the page are started at the same time.
*
* The fix is two passes across the ioend list - one to start writeback on the
* buffer_heads, and then submit them for I/O on the second pass.
xfs: fix broken error handling in xfs_vm_writepage When we shut down the filesystem, it might first be detected in writeback when we are allocating a inode size transaction. This happens after we have moved all the pages into the writeback state and unlocked them. Unfortunately, if we fail to set up the transaction we then abort writeback and try to invalidate the current page. This then triggers are BUG() in block_invalidatepage() because we are trying to invalidate an unlocked page. Fixing this is a bit of a chicken and egg problem - we can't allocate the transaction until we've clustered all the pages into the IO and we know the size of it (i.e. whether the last block of the IO is beyond the current EOF or not). However, we don't want to hold pages locked for long periods of time, especially while we lock other pages to cluster them into the write. To fix this, we need to make a clear delineation in writeback where errors can only be handled by IO completion processing. That is, once we have marked a page for writeback and unlocked it, we have to report errors via IO completion because we've already started the IO. We may not have submitted any IO, but we've changed the page state to indicate that it is under IO so we must now use the IO completion path to report errors. To do this, add an error field to xfs_submit_ioend() to pass it the error that occurred during the building on the ioend chain. When this is non-zero, mark each ioend with the error and call xfs_finish_ioend() directly rather than building bios. This will immediately push the ioends through completion processing with the error that has occurred. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-12 15:09:45 +04:00
*
* If @fail is non-zero, it means that we have a situation where some part of
* the submission process has failed after we have marked paged for writeback
* and unlocked them. In this situation, we need to fail the ioend chain rather
* than submit it to IO. This typically only happens on a filesystem shutdown.
*/
STATIC void
xfs_submit_ioend(
struct writeback_control *wbc,
xfs: fix broken error handling in xfs_vm_writepage When we shut down the filesystem, it might first be detected in writeback when we are allocating a inode size transaction. This happens after we have moved all the pages into the writeback state and unlocked them. Unfortunately, if we fail to set up the transaction we then abort writeback and try to invalidate the current page. This then triggers are BUG() in block_invalidatepage() because we are trying to invalidate an unlocked page. Fixing this is a bit of a chicken and egg problem - we can't allocate the transaction until we've clustered all the pages into the IO and we know the size of it (i.e. whether the last block of the IO is beyond the current EOF or not). However, we don't want to hold pages locked for long periods of time, especially while we lock other pages to cluster them into the write. To fix this, we need to make a clear delineation in writeback where errors can only be handled by IO completion processing. That is, once we have marked a page for writeback and unlocked it, we have to report errors via IO completion because we've already started the IO. We may not have submitted any IO, but we've changed the page state to indicate that it is under IO so we must now use the IO completion path to report errors. To do this, add an error field to xfs_submit_ioend() to pass it the error that occurred during the building on the ioend chain. When this is non-zero, mark each ioend with the error and call xfs_finish_ioend() directly rather than building bios. This will immediately push the ioends through completion processing with the error that has occurred. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-12 15:09:45 +04:00
xfs_ioend_t *ioend,
int fail)
{
xfs_ioend_t *head = ioend;
xfs_ioend_t *next;
struct buffer_head *bh;
struct bio *bio;
sector_t lastblock = 0;
/* Pass 1 - start writeback */
do {
next = ioend->io_list;
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
xfs_start_buffer_writeback(bh);
} while ((ioend = next) != NULL);
/* Pass 2 - submit I/O */
ioend = head;
do {
next = ioend->io_list;
bio = NULL;
xfs: fix broken error handling in xfs_vm_writepage When we shut down the filesystem, it might first be detected in writeback when we are allocating a inode size transaction. This happens after we have moved all the pages into the writeback state and unlocked them. Unfortunately, if we fail to set up the transaction we then abort writeback and try to invalidate the current page. This then triggers are BUG() in block_invalidatepage() because we are trying to invalidate an unlocked page. Fixing this is a bit of a chicken and egg problem - we can't allocate the transaction until we've clustered all the pages into the IO and we know the size of it (i.e. whether the last block of the IO is beyond the current EOF or not). However, we don't want to hold pages locked for long periods of time, especially while we lock other pages to cluster them into the write. To fix this, we need to make a clear delineation in writeback where errors can only be handled by IO completion processing. That is, once we have marked a page for writeback and unlocked it, we have to report errors via IO completion because we've already started the IO. We may not have submitted any IO, but we've changed the page state to indicate that it is under IO so we must now use the IO completion path to report errors. To do this, add an error field to xfs_submit_ioend() to pass it the error that occurred during the building on the ioend chain. When this is non-zero, mark each ioend with the error and call xfs_finish_ioend() directly rather than building bios. This will immediately push the ioends through completion processing with the error that has occurred. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-12 15:09:45 +04:00
/*
* If we are failing the IO now, just mark the ioend with an
* error and finish it. This will run IO completion immediately
* as there is only one reference to the ioend at this point in
* time.
*/
if (fail) {
ioend->io_error = fail;
xfs: fix broken error handling in xfs_vm_writepage When we shut down the filesystem, it might first be detected in writeback when we are allocating a inode size transaction. This happens after we have moved all the pages into the writeback state and unlocked them. Unfortunately, if we fail to set up the transaction we then abort writeback and try to invalidate the current page. This then triggers are BUG() in block_invalidatepage() because we are trying to invalidate an unlocked page. Fixing this is a bit of a chicken and egg problem - we can't allocate the transaction until we've clustered all the pages into the IO and we know the size of it (i.e. whether the last block of the IO is beyond the current EOF or not). However, we don't want to hold pages locked for long periods of time, especially while we lock other pages to cluster them into the write. To fix this, we need to make a clear delineation in writeback where errors can only be handled by IO completion processing. That is, once we have marked a page for writeback and unlocked it, we have to report errors via IO completion because we've already started the IO. We may not have submitted any IO, but we've changed the page state to indicate that it is under IO so we must now use the IO completion path to report errors. To do this, add an error field to xfs_submit_ioend() to pass it the error that occurred during the building on the ioend chain. When this is non-zero, mark each ioend with the error and call xfs_finish_ioend() directly rather than building bios. This will immediately push the ioends through completion processing with the error that has occurred. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-12 15:09:45 +04:00
xfs_finish_ioend(ioend);
continue;
}
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
if (!bio) {
retry:
bio = xfs_alloc_ioend_bio(bh);
} else if (bh->b_blocknr != lastblock + 1) {
xfs_submit_ioend_bio(wbc, ioend, bio);
goto retry;
}
if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
xfs_submit_ioend_bio(wbc, ioend, bio);
goto retry;
}
lastblock = bh->b_blocknr;
}
if (bio)
xfs_submit_ioend_bio(wbc, ioend, bio);
xfs_finish_ioend(ioend);
} while ((ioend = next) != NULL);
}
/*
* Cancel submission of all buffer_heads so far in this endio.
* Toss the endio too. Only ever called for the initial page
* in a writepage request, so only ever one page.
*/
STATIC void
xfs_cancel_ioend(
xfs_ioend_t *ioend)
{
xfs_ioend_t *next;
struct buffer_head *bh, *next_bh;
do {
next = ioend->io_list;
bh = ioend->io_buffer_head;
do {
next_bh = bh->b_private;
clear_buffer_async_write(bh);
xfs: restore buffer_head unwritten bit on ioend cancel xfs_vm_writepage() walks each buffer_head on the page, maps to the block on disk and attaches to a running ioend structure that represents the I/O submission. A new ioend is created when the type of I/O (unwritten, delayed allocation or overwrite) required for a particular buffer_head differs from the previous. If a buffer_head is a delalloc or unwritten buffer, the associated bits are cleared by xfs_map_at_offset() once the buffer_head is added to the ioend. The process of mapping each buffer_head occurs in xfs_map_blocks() and acquires the ilock in blocking or non-blocking mode, depending on the type of writeback in progress. If the lock cannot be acquired for non-blocking writeback, we cancel the ioend, redirty the page and return. Writeback will revisit the page at some later point. Note that we acquire the ilock for each buffer on the page. Therefore during non-blocking writeback, it is possible to add an unwritten buffer to the ioend, clear the unwritten state, fail to acquire the ilock when mapping a subsequent buffer and cancel the ioend. If this occurs, the unwritten status of the buffer sitting in the ioend has been lost. The page will eventually hit writeback again, but xfs_vm_writepage() submits overwrite I/O instead of unwritten I/O and does not perform unwritten extent conversion at I/O completion. This leads to data corruption because unwritten extents are treated as holes on reads and zeroes are returned instead of reading from disk. Modify xfs_cancel_ioend() to restore the buffer unwritten bit for ioends of type XFS_IO_UNWRITTEN. This ensures that unwritten extent conversion occurs once the page is eventually written back. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-10-02 03:42:06 +04:00
/*
* The unwritten flag is cleared when added to the
* ioend. We're not submitting for I/O so mark the
* buffer unwritten again for next time around.
*/
if (ioend->io_type == XFS_IO_UNWRITTEN)
set_buffer_unwritten(bh);
unlock_buffer(bh);
} while ((bh = next_bh) != NULL);
mempool_free(ioend, xfs_ioend_pool);
} while ((ioend = next) != NULL);
}
/*
* Test to see if we've been building up a completion structure for
* earlier buffers -- if so, we try to append to this ioend if we
* can, otherwise we finish off any current ioend and start another.
* Return true if we've finished the given ioend.
*/
STATIC void
xfs_add_to_ioend(
struct inode *inode,
struct buffer_head *bh,
xfs_off_t offset,
unsigned int type,
xfs_ioend_t **result,
int need_ioend)
{
xfs_ioend_t *ioend = *result;
if (!ioend || need_ioend || type != ioend->io_type) {
xfs_ioend_t *previous = *result;
ioend = xfs_alloc_ioend(inode, type);
ioend->io_offset = offset;
ioend->io_buffer_head = bh;
ioend->io_buffer_tail = bh;
if (previous)
previous->io_list = ioend;
*result = ioend;
} else {
ioend->io_buffer_tail->b_private = bh;
ioend->io_buffer_tail = bh;
}
bh->b_private = NULL;
ioend->io_size += bh->b_size;
}
STATIC void
xfs_map_buffer(
struct inode *inode,
struct buffer_head *bh,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
sector_t bn;
struct xfs_mount *m = XFS_I(inode)->i_mount;
xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
((offset - iomap_offset) >> inode->i_blkbits);
ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
bh->b_blocknr = bn;
set_buffer_mapped(bh);
}
STATIC void
xfs_map_at_offset(
struct inode *inode,
struct buffer_head *bh,
struct xfs_bmbt_irec *imap,
xfs_off_t offset)
{
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
xfs_map_buffer(inode, bh, imap, offset);
set_buffer_mapped(bh);
clear_buffer_delay(bh);
clear_buffer_unwritten(bh);
}
/*
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
* Test if a given page contains at least one buffer of a given @type.
* If @check_all_buffers is true, then we walk all the buffers in the page to
* try to find one of the type passed in. If it is not set, then the caller only
* needs to check the first buffer on the page for a match.
*/
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
STATIC bool
xfs_check_page_type(
struct page *page,
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
unsigned int type,
bool check_all_buffers)
{
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
struct buffer_head *bh;
struct buffer_head *head;
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
if (PageWriteback(page))
return false;
if (!page->mapping)
return false;
if (!page_has_buffers(page))
return false;
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
bh = head = page_buffers(page);
do {
if (buffer_unwritten(bh)) {
if (type == XFS_IO_UNWRITTEN)
return true;
} else if (buffer_delay(bh)) {
if (type == XFS_IO_DELALLOC)
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
return true;
} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
if (type == XFS_IO_OVERWRITE)
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
return true;
}
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
/* If we are only checking the first buffer, we are done now. */
if (!check_all_buffers)
break;
} while ((bh = bh->b_this_page) != head);
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
return false;
}
/*
* Allocate & map buffers for page given the extent map. Write it out.
* except for the original page of a writepage, this is called on
* delalloc/unwritten pages only, for the original page it is possible
* that the page has no mapping at all.
*/
STATIC int
xfs_convert_page(
struct inode *inode,
struct page *page,
loff_t tindex,
struct xfs_bmbt_irec *imap,
xfs_ioend_t **ioendp,
struct writeback_control *wbc)
{
struct buffer_head *bh, *head;
xfs_off_t end_offset;
unsigned long p_offset;
unsigned int type;
int len, page_dirty;
int count = 0, done = 0, uptodate = 1;
xfs_off_t offset = page_offset(page);
if (page->index != tindex)
goto fail;
if (!trylock_page(page))
goto fail;
if (PageWriteback(page))
goto fail_unlock_page;
if (page->mapping != inode->i_mapping)
goto fail_unlock_page;
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
goto fail_unlock_page;
/*
* page_dirty is initially a count of buffers on the page before
* EOF and is decremented as we move each into a cleanable state.
*
* Derivation:
*
* End offset is the highest offset that this page should represent.
* If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
* will evaluate non-zero and be less than PAGE_CACHE_SIZE and
* hence give us the correct page_dirty count. On any other page,
* it will be zero and in that case we need page_dirty to be the
* count of buffers on the page.
*/
end_offset = min_t(unsigned long long,
(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
i_size_read(inode));
xfs: fix sub-page blocksize data integrity writes FSX on 512 byte block size filesystems has been failing for some time with corrupted data. The fault dates back to the change in the writeback data integrity algorithm that uses a mark-and-sweep approach to avoid data writeback livelocks. Unfortunately, a side effect of this mark-and-sweep approach is that each page will only be written once for a data integrity sync, and there is a condition in writeback in XFS where a page may require two writeback attempts to be fully written. As a result of the high level change, we now only get a partial page writeback during the integrity sync because the first pass through writeback clears the mark left on the page index to tell writeback that the page needs writeback.... The cause is writing a partial page in the clustering code. This can happen when a mapping boundary falls in the middle of a page - we end up writing back the first part of the page that the mapping covers, but then never revisit the page to have the remainder mapped and written. The fix is simple - if the mapping boundary falls inside a page, then simple abort clustering without touching the page. This means that the next ->writepage entry that write_cache_pages() will make is the page we aborted on, and xfs_vm_writepage() will map all sections of the page correctly. This behaviour is also optimal for non-data integrity writes, as it results in contiguous sequential writeback of the file rather than missing small holes and having to write them a "random" writes in a future pass. With this fix, all the fsx tests in xfstests now pass on a 512 byte block size filesystem on a 4k page machine. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com> (cherry picked from commit 49b137cbbcc836ef231866c137d24f42c42bb483)
2013-05-20 03:51:08 +04:00
/*
* If the current map does not span the entire page we are about to try
* to write, then give up. The only way we can write a page that spans
* multiple mappings in a single writeback iteration is via the
* xfs_vm_writepage() function. Data integrity writeback requires the
* entire page to be written in a single attempt, otherwise the part of
* the page we don't write here doesn't get written as part of the data
* integrity sync.
*
* For normal writeback, we also don't attempt to write partial pages
* here as it simply means that write_cache_pages() will see it under
* writeback and ignore the page until some point in the future, at
* which time this will be the only page in the file that needs
* writeback. Hence for more optimal IO patterns, we should always
* avoid partial page writeback due to multiple mappings on a page here.
*/
if (!xfs_imap_valid(inode, imap, end_offset))
goto fail_unlock_page;
len = 1 << inode->i_blkbits;
p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
PAGE_CACHE_SIZE);
p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
page_dirty = p_offset / len;
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
/*
* The moment we find a buffer that doesn't match our current type
* specification or can't be written, abort the loop and start
* writeback. As per the above xfs_imap_valid() check, only
* xfs_vm_writepage() can handle partial page writeback fully - we are
* limited here to the buffers that are contiguous with the current
* ioend, and hence a buffer we can't write breaks that contiguity and
* we have to defer the rest of the IO to xfs_vm_writepage().
*/
bh = head = page_buffers(page);
do {
if (offset >= end_offset)
break;
if (!buffer_uptodate(bh))
uptodate = 0;
if (!(PageUptodate(page) || buffer_uptodate(bh))) {
done = 1;
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
break;
}
if (buffer_unwritten(bh) || buffer_delay(bh) ||
buffer_mapped(bh)) {
if (buffer_unwritten(bh))
type = XFS_IO_UNWRITTEN;
else if (buffer_delay(bh))
type = XFS_IO_DELALLOC;
else
type = XFS_IO_OVERWRITE;
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
/*
* imap should always be valid because of the above
* partial page end_offset check on the imap.
*/
ASSERT(xfs_imap_valid(inode, imap, offset));
lock_buffer(bh);
if (type != XFS_IO_OVERWRITE)
xfs_map_at_offset(inode, bh, imap, offset);
xfs_add_to_ioend(inode, bh, offset, type,
ioendp, done);
page_dirty--;
count++;
} else {
done = 1;
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
break;
}
} while (offset += len, (bh = bh->b_this_page) != head);
if (uptodate && bh == head)
SetPageUptodate(page);
if (count) {
if (--wbc->nr_to_write <= 0 &&
wbc->sync_mode == WB_SYNC_NONE)
done = 1;
}
xfs_start_page_writeback(page, !page_dirty, count);
return done;
fail_unlock_page:
unlock_page(page);
fail:
return 1;
}
/*
* Convert & write out a cluster of pages in the same extent as defined
* by mp and following the start page.
*/
STATIC void
xfs_cluster_write(
struct inode *inode,
pgoff_t tindex,
struct xfs_bmbt_irec *imap,
xfs_ioend_t **ioendp,
struct writeback_control *wbc,
pgoff_t tlast)
{
struct pagevec pvec;
int done = 0, i;
pagevec_init(&pvec, 0);
while (!done && tindex <= tlast) {
unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
break;
for (i = 0; i < pagevec_count(&pvec); i++) {
done = xfs_convert_page(inode, pvec.pages[i], tindex++,
imap, ioendp, wbc);
if (done)
break;
}
pagevec_release(&pvec);
cond_resched();
}
}
STATIC void
xfs_vm_invalidatepage(
struct page *page,
unsigned int offset,
unsigned int length)
{
trace_xfs_invalidatepage(page->mapping->host, page, offset,
length);
block_invalidatepage(page, offset, length);
}
/*
* If the page has delalloc buffers on it, we need to punch them out before we
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
* inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
* is done on that same region - the delalloc extent is returned when none is
* supposed to be there.
*
* We prevent this by truncating away the delalloc regions on the page before
* invalidating it. Because they are delalloc, we can do this without needing a
* transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
* truncation without a transaction as there is no space left for block
* reservation (typically why we see a ENOSPC in writeback).
*
* This is not a performance critical path, so for now just do the punching a
* buffer head at a time.
*/
STATIC void
xfs_aops_discard_page(
struct page *page)
{
struct inode *inode = page->mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct buffer_head *bh, *head;
loff_t offset = page_offset(page);
xfs: xfs_check_page_type buffer checks need help xfs_aops_discard_page() was introduced in the following commit: xfs: truncate delalloc extents when IO fails in writeback ... to clean up left over delalloc ranges after I/O failure in ->writepage(). generic/224 tests for this scenario and occasionally reproduces panics on sub-4k blocksize filesystems. The cause of this is failure to clean up the delalloc range on a page where the first buffer does not match one of the expected states of xfs_check_page_type(). If a buffer is not unwritten, delayed or dirty&mapped, xfs_check_page_type() stops and immediately returns 0. The stress test of generic/224 creates a scenario where the first several buffers of a page with delayed buffers are mapped & uptodate and some subsequent buffer is delayed. If the ->writepage() happens to fail for this page, xfs_aops_discard_page() incorrectly skips the entire page. This then causes later failures either when direct IO maps the range and finds the stale delayed buffer, or we evict the inode and find that the inode still has a delayed block reservation accounted to it. We can easily fix this xfs_aops_discard_page() failure by making xfs_check_page_type() check all buffers, but this breaks xfs_convert_page() more than it is already broken. Indeed, xfs_convert_page() wants xfs_check_page_type() to tell it if the first buffers on the pages are of a type that can be aggregated into the contiguous IO that is already being built. xfs_convert_page() should not be writing random buffers out of a page, but the current behaviour will cause it to do so if there are buffers that don't match the current specification on the page. Hence for xfs_convert_page() we need to: a) return "not ok" if the first buffer on the page does not match the specification provided to we don't write anything; and b) abort it's buffer-add-to-io loop the moment we come across a buffer that does not match the specification. Hence we need to fix both xfs_check_page_type() and xfs_convert_page() to work correctly with pages that have mixed buffer types, whilst allowing xfs_aops_discard_page() to scan all buffers on the page for a type match. Reported-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 09:19:14 +04:00
if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
goto out_invalidate;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
goto out_invalidate;
xfs_alert(ip->i_mount,
"page discard on page %p, inode 0x%llx, offset %llu.",
page, ip->i_ino, offset);
xfs_ilock(ip, XFS_ILOCK_EXCL);
bh = head = page_buffers(page);
do {
int error;
xfs_fileoff_t start_fsb;
if (!buffer_delay(bh))
goto next_buffer;
start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
if (error) {
/* something screwed, just bail */
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
xfs_alert(ip->i_mount,
"page discard unable to remove delalloc mapping.");
}
break;
}
next_buffer:
offset += 1 << inode->i_blkbits;
} while ((bh = bh->b_this_page) != head);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out_invalidate:
xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
return;
}
/*
* Write out a dirty page.
*
* For delalloc space on the page we need to allocate space and flush it.
* For unwritten space on the page we need to start the conversion to
* regular allocated space.
* For any other dirty buffer heads on the page we should flush them.
*/
STATIC int
xfs_vm_writepage(
struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct buffer_head *bh, *head;
struct xfs_bmbt_irec imap;
xfs_ioend_t *ioend = NULL, *iohead = NULL;
loff_t offset;
unsigned int type;
__uint64_t end_offset;
pgoff_t end_index, last_index;
ssize_t len;
int err, imap_valid = 0, uptodate = 1;
int count = 0;
int nonblocking = 0;
trace_xfs_writepage(inode, page, 0, 0);
ASSERT(page_has_buffers(page));
/*
* Refuse to write the page out if we are called from reclaim context.
*
* This avoids stack overflows when called from deeply used stacks in
* random callers for direct reclaim or memcg reclaim. We explicitly
* allow reclaim from kswapd as the stack usage there is relatively low.
*
* This should never happen except in the case of a VM regression so
* warn about it.
*/
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
PF_MEMALLOC))
goto redirty;
/*
* Given that we do not allow direct reclaim to call us, we should
* never be called while in a filesystem transaction.
*/
if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
goto redirty;
/* Is this page beyond the end of the file? */
offset = i_size_read(inode);
end_index = offset >> PAGE_CACHE_SHIFT;
last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
xfs: fix infinite loop at xfs_vm_writepage on 32bit system Write to a file with an offset greater than 16TB on 32-bit system and then trigger page write-back via sync(1) will cause task hang. # block_size=4096 # offset=$(((2**32 - 1) * $block_size)) # xfs_io -f -c "pwrite $offset $block_size" /storage/test_file # sync INFO: task sync:2590 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. sync D c1064a28 0 2590 2097 0x00000000 ..... Call Trace: [<c1064a28>] ? ttwu_do_wakeup+0x18/0x130 [<c1066d0e>] ? try_to_wake_up+0x1ce/0x220 [<c1066dbf>] ? wake_up_process+0x1f/0x40 [<c104fc2e>] ? wake_up_worker+0x1e/0x30 [<c15b6083>] schedule+0x23/0x60 [<c15b3c2d>] schedule_timeout+0x18d/0x1f0 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c10515f1>] ? __queue_delayed_work+0x91/0x150 [<c12a12ef>] ? do_raw_spin_lock+0x3f/0x100 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c15b5b5d>] wait_for_completion+0x7d/0xc0 [<c1066d60>] ? try_to_wake_up+0x220/0x220 [<c116a4d2>] sync_inodes_sb+0x92/0x180 [<c116fb05>] sync_inodes_one_sb+0x15/0x20 [<c114a8f8>] iterate_supers+0xb8/0xc0 [<c116faf0>] ? fdatawrite_one_bdev+0x20/0x20 [<c116fc21>] sys_sync+0x31/0x80 [<c15be18d>] sysenter_do_call+0x12/0x28 This issue can be triggered via xfstests/generic/308. The reason is that the end_index is unsigned long with maximum value '2^32-1=4294967295' on 32-bit platform, and the given offset cause it wrapped to 0, so that the following codes will repeat again and again until the task schedule time out: end_index = offset >> PAGE_CACHE_SHIFT; last_index = (offset - 1) >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); /* * Just skip the page if it is fully outside i_size, e.g. due * to a truncate operation that is in progress. */ if (page->index >= end_index + 1 || offset_into_page == 0) { ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unlock_page(page); return 0; } In order to check if a page is fully outsids i_size or not, we can fix the code logic as below: if (page->index > end_index || (page->index == end_index && offset_into_page == 0)) Secondly, there still has another similar issue when calculating the end offset for mapping the filesystem blocks to the file blocks for delalloc. With the same tests to above, run unmount(8) will cause kernel panic if CONFIG_XFS_DEBUG is enabled: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || \ ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 964 kernel BUG at fs/xfs/xfs_message.c:108! invalid opcode: 0000 [#1] SMP task: edddc100 ti: ec6ee000 task.ti: ec6ee000 EIP: 0060:[<f83d87cb>] EFLAGS: 00010296 CPU: 1 EIP is at assfail+0x2b/0x30 [xfs] .............. Call Trace: [<f83d9cd4>] xfs_fs_destroy_inode+0x74/0x120 [xfs] [<c115ddf1>] destroy_inode+0x31/0x50 [<c115deff>] evict+0xef/0x170 [<c115dfb2>] dispose_list+0x32/0x40 [<c115ea3a>] evict_inodes+0xca/0xe0 [<c1149706>] generic_shutdown_super+0x46/0xd0 [<c11497b9>] kill_block_super+0x29/0x70 [<c1149a14>] deactivate_locked_super+0x44/0x70 [<c114a427>] deactivate_super+0x47/0x60 [<c1161c3d>] mntput_no_expire+0xcd/0x120 [<c1162ae8>] SyS_umount+0xa8/0x370 [<c1162dce>] SyS_oldumount+0x1e/0x20 [<c15be18d>] sysenter_do_call+0x12/0x28 That because the end_offset is evaluated to 0 which is the same reason to above, hence the mapping and covertion for dealloc file blocks to file system blocks did not happened. This patch just fixed both issues. Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Jie Liu <jeff.liu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-05-20 02:24:26 +04:00
/*
* The page index is less than the end_index, adjust the end_offset
* to the highest offset that this page should represent.
* -----------------------------------------------------
* | file mapping | <EOF> |
* -----------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | |
* ^--------------------------------^----------|--------
* | desired writeback range | see else |
* ---------------------------------^------------------|
*/
if (page->index < end_index)
end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
else {
/*
* Check whether the page to write out is beyond or straddles
* i_size or not.
* -------------------------------------------------------
* | file mapping | <EOF> |
* -------------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
* ^--------------------------------^-----------|---------
* | | Straddles |
* ---------------------------------^-----------|--------|
*/
unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
/*
* Skip the page if it is fully outside i_size, e.g. due to a
* truncate operation that is in progress. We must redirty the
* page so that reclaim stops reclaiming it. Otherwise
* xfs_vm_releasepage() is called on it and gets confused.
xfs: fix infinite loop at xfs_vm_writepage on 32bit system Write to a file with an offset greater than 16TB on 32-bit system and then trigger page write-back via sync(1) will cause task hang. # block_size=4096 # offset=$(((2**32 - 1) * $block_size)) # xfs_io -f -c "pwrite $offset $block_size" /storage/test_file # sync INFO: task sync:2590 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. sync D c1064a28 0 2590 2097 0x00000000 ..... Call Trace: [<c1064a28>] ? ttwu_do_wakeup+0x18/0x130 [<c1066d0e>] ? try_to_wake_up+0x1ce/0x220 [<c1066dbf>] ? wake_up_process+0x1f/0x40 [<c104fc2e>] ? wake_up_worker+0x1e/0x30 [<c15b6083>] schedule+0x23/0x60 [<c15b3c2d>] schedule_timeout+0x18d/0x1f0 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c10515f1>] ? __queue_delayed_work+0x91/0x150 [<c12a12ef>] ? do_raw_spin_lock+0x3f/0x100 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c15b5b5d>] wait_for_completion+0x7d/0xc0 [<c1066d60>] ? try_to_wake_up+0x220/0x220 [<c116a4d2>] sync_inodes_sb+0x92/0x180 [<c116fb05>] sync_inodes_one_sb+0x15/0x20 [<c114a8f8>] iterate_supers+0xb8/0xc0 [<c116faf0>] ? fdatawrite_one_bdev+0x20/0x20 [<c116fc21>] sys_sync+0x31/0x80 [<c15be18d>] sysenter_do_call+0x12/0x28 This issue can be triggered via xfstests/generic/308. The reason is that the end_index is unsigned long with maximum value '2^32-1=4294967295' on 32-bit platform, and the given offset cause it wrapped to 0, so that the following codes will repeat again and again until the task schedule time out: end_index = offset >> PAGE_CACHE_SHIFT; last_index = (offset - 1) >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); /* * Just skip the page if it is fully outside i_size, e.g. due * to a truncate operation that is in progress. */ if (page->index >= end_index + 1 || offset_into_page == 0) { ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unlock_page(page); return 0; } In order to check if a page is fully outsids i_size or not, we can fix the code logic as below: if (page->index > end_index || (page->index == end_index && offset_into_page == 0)) Secondly, there still has another similar issue when calculating the end offset for mapping the filesystem blocks to the file blocks for delalloc. With the same tests to above, run unmount(8) will cause kernel panic if CONFIG_XFS_DEBUG is enabled: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || \ ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 964 kernel BUG at fs/xfs/xfs_message.c:108! invalid opcode: 0000 [#1] SMP task: edddc100 ti: ec6ee000 task.ti: ec6ee000 EIP: 0060:[<f83d87cb>] EFLAGS: 00010296 CPU: 1 EIP is at assfail+0x2b/0x30 [xfs] .............. Call Trace: [<f83d9cd4>] xfs_fs_destroy_inode+0x74/0x120 [xfs] [<c115ddf1>] destroy_inode+0x31/0x50 [<c115deff>] evict+0xef/0x170 [<c115dfb2>] dispose_list+0x32/0x40 [<c115ea3a>] evict_inodes+0xca/0xe0 [<c1149706>] generic_shutdown_super+0x46/0xd0 [<c11497b9>] kill_block_super+0x29/0x70 [<c1149a14>] deactivate_locked_super+0x44/0x70 [<c114a427>] deactivate_super+0x47/0x60 [<c1161c3d>] mntput_no_expire+0xcd/0x120 [<c1162ae8>] SyS_umount+0xa8/0x370 [<c1162dce>] SyS_oldumount+0x1e/0x20 [<c15be18d>] sysenter_do_call+0x12/0x28 That because the end_offset is evaluated to 0 which is the same reason to above, hence the mapping and covertion for dealloc file blocks to file system blocks did not happened. This patch just fixed both issues. Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Jie Liu <jeff.liu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-05-20 02:24:26 +04:00
*
* Note that the end_index is unsigned long, it would overflow
* if the given offset is greater than 16TB on 32-bit system
* and if we do check the page is fully outside i_size or not
* via "if (page->index >= end_index + 1)" as "end_index + 1"
* will be evaluated to 0. Hence this page will be redirtied
* and be written out repeatedly which would result in an
* infinite loop, the user program that perform this operation
* will hang. Instead, we can verify this situation by checking
* if the page to write is totally beyond the i_size or if it's
* offset is just equal to the EOF.
*/
xfs: fix infinite loop at xfs_vm_writepage on 32bit system Write to a file with an offset greater than 16TB on 32-bit system and then trigger page write-back via sync(1) will cause task hang. # block_size=4096 # offset=$(((2**32 - 1) * $block_size)) # xfs_io -f -c "pwrite $offset $block_size" /storage/test_file # sync INFO: task sync:2590 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. sync D c1064a28 0 2590 2097 0x00000000 ..... Call Trace: [<c1064a28>] ? ttwu_do_wakeup+0x18/0x130 [<c1066d0e>] ? try_to_wake_up+0x1ce/0x220 [<c1066dbf>] ? wake_up_process+0x1f/0x40 [<c104fc2e>] ? wake_up_worker+0x1e/0x30 [<c15b6083>] schedule+0x23/0x60 [<c15b3c2d>] schedule_timeout+0x18d/0x1f0 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c10515f1>] ? __queue_delayed_work+0x91/0x150 [<c12a12ef>] ? do_raw_spin_lock+0x3f/0x100 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c15b5b5d>] wait_for_completion+0x7d/0xc0 [<c1066d60>] ? try_to_wake_up+0x220/0x220 [<c116a4d2>] sync_inodes_sb+0x92/0x180 [<c116fb05>] sync_inodes_one_sb+0x15/0x20 [<c114a8f8>] iterate_supers+0xb8/0xc0 [<c116faf0>] ? fdatawrite_one_bdev+0x20/0x20 [<c116fc21>] sys_sync+0x31/0x80 [<c15be18d>] sysenter_do_call+0x12/0x28 This issue can be triggered via xfstests/generic/308. The reason is that the end_index is unsigned long with maximum value '2^32-1=4294967295' on 32-bit platform, and the given offset cause it wrapped to 0, so that the following codes will repeat again and again until the task schedule time out: end_index = offset >> PAGE_CACHE_SHIFT; last_index = (offset - 1) >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); /* * Just skip the page if it is fully outside i_size, e.g. due * to a truncate operation that is in progress. */ if (page->index >= end_index + 1 || offset_into_page == 0) { ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unlock_page(page); return 0; } In order to check if a page is fully outsids i_size or not, we can fix the code logic as below: if (page->index > end_index || (page->index == end_index && offset_into_page == 0)) Secondly, there still has another similar issue when calculating the end offset for mapping the filesystem blocks to the file blocks for delalloc. With the same tests to above, run unmount(8) will cause kernel panic if CONFIG_XFS_DEBUG is enabled: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || \ ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 964 kernel BUG at fs/xfs/xfs_message.c:108! invalid opcode: 0000 [#1] SMP task: edddc100 ti: ec6ee000 task.ti: ec6ee000 EIP: 0060:[<f83d87cb>] EFLAGS: 00010296 CPU: 1 EIP is at assfail+0x2b/0x30 [xfs] .............. Call Trace: [<f83d9cd4>] xfs_fs_destroy_inode+0x74/0x120 [xfs] [<c115ddf1>] destroy_inode+0x31/0x50 [<c115deff>] evict+0xef/0x170 [<c115dfb2>] dispose_list+0x32/0x40 [<c115ea3a>] evict_inodes+0xca/0xe0 [<c1149706>] generic_shutdown_super+0x46/0xd0 [<c11497b9>] kill_block_super+0x29/0x70 [<c1149a14>] deactivate_locked_super+0x44/0x70 [<c114a427>] deactivate_super+0x47/0x60 [<c1161c3d>] mntput_no_expire+0xcd/0x120 [<c1162ae8>] SyS_umount+0xa8/0x370 [<c1162dce>] SyS_oldumount+0x1e/0x20 [<c15be18d>] sysenter_do_call+0x12/0x28 That because the end_offset is evaluated to 0 which is the same reason to above, hence the mapping and covertion for dealloc file blocks to file system blocks did not happened. This patch just fixed both issues. Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Jie Liu <jeff.liu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-05-20 02:24:26 +04:00
if (page->index > end_index ||
(page->index == end_index && offset_into_page == 0))
goto redirty;
/*
* The page straddles i_size. It must be zeroed out on each
* and every writepage invocation because it may be mmapped.
* "A file is mapped in multiples of the page size. For a file
xfs: fix infinite loop at xfs_vm_writepage on 32bit system Write to a file with an offset greater than 16TB on 32-bit system and then trigger page write-back via sync(1) will cause task hang. # block_size=4096 # offset=$(((2**32 - 1) * $block_size)) # xfs_io -f -c "pwrite $offset $block_size" /storage/test_file # sync INFO: task sync:2590 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. sync D c1064a28 0 2590 2097 0x00000000 ..... Call Trace: [<c1064a28>] ? ttwu_do_wakeup+0x18/0x130 [<c1066d0e>] ? try_to_wake_up+0x1ce/0x220 [<c1066dbf>] ? wake_up_process+0x1f/0x40 [<c104fc2e>] ? wake_up_worker+0x1e/0x30 [<c15b6083>] schedule+0x23/0x60 [<c15b3c2d>] schedule_timeout+0x18d/0x1f0 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c10515f1>] ? __queue_delayed_work+0x91/0x150 [<c12a12ef>] ? do_raw_spin_lock+0x3f/0x100 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c15b5b5d>] wait_for_completion+0x7d/0xc0 [<c1066d60>] ? try_to_wake_up+0x220/0x220 [<c116a4d2>] sync_inodes_sb+0x92/0x180 [<c116fb05>] sync_inodes_one_sb+0x15/0x20 [<c114a8f8>] iterate_supers+0xb8/0xc0 [<c116faf0>] ? fdatawrite_one_bdev+0x20/0x20 [<c116fc21>] sys_sync+0x31/0x80 [<c15be18d>] sysenter_do_call+0x12/0x28 This issue can be triggered via xfstests/generic/308. The reason is that the end_index is unsigned long with maximum value '2^32-1=4294967295' on 32-bit platform, and the given offset cause it wrapped to 0, so that the following codes will repeat again and again until the task schedule time out: end_index = offset >> PAGE_CACHE_SHIFT; last_index = (offset - 1) >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); /* * Just skip the page if it is fully outside i_size, e.g. due * to a truncate operation that is in progress. */ if (page->index >= end_index + 1 || offset_into_page == 0) { ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unlock_page(page); return 0; } In order to check if a page is fully outsids i_size or not, we can fix the code logic as below: if (page->index > end_index || (page->index == end_index && offset_into_page == 0)) Secondly, there still has another similar issue when calculating the end offset for mapping the filesystem blocks to the file blocks for delalloc. With the same tests to above, run unmount(8) will cause kernel panic if CONFIG_XFS_DEBUG is enabled: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || \ ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 964 kernel BUG at fs/xfs/xfs_message.c:108! invalid opcode: 0000 [#1] SMP task: edddc100 ti: ec6ee000 task.ti: ec6ee000 EIP: 0060:[<f83d87cb>] EFLAGS: 00010296 CPU: 1 EIP is at assfail+0x2b/0x30 [xfs] .............. Call Trace: [<f83d9cd4>] xfs_fs_destroy_inode+0x74/0x120 [xfs] [<c115ddf1>] destroy_inode+0x31/0x50 [<c115deff>] evict+0xef/0x170 [<c115dfb2>] dispose_list+0x32/0x40 [<c115ea3a>] evict_inodes+0xca/0xe0 [<c1149706>] generic_shutdown_super+0x46/0xd0 [<c11497b9>] kill_block_super+0x29/0x70 [<c1149a14>] deactivate_locked_super+0x44/0x70 [<c114a427>] deactivate_super+0x47/0x60 [<c1161c3d>] mntput_no_expire+0xcd/0x120 [<c1162ae8>] SyS_umount+0xa8/0x370 [<c1162dce>] SyS_oldumount+0x1e/0x20 [<c15be18d>] sysenter_do_call+0x12/0x28 That because the end_offset is evaluated to 0 which is the same reason to above, hence the mapping and covertion for dealloc file blocks to file system blocks did not happened. This patch just fixed both issues. Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Jie Liu <jeff.liu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-05-20 02:24:26 +04:00
* that is not a multiple of the page size, the remaining
* memory is zeroed when mapped, and writes to that region are
* not written out to the file."
*/
zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
xfs: fix infinite loop at xfs_vm_writepage on 32bit system Write to a file with an offset greater than 16TB on 32-bit system and then trigger page write-back via sync(1) will cause task hang. # block_size=4096 # offset=$(((2**32 - 1) * $block_size)) # xfs_io -f -c "pwrite $offset $block_size" /storage/test_file # sync INFO: task sync:2590 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. sync D c1064a28 0 2590 2097 0x00000000 ..... Call Trace: [<c1064a28>] ? ttwu_do_wakeup+0x18/0x130 [<c1066d0e>] ? try_to_wake_up+0x1ce/0x220 [<c1066dbf>] ? wake_up_process+0x1f/0x40 [<c104fc2e>] ? wake_up_worker+0x1e/0x30 [<c15b6083>] schedule+0x23/0x60 [<c15b3c2d>] schedule_timeout+0x18d/0x1f0 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c10515f1>] ? __queue_delayed_work+0x91/0x150 [<c12a12ef>] ? do_raw_spin_lock+0x3f/0x100 [<c12a143e>] ? do_raw_spin_unlock+0x4e/0x90 [<c15b5b5d>] wait_for_completion+0x7d/0xc0 [<c1066d60>] ? try_to_wake_up+0x220/0x220 [<c116a4d2>] sync_inodes_sb+0x92/0x180 [<c116fb05>] sync_inodes_one_sb+0x15/0x20 [<c114a8f8>] iterate_supers+0xb8/0xc0 [<c116faf0>] ? fdatawrite_one_bdev+0x20/0x20 [<c116fc21>] sys_sync+0x31/0x80 [<c15be18d>] sysenter_do_call+0x12/0x28 This issue can be triggered via xfstests/generic/308. The reason is that the end_index is unsigned long with maximum value '2^32-1=4294967295' on 32-bit platform, and the given offset cause it wrapped to 0, so that the following codes will repeat again and again until the task schedule time out: end_index = offset >> PAGE_CACHE_SHIFT; last_index = (offset - 1) >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); /* * Just skip the page if it is fully outside i_size, e.g. due * to a truncate operation that is in progress. */ if (page->index >= end_index + 1 || offset_into_page == 0) { ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unlock_page(page); return 0; } In order to check if a page is fully outsids i_size or not, we can fix the code logic as below: if (page->index > end_index || (page->index == end_index && offset_into_page == 0)) Secondly, there still has another similar issue when calculating the end offset for mapping the filesystem blocks to the file blocks for delalloc. With the same tests to above, run unmount(8) will cause kernel panic if CONFIG_XFS_DEBUG is enabled: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || \ ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 964 kernel BUG at fs/xfs/xfs_message.c:108! invalid opcode: 0000 [#1] SMP task: edddc100 ti: ec6ee000 task.ti: ec6ee000 EIP: 0060:[<f83d87cb>] EFLAGS: 00010296 CPU: 1 EIP is at assfail+0x2b/0x30 [xfs] .............. Call Trace: [<f83d9cd4>] xfs_fs_destroy_inode+0x74/0x120 [xfs] [<c115ddf1>] destroy_inode+0x31/0x50 [<c115deff>] evict+0xef/0x170 [<c115dfb2>] dispose_list+0x32/0x40 [<c115ea3a>] evict_inodes+0xca/0xe0 [<c1149706>] generic_shutdown_super+0x46/0xd0 [<c11497b9>] kill_block_super+0x29/0x70 [<c1149a14>] deactivate_locked_super+0x44/0x70 [<c114a427>] deactivate_super+0x47/0x60 [<c1161c3d>] mntput_no_expire+0xcd/0x120 [<c1162ae8>] SyS_umount+0xa8/0x370 [<c1162dce>] SyS_oldumount+0x1e/0x20 [<c15be18d>] sysenter_do_call+0x12/0x28 That because the end_offset is evaluated to 0 which is the same reason to above, hence the mapping and covertion for dealloc file blocks to file system blocks did not happened. This patch just fixed both issues. Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Jie Liu <jeff.liu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-05-20 02:24:26 +04:00
/* Adjust the end_offset to the end of file */
end_offset = offset;
}
len = 1 << inode->i_blkbits;
bh = head = page_buffers(page);
offset = page_offset(page);
type = XFS_IO_OVERWRITE;
if (wbc->sync_mode == WB_SYNC_NONE)
nonblocking = 1;
do {
int new_ioend = 0;
if (offset >= end_offset)
break;
if (!buffer_uptodate(bh))
uptodate = 0;
/*
* set_page_dirty dirties all buffers in a page, independent
* of their state. The dirty state however is entirely
* meaningless for holes (!mapped && uptodate), so skip
* buffers covering holes here.
*/
if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
imap_valid = 0;
continue;
}
if (buffer_unwritten(bh)) {
if (type != XFS_IO_UNWRITTEN) {
type = XFS_IO_UNWRITTEN;
imap_valid = 0;
}
} else if (buffer_delay(bh)) {
if (type != XFS_IO_DELALLOC) {
type = XFS_IO_DELALLOC;
imap_valid = 0;
}
} else if (buffer_uptodate(bh)) {
if (type != XFS_IO_OVERWRITE) {
type = XFS_IO_OVERWRITE;
imap_valid = 0;
}
} else {
xfs: xfs_vm_writepage clear iomap_valid when !buffer_uptodate (REV2) On filesytems with a block size smaller than PAGE_SIZE we currently have a problem with unwritten extents. If a we have multi-block page for which an unwritten extent has been allocated, and only some of the buffers have been written to, and they are not contiguous, we can expose stale data from disk in the blocks between the writes after extent conversion. Example of a page with unwritten and real data. buffer content 0 empty b_state = 0 1 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 2 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 3 empty b_state = 0 4 empty b_state = 0 5 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 6 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 7 empty b_state = 0 Buffers 1, 2, 5, and 6 have been written to, leaving 0, 3, 4, and 7 empty. Currently buffers 1, 2, 5, and 6 are added to a single ioend, and when IO has completed, extent conversion creates a real extent from block 1 through block 6, leaving 0 and 7 unwritten. However buffers 3 and 4 were not written to disk, so stale data is exposed from those blocks on a subsequent read. Fix this by setting iomap_valid = 0 when we find a buffer that is not Uptodate. This ensures that buffers 5 and 6 are not added to the same ioend as buffers 1 and 2. Later these blocks will be converted into two separate real extents, leaving the blocks in between unwritten. Signed-off-by: Alain Renaud <arenaud@sgi.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-06-08 23:34:46 +04:00
if (PageUptodate(page))
ASSERT(buffer_mapped(bh));
xfs: xfs_vm_writepage clear iomap_valid when !buffer_uptodate (REV2) On filesytems with a block size smaller than PAGE_SIZE we currently have a problem with unwritten extents. If a we have multi-block page for which an unwritten extent has been allocated, and only some of the buffers have been written to, and they are not contiguous, we can expose stale data from disk in the blocks between the writes after extent conversion. Example of a page with unwritten and real data. buffer content 0 empty b_state = 0 1 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 2 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 3 empty b_state = 0 4 empty b_state = 0 5 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 6 DATA b_state = 0x1023 Uptodate,Dirty,Mapped,Unwritten 7 empty b_state = 0 Buffers 1, 2, 5, and 6 have been written to, leaving 0, 3, 4, and 7 empty. Currently buffers 1, 2, 5, and 6 are added to a single ioend, and when IO has completed, extent conversion creates a real extent from block 1 through block 6, leaving 0 and 7 unwritten. However buffers 3 and 4 were not written to disk, so stale data is exposed from those blocks on a subsequent read. Fix this by setting iomap_valid = 0 when we find a buffer that is not Uptodate. This ensures that buffers 5 and 6 are not added to the same ioend as buffers 1 and 2. Later these blocks will be converted into two separate real extents, leaving the blocks in between unwritten. Signed-off-by: Alain Renaud <arenaud@sgi.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-06-08 23:34:46 +04:00
/*
* This buffer is not uptodate and will not be
* written to disk. Ensure that we will put any
* subsequent writeable buffers into a new
* ioend.
*/
imap_valid = 0;
continue;
}
if (imap_valid)
imap_valid = xfs_imap_valid(inode, &imap, offset);
if (!imap_valid) {
/*
* If we didn't have a valid mapping then we need to
* put the new mapping into a separate ioend structure.
* This ensures non-contiguous extents always have
* separate ioends, which is particularly important
* for unwritten extent conversion at I/O completion
* time.
*/
new_ioend = 1;
err = xfs_map_blocks(inode, offset, &imap, type,
nonblocking);
if (err)
goto error;
imap_valid = xfs_imap_valid(inode, &imap, offset);
}
if (imap_valid) {
lock_buffer(bh);
if (type != XFS_IO_OVERWRITE)
xfs_map_at_offset(inode, bh, &imap, offset);
xfs_add_to_ioend(inode, bh, offset, type, &ioend,
new_ioend);
count++;
}
if (!iohead)
iohead = ioend;
} while (offset += len, ((bh = bh->b_this_page) != head));
if (uptodate && bh == head)
SetPageUptodate(page);
xfs_start_page_writeback(page, 1, count);
xfs: fix broken error handling in xfs_vm_writepage When we shut down the filesystem, it might first be detected in writeback when we are allocating a inode size transaction. This happens after we have moved all the pages into the writeback state and unlocked them. Unfortunately, if we fail to set up the transaction we then abort writeback and try to invalidate the current page. This then triggers are BUG() in block_invalidatepage() because we are trying to invalidate an unlocked page. Fixing this is a bit of a chicken and egg problem - we can't allocate the transaction until we've clustered all the pages into the IO and we know the size of it (i.e. whether the last block of the IO is beyond the current EOF or not). However, we don't want to hold pages locked for long periods of time, especially while we lock other pages to cluster them into the write. To fix this, we need to make a clear delineation in writeback where errors can only be handled by IO completion processing. That is, once we have marked a page for writeback and unlocked it, we have to report errors via IO completion because we've already started the IO. We may not have submitted any IO, but we've changed the page state to indicate that it is under IO so we must now use the IO completion path to report errors. To do this, add an error field to xfs_submit_ioend() to pass it the error that occurred during the building on the ioend chain. When this is non-zero, mark each ioend with the error and call xfs_finish_ioend() directly rather than building bios. This will immediately push the ioends through completion processing with the error that has occurred. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-12 15:09:45 +04:00
/* if there is no IO to be submitted for this page, we are done */
if (!ioend)
return 0;
ASSERT(iohead);
/*
* Any errors from this point onwards need tobe reported through the IO
* completion path as we have marked the initial page as under writeback
* and unlocked it.
*/
if (imap_valid) {
xfs_off_t end_index;
end_index = imap.br_startoff + imap.br_blockcount;
/* to bytes */
end_index <<= inode->i_blkbits;
/* to pages */
end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
/* check against file size */
if (end_index > last_index)
end_index = last_index;
xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
wbc, end_index);
}
xfs: fix broken error handling in xfs_vm_writepage When we shut down the filesystem, it might first be detected in writeback when we are allocating a inode size transaction. This happens after we have moved all the pages into the writeback state and unlocked them. Unfortunately, if we fail to set up the transaction we then abort writeback and try to invalidate the current page. This then triggers are BUG() in block_invalidatepage() because we are trying to invalidate an unlocked page. Fixing this is a bit of a chicken and egg problem - we can't allocate the transaction until we've clustered all the pages into the IO and we know the size of it (i.e. whether the last block of the IO is beyond the current EOF or not). However, we don't want to hold pages locked for long periods of time, especially while we lock other pages to cluster them into the write. To fix this, we need to make a clear delineation in writeback where errors can only be handled by IO completion processing. That is, once we have marked a page for writeback and unlocked it, we have to report errors via IO completion because we've already started the IO. We may not have submitted any IO, but we've changed the page state to indicate that it is under IO so we must now use the IO completion path to report errors. To do this, add an error field to xfs_submit_ioend() to pass it the error that occurred during the building on the ioend chain. When this is non-zero, mark each ioend with the error and call xfs_finish_ioend() directly rather than building bios. This will immediately push the ioends through completion processing with the error that has occurred. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-12 15:09:45 +04:00
/*
* Reserve log space if we might write beyond the on-disk inode size.
*/
err = 0;
if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
err = xfs_setfilesize_trans_alloc(ioend);
xfs_submit_ioend(wbc, iohead, err);
return 0;
error:
if (iohead)
xfs_cancel_ioend(iohead);
if (err == -EAGAIN)
goto redirty;
xfs_aops_discard_page(page);
ClearPageUptodate(page);
unlock_page(page);
return err;
redirty:
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
STATIC int
xfs_vm_writepages(
struct address_space *mapping,
struct writeback_control *wbc)
{
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
return generic_writepages(mapping, wbc);
}
/*
* Called to move a page into cleanable state - and from there
* to be released. The page should already be clean. We always
* have buffer heads in this call.
*
* Returns 1 if the page is ok to release, 0 otherwise.
*/
STATIC int
xfs_vm_releasepage(
struct page *page,
gfp_t gfp_mask)
{
int delalloc, unwritten;
trace_xfs_releasepage(page->mapping->host, page, 0, 0);
xfs_count_page_state(page, &delalloc, &unwritten);
if (WARN_ON_ONCE(delalloc))
return 0;
if (WARN_ON_ONCE(unwritten))
return 0;
return try_to_free_buffers(page);
}
/*
* When we map a DIO buffer, we may need to attach an ioend that describes the
* type of write IO we are doing. This passes to the completion function the
* operations it needs to perform. If the mapping is for an overwrite wholly
* within the EOF then we don't need an ioend and so we don't allocate one.
* This avoids the unnecessary overhead of allocating and freeing ioends for
* workloads that don't require transactions on IO completion.
*
* If we get multiple mappings in a single IO, we might be mapping different
* types. But because the direct IO can only have a single private pointer, we
* need to ensure that:
*
* a) i) the ioend spans the entire region of unwritten mappings; or
* ii) the ioend spans all the mappings that cross or are beyond EOF; and
* b) if it contains unwritten extents, it is *permanently* marked as such
*
* We could do this by chaining ioends like buffered IO does, but we only
* actually get one IO completion callback from the direct IO, and that spans
* the entire IO regardless of how many mappings and IOs are needed to complete
* the DIO. There is only going to be one reference to the ioend and its life
* cycle is constrained by the DIO completion code. hence we don't need
* reference counting here.
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
*
* Note that for DIO, an IO to the highest supported file block offset (i.e.
* 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
* bit variable. Hence if we see this overflow, we have to assume that the IO is
* extending the file size. We won't know for sure until IO completion is run
* and the actual max write offset is communicated to the IO completion
* routine.
*
* For DAX page faults, we are preparing to never see unwritten extents here,
* nor should we ever extend the inode size. Hence we will soon have nothing to
* do here for this case, ensuring we don't have to provide an IO completion
* callback to free an ioend that we don't actually need for a fault into the
* page at offset (2^63 - 1FSB) bytes.
*/
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
static void
xfs_map_direct(
struct inode *inode,
struct buffer_head *bh_result,
struct xfs_bmbt_irec *imap,
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
xfs_off_t offset,
bool dax_fault)
{
struct xfs_ioend *ioend;
xfs_off_t size = bh_result->b_size;
int type;
if (ISUNWRITTEN(imap))
type = XFS_IO_UNWRITTEN;
else
type = XFS_IO_OVERWRITE;
trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
if (dax_fault) {
ASSERT(type == XFS_IO_OVERWRITE);
trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
imap);
return;
}
if (bh_result->b_private) {
ioend = bh_result->b_private;
ASSERT(ioend->io_size > 0);
ASSERT(offset >= ioend->io_offset);
if (offset + size > ioend->io_offset + ioend->io_size)
ioend->io_size = offset - ioend->io_offset + size;
if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
ioend->io_type = XFS_IO_UNWRITTEN;
trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
ioend->io_size, ioend->io_type,
imap);
} else if (type == XFS_IO_UNWRITTEN ||
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
offset + size > i_size_read(inode) ||
offset + size < 0) {
ioend = xfs_alloc_ioend(inode, type);
ioend->io_offset = offset;
ioend->io_size = size;
bh_result->b_private = ioend;
set_buffer_defer_completion(bh_result);
trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
imap);
} else {
trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
imap);
}
}
/*
* If this is O_DIRECT or the mpage code calling tell them how large the mapping
* is, so that we can avoid repeated get_blocks calls.
*
* If the mapping spans EOF, then we have to break the mapping up as the mapping
* for blocks beyond EOF must be marked new so that sub block regions can be
* correctly zeroed. We can't do this for mappings within EOF unless the mapping
* was just allocated or is unwritten, otherwise the callers would overwrite
* existing data with zeros. Hence we have to split the mapping into a range up
* to and including EOF, and a second mapping for beyond EOF.
*/
static void
xfs_map_trim_size(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
struct xfs_bmbt_irec *imap,
xfs_off_t offset,
ssize_t size)
{
xfs_off_t mapping_size;
mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
mapping_size <<= inode->i_blkbits;
ASSERT(mapping_size > 0);
if (mapping_size > size)
mapping_size = size;
if (offset < i_size_read(inode) &&
offset + mapping_size >= i_size_read(inode)) {
/* limit mapping to block that spans EOF */
mapping_size = roundup_64(i_size_read(inode) - offset,
1 << inode->i_blkbits);
}
if (mapping_size > LONG_MAX)
mapping_size = LONG_MAX;
bh_result->b_size = mapping_size;
}
STATIC int
__xfs_get_blocks(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create,
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
bool direct,
bool dax_fault)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb, end_fsb;
int error = 0;
int lockmode = 0;
struct xfs_bmbt_irec imap;
int nimaps = 1;
xfs_off_t offset;
ssize_t size;
int new = 0;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
offset = (xfs_off_t)iblock << inode->i_blkbits;
ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
size = bh_result->b_size;
if (!create && direct && offset >= i_size_read(inode))
return 0;
/*
* Direct I/O is usually done on preallocated files, so try getting
* a block mapping without an exclusive lock first. For buffered
* writes we already have the exclusive iolock anyway, so avoiding
* a lock roundtrip here by taking the ilock exclusive from the
* beginning is a useful micro optimization.
*/
if (create && !direct) {
lockmode = XFS_ILOCK_EXCL;
xfs_ilock(ip, lockmode);
} else {
lockmode = xfs_ilock_data_map_shared(ip);
}
ASSERT(offset <= mp->m_super->s_maxbytes);
if (offset + size > mp->m_super->s_maxbytes)
size = mp->m_super->s_maxbytes - offset;
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
offset_fsb = XFS_B_TO_FSBT(mp, offset);
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
&imap, &nimaps, XFS_BMAPI_ENTIRE);
if (error)
goto out_unlock;
xfs: Don't use unwritten extents for DAX DAX has a page fault serialisation problem with block allocation. Because it allows concurrent page faults and does not have a page lock to serialise faults to the same page, it can get two concurrent faults to the page that race. When two read faults race, this isn't a huge problem as the data underlying the page is not changing and so "detect and drop" works just fine. The issues are to do with write faults. When two write faults occur, we serialise block allocation in get_blocks() so only one faul will allocate the extent. It will, however, be marked as an unwritten extent, and that is where the problem lies - the DAX fault code cannot differentiate between a block that was just allocated and a block that was preallocated and needs zeroing. The result is that both write faults end up zeroing the block and attempting to convert it back to written. The problem is that the first fault can zero and convert before the second fault starts zeroing, resulting in the zeroing for the second fault overwriting the data that the first fault wrote with zeros. The second fault then attempts to convert the unwritten extent, which is then a no-op because it's already written. Data loss occurs as a result of this race. Because there is no sane locking construct in the page fault code that we can use for serialisation across the page faults, we need to ensure block allocation and zeroing occurs atomically in the filesystem. This means we can still take concurrent page faults and the only time they will serialise is in the filesystem mapping/allocation callback. The page fault code will always see written, initialised extents, so we will be able to remove the unwritten extent handling from the DAX code when all filesystems are converted. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:37:00 +03:00
/* for DAX, we convert unwritten extents directly */
if (create &&
(!nimaps ||
(imap.br_startblock == HOLESTARTBLOCK ||
xfs: Don't use unwritten extents for DAX DAX has a page fault serialisation problem with block allocation. Because it allows concurrent page faults and does not have a page lock to serialise faults to the same page, it can get two concurrent faults to the page that race. When two read faults race, this isn't a huge problem as the data underlying the page is not changing and so "detect and drop" works just fine. The issues are to do with write faults. When two write faults occur, we serialise block allocation in get_blocks() so only one faul will allocate the extent. It will, however, be marked as an unwritten extent, and that is where the problem lies - the DAX fault code cannot differentiate between a block that was just allocated and a block that was preallocated and needs zeroing. The result is that both write faults end up zeroing the block and attempting to convert it back to written. The problem is that the first fault can zero and convert before the second fault starts zeroing, resulting in the zeroing for the second fault overwriting the data that the first fault wrote with zeros. The second fault then attempts to convert the unwritten extent, which is then a no-op because it's already written. Data loss occurs as a result of this race. Because there is no sane locking construct in the page fault code that we can use for serialisation across the page faults, we need to ensure block allocation and zeroing occurs atomically in the filesystem. This means we can still take concurrent page faults and the only time they will serialise is in the filesystem mapping/allocation callback. The page fault code will always see written, initialised extents, so we will be able to remove the unwritten extent handling from the DAX code when all filesystems are converted. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:37:00 +03:00
imap.br_startblock == DELAYSTARTBLOCK) ||
(IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
xfs: Use preallocation for inodes with extsz hints xfstest 229 exposes a problem with buffered IO, delayed allocation and extent size hints. That is when we do delayed allocation during buffered IO, we reserve space for the extent size hint alignment and allocate the physical space to align the extent, but we do not zero the regions of the extent that aren't written by the write(2) syscall. The result is that we expose stale data in unwritten regions of the extent size hints. There are two ways to fix this. The first is to detect that we are doing unaligned writes, check if there is already a mapping or data over the extent size hint range, and if not zero the page cache first before then doing the real write. This can be very expensive for large extent size hints, especially if the subsequent writes fill then entire extent size before the data is written to disk. The second, and simpler way, is simply to turn off delayed allocation when the extent size hint is set and use preallocation instead. This results in unwritten extents being laid down on disk and so only the written portions will be converted. This matches the behaviour for direct IO, and will also work for the real time device. The disadvantage of this approach is that for small extent size hints we can get file fragmentation, but in general extent size hints are fairly large (e.g. stripe width sized) so this isn't a big deal. Implement the second approach as it is simple and effective. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-23 09:58:44 +04:00
if (direct || xfs_get_extsz_hint(ip)) {
/*
xfs: add missing ilock around dio write last extent alignment The iomap codepath (via get_blocks()) acquires and release the inode lock in the case of a direct write that requires block allocation. This is because xfs_iomap_write_direct() allocates a transaction, which means the ilock must be dropped and reacquired after the transaction is allocated and reserved. xfs_iomap_write_direct() invokes xfs_iomap_eof_align_last_fsb() before the transaction is created and thus before the ilock is reacquired. This can lead to calls to xfs_iread_extents() and reads of the in-core extent list without any synchronization (via xfs_bmap_eof() and xfs_bmap_last_extent()). xfs_iread_extents() assert fails if the ilock is not held, but this is not currently seen in practice as the current callers had already invoked xfs_bmapi_read(). What has been seen in practice are reports of crashes down in the xfs_bmap_eof() codepath on direct writes due to seemingly bogus pointer references from xfs_iext_get_ext(). While an explicit reproducer is not currently available to confirm the cause of the problem, crash analysis and code inspection from David Jeffrey had identified the insufficient locking. xfs_iomap_eof_align_last_fsb() is called from other contexts with the inode lock already held, so we cannot acquire it therein. __xfs_get_blocks() acquires and drops the ilock with variable flags to cover the event that the extent list must be read in. The common case is that __xfs_get_blocks() acquires the shared ilock. To provide locking around the last extent alignment call without adding more lock cycles to the dio path, update xfs_iomap_write_direct() to expect the shared ilock held on entry and do the extent alignment under its protection. Demote the lock, if necessary, from __xfs_get_blocks() and push the xfs_qm_dqattach() call outside of the shared lock critical section. Also, add an assert to document that the extent list is always expected to be present in this path. Otherwise, we risk a call to xfs_iread_extents() while under the shared ilock. This is safe as all current callers have executed an xfs_bmapi_read() call under the current iolock context. Reported-by: David Jeffery <djeffery@redhat.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 07:34:20 +03:00
* xfs_iomap_write_direct() expects the shared lock. It
* is unlocked on return.
*/
xfs: add missing ilock around dio write last extent alignment The iomap codepath (via get_blocks()) acquires and release the inode lock in the case of a direct write that requires block allocation. This is because xfs_iomap_write_direct() allocates a transaction, which means the ilock must be dropped and reacquired after the transaction is allocated and reserved. xfs_iomap_write_direct() invokes xfs_iomap_eof_align_last_fsb() before the transaction is created and thus before the ilock is reacquired. This can lead to calls to xfs_iread_extents() and reads of the in-core extent list without any synchronization (via xfs_bmap_eof() and xfs_bmap_last_extent()). xfs_iread_extents() assert fails if the ilock is not held, but this is not currently seen in practice as the current callers had already invoked xfs_bmapi_read(). What has been seen in practice are reports of crashes down in the xfs_bmap_eof() codepath on direct writes due to seemingly bogus pointer references from xfs_iext_get_ext(). While an explicit reproducer is not currently available to confirm the cause of the problem, crash analysis and code inspection from David Jeffrey had identified the insufficient locking. xfs_iomap_eof_align_last_fsb() is called from other contexts with the inode lock already held, so we cannot acquire it therein. __xfs_get_blocks() acquires and drops the ilock with variable flags to cover the event that the extent list must be read in. The common case is that __xfs_get_blocks() acquires the shared ilock. To provide locking around the last extent alignment call without adding more lock cycles to the dio path, update xfs_iomap_write_direct() to expect the shared ilock held on entry and do the extent alignment under its protection. Demote the lock, if necessary, from __xfs_get_blocks() and push the xfs_qm_dqattach() call outside of the shared lock critical section. Also, add an assert to document that the extent list is always expected to be present in this path. Otherwise, we risk a call to xfs_iread_extents() while under the shared ilock. This is safe as all current callers have executed an xfs_bmapi_read() call under the current iolock context. Reported-by: David Jeffery <djeffery@redhat.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 07:34:20 +03:00
if (lockmode == XFS_ILOCK_EXCL)
xfs_ilock_demote(ip, lockmode);
error = xfs_iomap_write_direct(ip, offset, size,
&imap, nimaps);
if (error)
return error;
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
new = 1;
} else {
/*
* Delalloc reservations do not require a transaction,
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
* we can go on without dropping the lock here. If we
* are allocating a new delalloc block, make sure that
* we set the new flag so that we mark the buffer new so
* that we know that it is newly allocated if the write
* fails.
*/
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
new = 1;
error = xfs_iomap_write_delay(ip, offset, size, &imap);
if (error)
goto out_unlock;
xfs_iunlock(ip, lockmode);
}
trace_xfs_get_blocks_alloc(ip, offset, size,
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
: XFS_IO_DELALLOC, &imap);
} else if (nimaps) {
trace_xfs_get_blocks_found(ip, offset, size,
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
: XFS_IO_OVERWRITE, &imap);
xfs_iunlock(ip, lockmode);
} else {
trace_xfs_get_blocks_notfound(ip, offset, size);
goto out_unlock;
}
xfs: Don't use unwritten extents for DAX DAX has a page fault serialisation problem with block allocation. Because it allows concurrent page faults and does not have a page lock to serialise faults to the same page, it can get two concurrent faults to the page that race. When two read faults race, this isn't a huge problem as the data underlying the page is not changing and so "detect and drop" works just fine. The issues are to do with write faults. When two write faults occur, we serialise block allocation in get_blocks() so only one faul will allocate the extent. It will, however, be marked as an unwritten extent, and that is where the problem lies - the DAX fault code cannot differentiate between a block that was just allocated and a block that was preallocated and needs zeroing. The result is that both write faults end up zeroing the block and attempting to convert it back to written. The problem is that the first fault can zero and convert before the second fault starts zeroing, resulting in the zeroing for the second fault overwriting the data that the first fault wrote with zeros. The second fault then attempts to convert the unwritten extent, which is then a no-op because it's already written. Data loss occurs as a result of this race. Because there is no sane locking construct in the page fault code that we can use for serialisation across the page faults, we need to ensure block allocation and zeroing occurs atomically in the filesystem. This means we can still take concurrent page faults and the only time they will serialise is in the filesystem mapping/allocation callback. The page fault code will always see written, initialised extents, so we will be able to remove the unwritten extent handling from the DAX code when all filesystems are converted. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:37:00 +03:00
if (IS_DAX(inode) && create) {
ASSERT(!ISUNWRITTEN(&imap));
/* zeroing is not needed at a higher layer */
new = 0;
}
/* trim mapping down to size requested */
if (direct || size > (1 << inode->i_blkbits))
xfs_map_trim_size(inode, iblock, bh_result,
&imap, offset, size);
/*
* For unwritten extents do not report a disk address in the buffered
* read case (treat as if we're reading into a hole).
*/
if (imap.br_startblock != HOLESTARTBLOCK &&
imap.br_startblock != DELAYSTARTBLOCK &&
(create || !ISUNWRITTEN(&imap))) {
xfs_map_buffer(inode, bh_result, &imap, offset);
if (ISUNWRITTEN(&imap))
set_buffer_unwritten(bh_result);
/* direct IO needs special help */
if (create && direct)
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
xfs_map_direct(inode, bh_result, &imap, offset,
dax_fault);
}
/*
* If this is a realtime file, data may be on a different device.
* to that pointed to from the buffer_head b_bdev currently.
*/
bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
/*
* If we previously allocated a block out beyond eof and we are now
* coming back to use it then we will need to flag it as new even if it
* has a disk address.
*
* With sub-block writes into unwritten extents we also need to mark
* the buffer as new so that the unwritten parts of the buffer gets
* correctly zeroed.
*/
if (create &&
((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
(offset >= i_size_read(inode)) ||
(new || ISUNWRITTEN(&imap))))
set_buffer_new(bh_result);
if (imap.br_startblock == DELAYSTARTBLOCK) {
BUG_ON(direct);
if (create) {
set_buffer_uptodate(bh_result);
set_buffer_mapped(bh_result);
set_buffer_delay(bh_result);
}
}
return 0;
out_unlock:
xfs_iunlock(ip, lockmode);
return error;
}
int
xfs_get_blocks(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
}
int
xfs_get_blocks_direct(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
xfs: fix inode size update overflow in xfs_map_direct() Both direct IO and DAX pass an offset and count into get_blocks that will overflow a s64 variable when an IO goes into the last supported block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen from the tracing: xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096 xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096 0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that overflows the s64 offset and we fail to detect the need for a filesize update and an ioend is not allocated. This is *mostly* avoided for direct IO because such extending IOs occur with full block allocation, and so the "IS_UNWRITTEN()" check still evaluates as true and we get an ioend that way. However, doing single sector extending IOs to this last block will expose the fact that file size updates will not occur after the first allocating direct IO as the overflow will then be exposed. There is one further complexity: the DAX page fault path also exposes the same issue in block allocation. However, page faults cannot extend the file size, so in this case we want to allocate the block but do not want to allocate an ioend to enable file size update at IO completion. Hence we now need to distinguish between the direct IO patch allocation and dax fault path allocation to avoid leaking ioend structures. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03 04:27:22 +03:00
return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
}
int
xfs_get_blocks_dax_fault(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
}
static void
__xfs_end_io_direct_write(
struct inode *inode,
struct xfs_ioend *ioend,
loff_t offset,
ssize_t size)
{
struct xfs_mount *mp = XFS_I(inode)->i_mount;
if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
goto out_end_io;
/*
* dio completion end_io functions are only called on writes if more
* than 0 bytes was written.
*/
ASSERT(size > 0);
/*
* The ioend only maps whole blocks, while the IO may be sector aligned.
* Hence the ioend offset/size may not match the IO offset/size exactly.
* Because we don't map overwrites within EOF into the ioend, the offset
* may not match, but only if the endio spans EOF. Either way, write
* the IO sizes into the ioend so that completion processing does the
* right thing.
*/
ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
ioend->io_size = size;
ioend->io_offset = offset;
/*
* The ioend tells us whether we are doing unwritten extent conversion
* or an append transaction that updates the on-disk file size. These
* cases are the only cases where we should *potentially* be needing
* to update the VFS inode size.
*
* We need to update the in-core inode size here so that we don't end up
* with the on-disk inode size being outside the in-core inode size. We
* have no other method of updating EOF for AIO, so always do it here
* if necessary.
xfs: DIO write completion size updates race xfs_end_io_direct_write() can race with other IO completions when updating the in-core inode size. The IO completion processing is not serialised for direct IO - they are done either under the IOLOCK_SHARED for non-AIO DIO, and without any IOLOCK held at all during AIO DIO completion. Hence the non-atomic test-and-set update of the in-core inode size is racy and can result in the in-core inode size going backwards if the race if hit just right. If the inode size goes backwards, this can trigger the EOF zeroing code to run incorrectly on the next IO, which then will zero data that has successfully been written to disk by a previous DIO. To fix this bug, we need to serialise the test/set updates of the in-core inode size. This first patch introduces locking around the relevant updates and checks in the DIO path. Because we now have an ioend in xfs_end_io_direct_write(), we know exactly then we are doing an IO that requires an in-core EOF update, and we know that they are not running in interrupt context. As such, we do not need to use irqsave() spinlock variants to protect against interrupts while the lock is held. Hence we can use an existing spinlock in the inode to do this serialisation and so not need to grow the struct xfs_inode just to work around this problem. This patch does not address the test/set EOF update in generic_file_write_direct() for various reasons - that will be done as a followup with separate explanation. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-04-16 15:03:07 +03:00
*
* We need to lock the test/set EOF update as we can be racing with
* other IO completions here to update the EOF. Failing to serialise
* here can result in EOF moving backwards and Bad Things Happen when
* that occurs.
*/
spin_lock(&XFS_I(inode)->i_flags_lock);
if (offset + size > i_size_read(inode))
i_size_write(inode, offset + size);
spin_unlock(&XFS_I(inode)->i_flags_lock);
/*
* If we are doing an append IO that needs to update the EOF on disk,
* do the transaction reserve now so we can use common end io
* processing. Stashing the error (if there is one) in the ioend will
* result in the ioend processing passing on the error if it is
* possible as we can't return it from here.
*/
if (ioend->io_type == XFS_IO_OVERWRITE)
ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
out_end_io:
xfs_end_io(&ioend->io_work);
return;
}
/*
* Complete a direct I/O write request.
*
* The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
* If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
* wholly within the EOF and so there is nothing for us to do. Note that in this
* case the completion can be called in interrupt context, whereas if we have an
* ioend we will always be called in task context (i.e. from a workqueue).
*/
STATIC void
xfs_end_io_direct_write(
struct kiocb *iocb,
loff_t offset,
ssize_t size,
void *private)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct xfs_ioend *ioend = private;
trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
ioend ? ioend->io_type : 0, NULL);
if (!ioend) {
ASSERT(offset + size <= i_size_read(inode));
return;
}
__xfs_end_io_direct_write(inode, ioend, offset, size);
}
static inline ssize_t
xfs_vm_do_dio(
struct inode *inode,
struct kiocb *iocb,
struct iov_iter *iter,
loff_t offset,
void (*endio)(struct kiocb *iocb,
loff_t offset,
ssize_t size,
void *private),
int flags)
{
struct block_device *bdev;
if (IS_DAX(inode))
return dax_do_io(iocb, inode, iter, offset,
xfs_get_blocks_direct, endio, 0);
bdev = xfs_find_bdev_for_inode(inode);
return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
xfs_get_blocks_direct, endio, NULL, flags);
}
STATIC ssize_t
xfs_vm_direct_IO(
struct kiocb *iocb,
struct iov_iter *iter,
loff_t offset)
{
struct inode *inode = iocb->ki_filp->f_mapping->host;
if (iov_iter_rw(iter) == WRITE)
return xfs_vm_do_dio(inode, iocb, iter, offset,
xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
}
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
/*
* Punch out the delalloc blocks we have already allocated.
*
* Don't bother with xfs_setattr given that nothing can have made it to disk yet
* as the page is still locked at this point.
*/
STATIC void
xfs_vm_kill_delalloc_range(
struct inode *inode,
loff_t start,
loff_t end)
{
struct xfs_inode *ip = XFS_I(inode);
xfs_fileoff_t start_fsb;
xfs_fileoff_t end_fsb;
int error;
start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
if (end_fsb <= start_fsb)
return;
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
end_fsb - start_fsb);
if (error) {
/* something screwed, just bail */
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
xfs_alert(ip->i_mount,
"xfs_vm_write_failed: unable to clean up ino %lld",
ip->i_ino);
}
}
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
STATIC void
xfs_vm_write_failed(
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
struct inode *inode,
struct page *page,
loff_t pos,
unsigned len)
{
xfs: fix assertion failure in xfs_vm_write_failed() In xfs_vm_write_failed(), we evaluate the block_offset of pos with PAGE_MASK which is an unsigned long. That is fine on 64-bit platforms regardless of whether the request pos is 32-bit or 64-bit. However, on 32-bit platforms the value is 0xfffff000 and so the high 32 bits in it will be masked off with (pos & PAGE_MASK) for a 64-bit pos. As a result, the evaluated block_offset is incorrect which will cause this failure ASSERT(block_offset + from == pos); and potentially pass the wrong block to xfs_vm_kill_delalloc_range(). In this case, we can get a kernel panic if CONFIG_XFS_DEBUG is enabled: XFS: Assertion failed: block_offset + from == pos, file: fs/xfs/xfs_aops.c, line: 1504 ------------[ cut here ]------------ kernel BUG at fs/xfs/xfs_message.c:100! invalid opcode: 0000 [#1] SMP ........ Pid: 4057, comm: mkfs.xfs Tainted: G O 3.9.0-rc2 #1 EIP: 0060:[<f94a7e8b>] EFLAGS: 00010282 CPU: 0 EIP is at assfail+0x2b/0x30 [xfs] EAX: 00000056 EBX: f6ef28a0 ECX: 00000007 EDX: f57d22a4 ESI: 1c2fb000 EDI: 00000000 EBP: ea6b5d30 ESP: ea6b5d1c DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 CR0: 8005003b CR2: 094f3ff4 CR3: 2bcb4000 CR4: 000006f0 DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 DR6: ffff0ff0 DR7: 00000400 Process mkfs.xfs (pid: 4057, ti=ea6b4000 task=ea5799e0 task.ti=ea6b4000) Stack: 00000000 f9525c48 f951fa80 f951f96b 000005e4 ea6b5d7c f9494b34 c19b0ea2 00000066 f3d6c620 c19b0ea2 00000000 e9a91458 00001000 00000000 00000000 00000000 c15c7e89 00000000 1c2fb000 00000000 00000000 1c2fb000 00000080 Call Trace: [<f9494b34>] xfs_vm_write_failed+0x74/0x1b0 [xfs] [<c15c7e89>] ? printk+0x4d/0x4f [<f9494d7d>] xfs_vm_write_begin+0x10d/0x170 [xfs] [<c110a34c>] generic_file_buffered_write+0xdc/0x210 [<f949b669>] xfs_file_buffered_aio_write+0xf9/0x190 [xfs] [<f949b7f3>] xfs_file_aio_write+0xf3/0x160 [xfs] [<c115e504>] do_sync_write+0x94/0xd0 [<c115ed1f>] vfs_write+0x8f/0x160 [<c115e470>] ? wait_on_retry_sync_kiocb+0x50/0x50 [<c115f017>] sys_write+0x47/0x80 [<c15d860d>] sysenter_do_call+0x12/0x28 ............. EIP: [<f94a7e8b>] assfail+0x2b/0x30 [xfs] SS:ESP 0068:ea6b5d1c ---[ end trace cdd9af4f4ecab42f ]--- Kernel panic - not syncing: Fatal exception In order to avoid this, we can evaluate the block_offset of the start of the page by using shifts rather than masks the mismatch problem. Thanks Dave Chinner for help finding and fixing this bug. Reported-by: Michael L. Semon <mlsemon35@gmail.com> Reviewed-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Jie Liu <jeff.liu@oracle.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-07-16 09:11:16 +04:00
loff_t block_offset;
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
loff_t block_start;
loff_t block_end;
loff_t from = pos & (PAGE_CACHE_SIZE - 1);
loff_t to = from + len;
struct buffer_head *bh, *head;
xfs: fix assertion failure in xfs_vm_write_failed() In xfs_vm_write_failed(), we evaluate the block_offset of pos with PAGE_MASK which is an unsigned long. That is fine on 64-bit platforms regardless of whether the request pos is 32-bit or 64-bit. However, on 32-bit platforms the value is 0xfffff000 and so the high 32 bits in it will be masked off with (pos & PAGE_MASK) for a 64-bit pos. As a result, the evaluated block_offset is incorrect which will cause this failure ASSERT(block_offset + from == pos); and potentially pass the wrong block to xfs_vm_kill_delalloc_range(). In this case, we can get a kernel panic if CONFIG_XFS_DEBUG is enabled: XFS: Assertion failed: block_offset + from == pos, file: fs/xfs/xfs_aops.c, line: 1504 ------------[ cut here ]------------ kernel BUG at fs/xfs/xfs_message.c:100! invalid opcode: 0000 [#1] SMP ........ Pid: 4057, comm: mkfs.xfs Tainted: G O 3.9.0-rc2 #1 EIP: 0060:[<f94a7e8b>] EFLAGS: 00010282 CPU: 0 EIP is at assfail+0x2b/0x30 [xfs] EAX: 00000056 EBX: f6ef28a0 ECX: 00000007 EDX: f57d22a4 ESI: 1c2fb000 EDI: 00000000 EBP: ea6b5d30 ESP: ea6b5d1c DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 CR0: 8005003b CR2: 094f3ff4 CR3: 2bcb4000 CR4: 000006f0 DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 DR6: ffff0ff0 DR7: 00000400 Process mkfs.xfs (pid: 4057, ti=ea6b4000 task=ea5799e0 task.ti=ea6b4000) Stack: 00000000 f9525c48 f951fa80 f951f96b 000005e4 ea6b5d7c f9494b34 c19b0ea2 00000066 f3d6c620 c19b0ea2 00000000 e9a91458 00001000 00000000 00000000 00000000 c15c7e89 00000000 1c2fb000 00000000 00000000 1c2fb000 00000080 Call Trace: [<f9494b34>] xfs_vm_write_failed+0x74/0x1b0 [xfs] [<c15c7e89>] ? printk+0x4d/0x4f [<f9494d7d>] xfs_vm_write_begin+0x10d/0x170 [xfs] [<c110a34c>] generic_file_buffered_write+0xdc/0x210 [<f949b669>] xfs_file_buffered_aio_write+0xf9/0x190 [xfs] [<f949b7f3>] xfs_file_aio_write+0xf3/0x160 [xfs] [<c115e504>] do_sync_write+0x94/0xd0 [<c115ed1f>] vfs_write+0x8f/0x160 [<c115e470>] ? wait_on_retry_sync_kiocb+0x50/0x50 [<c115f017>] sys_write+0x47/0x80 [<c15d860d>] sysenter_do_call+0x12/0x28 ............. EIP: [<f94a7e8b>] assfail+0x2b/0x30 [xfs] SS:ESP 0068:ea6b5d1c ---[ end trace cdd9af4f4ecab42f ]--- Kernel panic - not syncing: Fatal exception In order to avoid this, we can evaluate the block_offset of the start of the page by using shifts rather than masks the mismatch problem. Thanks Dave Chinner for help finding and fixing this bug. Reported-by: Michael L. Semon <mlsemon35@gmail.com> Reviewed-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Jie Liu <jeff.liu@oracle.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-07-16 09:11:16 +04:00
/*
* The request pos offset might be 32 or 64 bit, this is all fine
* on 64-bit platform. However, for 64-bit pos request on 32-bit
* platform, the high 32-bit will be masked off if we evaluate the
* block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
* 0xfffff000 as an unsigned long, hence the result is incorrect
* which could cause the following ASSERT failed in most cases.
* In order to avoid this, we can evaluate the block_offset of the
* start of the page by using shifts rather than masks the mismatch
* problem.
*/
block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
ASSERT(block_offset + from == pos);
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
head = page_buffers(page);
block_start = 0;
for (bh = head; bh != head || !block_start;
bh = bh->b_this_page, block_start = block_end,
block_offset += bh->b_size) {
block_end = block_start + bh->b_size;
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
/* skip buffers before the write */
if (block_end <= from)
continue;
/* if the buffer is after the write, we're done */
if (block_start >= to)
break;
xfs: clean up unwritten buffers on write failure The xfs_vm_write_failed() handler is currently responsible for cleaning up any delalloc blocks over the range of a failed write beyond EOF. Failure to do so results in warning messages and other inconsistencies between buffer and extent state. The ->releasepage() handler currently warns in the event of a page being released with either unwritten or delalloc buffers, as neither is ever expected by the time a page is released. As has been reproduced by generic/083 on a -bsize=1k fs, it is currently possible to trigger the ->releasepage() warning for a page with unwritten buffers when a filesystem is near ENOSPC. This is reproduced by the following sequence: $ mkfs.xfs -f -b size=1k -d size=100m <dev> $ mount <dev> /mnt/ $ $ xfs_io -fc "falloc -k 0 1k" /mnt/file $ dd if=/dev/zero of=/mnt/enospc conv=notrunc oflag=append $ $ xfs_io -c "pwrite 512 1k" /mnt/file $ xfs_io -d -c "pwrite 16k 1k" /mnt/file The first pwrite command attempts a block unaligned write across an unwritten block and a hole. The delalloc for the hole fails with ENOSPC and the subsequent error handling does not clean up the unwritten buffer that was instantiated during the first ->get_block() call. The second pwrite triggers a warning as part of the inode mapping invalidation that occurs prior to direct I/O. The releasepage() handler detects the unwritten buffer at this time, warns and prevents the release of the page. To deal with this problem, update xfs_vm_write_failed() to clean up unwritten as well as delalloc buffers that are beyond EOF and within the range of the failed write. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-08 07:00:02 +03:00
/*
* Process delalloc and unwritten buffers beyond EOF. We can
* encounter unwritten buffers in the event that a file has
* post-EOF unwritten extents and an extending write happens to
* fail (e.g., an unaligned write that also involves a delalloc
* to the same page).
*/
if (!buffer_delay(bh) && !buffer_unwritten(bh))
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
continue;
if (!buffer_new(bh) && block_offset < i_size_read(inode))
continue;
xfs: clean up unwritten buffers on write failure The xfs_vm_write_failed() handler is currently responsible for cleaning up any delalloc blocks over the range of a failed write beyond EOF. Failure to do so results in warning messages and other inconsistencies between buffer and extent state. The ->releasepage() handler currently warns in the event of a page being released with either unwritten or delalloc buffers, as neither is ever expected by the time a page is released. As has been reproduced by generic/083 on a -bsize=1k fs, it is currently possible to trigger the ->releasepage() warning for a page with unwritten buffers when a filesystem is near ENOSPC. This is reproduced by the following sequence: $ mkfs.xfs -f -b size=1k -d size=100m <dev> $ mount <dev> /mnt/ $ $ xfs_io -fc "falloc -k 0 1k" /mnt/file $ dd if=/dev/zero of=/mnt/enospc conv=notrunc oflag=append $ $ xfs_io -c "pwrite 512 1k" /mnt/file $ xfs_io -d -c "pwrite 16k 1k" /mnt/file The first pwrite command attempts a block unaligned write across an unwritten block and a hole. The delalloc for the hole fails with ENOSPC and the subsequent error handling does not clean up the unwritten buffer that was instantiated during the first ->get_block() call. The second pwrite triggers a warning as part of the inode mapping invalidation that occurs prior to direct I/O. The releasepage() handler detects the unwritten buffer at this time, warns and prevents the release of the page. To deal with this problem, update xfs_vm_write_failed() to clean up unwritten as well as delalloc buffers that are beyond EOF and within the range of the failed write. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-08 07:00:02 +03:00
if (buffer_delay(bh))
xfs_vm_kill_delalloc_range(inode, block_offset,
block_offset + bh->b_size);
/*
* This buffer does not contain data anymore. make sure anyone
* who finds it knows that for certain.
*/
clear_buffer_delay(bh);
clear_buffer_uptodate(bh);
clear_buffer_mapped(bh);
clear_buffer_new(bh);
clear_buffer_dirty(bh);
xfs: clean up unwritten buffers on write failure The xfs_vm_write_failed() handler is currently responsible for cleaning up any delalloc blocks over the range of a failed write beyond EOF. Failure to do so results in warning messages and other inconsistencies between buffer and extent state. The ->releasepage() handler currently warns in the event of a page being released with either unwritten or delalloc buffers, as neither is ever expected by the time a page is released. As has been reproduced by generic/083 on a -bsize=1k fs, it is currently possible to trigger the ->releasepage() warning for a page with unwritten buffers when a filesystem is near ENOSPC. This is reproduced by the following sequence: $ mkfs.xfs -f -b size=1k -d size=100m <dev> $ mount <dev> /mnt/ $ $ xfs_io -fc "falloc -k 0 1k" /mnt/file $ dd if=/dev/zero of=/mnt/enospc conv=notrunc oflag=append $ $ xfs_io -c "pwrite 512 1k" /mnt/file $ xfs_io -d -c "pwrite 16k 1k" /mnt/file The first pwrite command attempts a block unaligned write across an unwritten block and a hole. The delalloc for the hole fails with ENOSPC and the subsequent error handling does not clean up the unwritten buffer that was instantiated during the first ->get_block() call. The second pwrite triggers a warning as part of the inode mapping invalidation that occurs prior to direct I/O. The releasepage() handler detects the unwritten buffer at this time, warns and prevents the release of the page. To deal with this problem, update xfs_vm_write_failed() to clean up unwritten as well as delalloc buffers that are beyond EOF and within the range of the failed write. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-08 07:00:02 +03:00
clear_buffer_unwritten(bh);
}
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
}
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
/*
* This used to call block_write_begin(), but it unlocks and releases the page
* on error, and we need that page to be able to punch stale delalloc blocks out
* on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
* the appropriate point.
*/
STATIC int
xfs_vm_write_begin(
struct file *file,
struct address_space *mapping,
loff_t pos,
unsigned len,
unsigned flags,
struct page **pagep,
void **fsdata)
{
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
struct page *page;
int status;
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
ASSERT(len <= PAGE_CACHE_SIZE);
xfs: prevent stack overflows from page cache allocation Page cache allocation doesn't always go through ->begin_write and hence we don't always get the opportunity to set the allocation context to GFP_NOFS. Failing to do this means we open up the direct relcaim stack to recurse into the filesystem and consume a significant amount of stack. On RHEL6.4 kernels we are seeing ra_submit() and generic_file_splice_read() from an nfsd context recursing into the filesystem via the inode cache shrinker and evicting inodes. This is causing truncation to be run (e.g EOF block freeing) and causing bmap btree block merges and free space btree block splits to occur. These btree manipulations are occurring with the call chain already 30 functions deep and hence there is not enough stack space to complete such operations. To avoid these specific overruns, we need to prevent the page cache allocation from recursing via direct reclaim. We can do that because the allocation functions take the allocation context from that which is stored in the mapping for the inode. We don't set that right now, so the default is GFP_HIGHUSER_MOVABLE, which is effectively a GFP_KERNEL context. We need it to be the equivalent of GFP_NOFS, so when we initialise an inode, set the mapping gfp mask appropriately. This makes the use of AOP_FLAG_NOFS redundant from other parts of the XFS IO path, so get rid of it. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-29 15:11:57 +04:00
page = grab_cache_page_write_begin(mapping, index, flags);
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
if (!page)
return -ENOMEM;
status = __block_write_begin(page, pos, len, xfs_get_blocks);
if (unlikely(status)) {
struct inode *inode = mapping->host;
size_t isize = i_size_read(inode);
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
xfs_vm_write_failed(inode, page, pos, len);
unlock_page(page);
/*
* If the write is beyond EOF, we only want to kill blocks
* allocated in this write, not blocks that were previously
* written successfully.
*/
if (pos + len > isize) {
ssize_t start = max_t(ssize_t, pos, isize);
truncate_pagecache_range(inode, start, pos + len);
}
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
page_cache_release(page);
page = NULL;
}
*pagep = page;
return status;
}
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
/*
* On failure, we only need to kill delalloc blocks beyond EOF in the range of
* this specific write because they will never be written. Previous writes
* beyond EOF where block allocation succeeded do not need to be trashed, so
* only new blocks from this write should be trashed. For blocks within
* EOF, generic_write_end() zeros them so they are safe to leave alone and be
* written with all the other valid data.
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
*/
STATIC int
xfs_vm_write_end(
struct file *file,
struct address_space *mapping,
loff_t pos,
unsigned len,
unsigned copied,
struct page *page,
void *fsdata)
{
int ret;
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
ASSERT(len <= PAGE_CACHE_SIZE);
ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
if (unlikely(ret < len)) {
struct inode *inode = mapping->host;
size_t isize = i_size_read(inode);
loff_t to = pos + len;
if (to > isize) {
/* only kill blocks in this write beyond EOF */
if (pos > isize)
isize = pos;
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
xfs_vm_kill_delalloc_range(inode, isize, to);
truncate_pagecache_range(inode, isize, to);
xfs: punch new delalloc blocks out of failed writes inside EOF. When a partial write inside EOF fails, it can leave delayed allocation blocks lying around because they don't get punched back out. This leads to assert failures like: XFS: Assertion failed: XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0, file: fs/xfs/xfs_super.c, line: 847 when evicting inodes from the cache. This can be trivially triggered by xfstests 083, which takes between 5 and 15 executions on a 512 byte block size filesystem to trip over this. Debugging shows a failed write due to ENOSPC calling xfs_vm_write_failed such as: [ 5012.329024] ino 0xa0026: vwf to 0x17000, sze 0x1c85ae and no action is taken on it. This leaves behind a delayed allocation extent that has no page covering it and no data in it: [ 5015.867162] ino 0xa0026: blks: 0x83 delay blocks 0x1, size 0x2538c0 [ 5015.868293] ext 0: off 0x4a, fsb 0x50306, len 0x1 [ 5015.869095] ext 1: off 0x4b, fsb 0x7899, len 0x6b [ 5015.869900] ext 2: off 0xb6, fsb 0xffffffffe0008, len 0x1 ^^^^^^^^^^^^^^^ [ 5015.871027] ext 3: off 0x36e, fsb 0x7a27, len 0xd [ 5015.872206] ext 4: off 0x4cf, fsb 0x7a1d, len 0xa So the delayed allocation extent is one block long at offset 0x16c00. Tracing shows that a bigger write: xfs_file_buffered_write: size 0x1c85ae offset 0x959d count 0x1ca3f ioflags allocates the block, and then fails with ENOSPC trying to allocate the last block on the page, leading to a failed write with stale delalloc blocks on it. Because we've had an ENOSPC when trying to allocate 0x16e00, it means that we are never goinge to call ->write_end on the page and so the allocated new buffer will not get marked dirty or have the buffer_new state cleared. In other works, what the above write is supposed to end up with is this mapping for the page: +------+------+------+------+------+------+------+------+ UMA UMA UMA UMA UMA UMA UND FAIL where: U = uptodate M = mapped N = new A = allocated D = delalloc FAIL = block we ENOSPC'd on. and the key point being the buffer_new() state for the newly allocated delayed allocation block. Except it doesn't - we're not marking buffers new correctly. That buffer_new() problem goes back to the xfs_iomap removal days, where xfs_iomap() used to return a "new" status for any map with newly allocated blocks, so that __xfs_get_blocks() could call set_buffer_new() on it. We still have the "new" variable and the check for it in the set_buffer_new() logic - except we never set it now! Hence that newly allocated delalloc block doesn't have the new flag set on it, so when the write fails we cannot tell which blocks we are supposed to punch out. WHy do we need the buffer_new flag? Well, that's because we can have this case: +------+------+------+------+------+------+------+------+ UMD UMD UMD UMD UMD UMD UND FAIL where all the UMD buffers contain valid data from a previously successful write() system call. We only want to punch the UND buffer because that's the only one that we added in this write and it was only this write that failed. That implies that even the old buffer_new() logic was wrong - because it would result in all those UMD buffers on the page having set_buffer_new() called on them even though they aren't new. Hence we shoul donly be calling set_buffer_new() for delalloc buffers that were allocated (i.e. were a hole before xfs_iomap_write_delay() was called). So, fix this set_buffer_new logic according to how we need it to work for handling failed writes correctly. Also, restore the new buffer logic handling for blocks allocated via xfs_iomap_write_direct(), because it should still set the buffer_new flag appropriately for newly allocated blocks, too. SO, now we have the buffer_new() being set appropriately in __xfs_get_blocks(), we can detect the exact delalloc ranges that we allocated in a failed write, and hence can now do a walk of the buffers on a page to find them. Except, it's not that easy. When block_write_begin() fails, it unlocks and releases the page that we just had an error on, so we can't use that page to handle errors anymore. We have to get access to the page while it is still locked to walk the buffers. Hence we have to open code block_write_begin() in xfs_vm_write_begin() to be able to insert xfs_vm_write_failed() is the right place. With that, we can pass the page and write range to xfs_vm_write_failed() and walk the buffers on the page, looking for delalloc buffers that are either new or beyond EOF and punch them out. Handling buffers beyond EOF ensures we still handle the existing case that xfs_vm_write_failed() handles. Of special note is the truncate_pagecache() handling - that only should be done for pages outside EOF - pages within EOF can still contain valid, dirty data so we must not punch them out of the cache. That just leaves the xfs_vm_write_end() failure handling. The only failure case here is that we didn't copy the entire range, and generic_write_end() handles that by zeroing the region of the page that wasn't copied, we don't have to punch out blocks within the file because they are guaranteed to contain zeros. Hence we only have to handle the existing "beyond EOF" case and don't need access to the buffers on the page. Hence it remains largely unchanged. Note that xfs_getbmap() can still trip over delalloc blocks beyond EOF that are left there by speculative delayed allocation. Hence this bug fix does not solve all known issues with bmap vs delalloc, but it does fix all the the known accidental occurances of the problem. Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2012-04-27 13:45:21 +04:00
}
}
return ret;
}
STATIC sector_t
xfs_vm_bmap(
struct address_space *mapping,
sector_t block)
{
struct inode *inode = (struct inode *)mapping->host;
struct xfs_inode *ip = XFS_I(inode);
trace_xfs_vm_bmap(XFS_I(inode));
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait(mapping);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return generic_block_bmap(mapping, block, xfs_get_blocks);
}
STATIC int
xfs_vm_readpage(
struct file *unused,
struct page *page)
{
trace_xfs_vm_readpage(page->mapping->host, 1);
return mpage_readpage(page, xfs_get_blocks);
}
STATIC int
xfs_vm_readpages(
struct file *unused,
struct address_space *mapping,
struct list_head *pages,
unsigned nr_pages)
{
trace_xfs_vm_readpages(mapping->host, nr_pages);
return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
}
xfs: don't dirty buffers beyond EOF generic/263 is failing fsx at this point with a page spanning EOF that cannot be invalidated. The operations are: 1190 mapwrite 0x52c00 thru 0x5e569 (0xb96a bytes) 1191 mapread 0x5c000 thru 0x5d636 (0x1637 bytes) 1192 write 0x5b600 thru 0x771ff (0x1bc00 bytes) where 1190 extents EOF from 0x54000 to 0x5e569. When the direct IO write attempts to invalidate the cached page over this range, it fails with -EBUSY and so any attempt to do page invalidation fails. The real question is this: Why can't that page be invalidated after it has been written to disk and cleaned? Well, there's data on the first two buffers in the page (1k block size, 4k page), but the third buffer on the page (i.e. beyond EOF) is failing drop_buffers because it's bh->b_state == 0x3, which is BH_Uptodate | BH_Dirty. IOWs, there's dirty buffers beyond EOF. Say what? OK, set_buffer_dirty() is called on all buffers from __set_page_buffers_dirty(), regardless of whether the buffer is beyond EOF or not, which means that when we get to ->writepage, we have buffers marked dirty beyond EOF that we need to clean. So, we need to implement our own .set_page_dirty method that doesn't dirty buffers beyond EOF. This is messy because the buffer code is not meant to be shared and it has interesting locking issues on the buffer dirty bits. So just copy and paste it and then modify it to suit what we need. Note: the solutions the other filesystems and generic block code use of marking the buffers clean in ->writepage does not work for XFS. It still leaves dirty buffers beyond EOF and invalidations still fail. Hence rather than play whack-a-mole, this patch simply prevents those buffers from being dirtied in the first place. cc: <stable@kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-02 06:12:51 +04:00
/*
* This is basically a copy of __set_page_dirty_buffers() with one
* small tweak: buffers beyond EOF do not get marked dirty. If we mark them
* dirty, we'll never be able to clean them because we don't write buffers
* beyond EOF, and that means we can't invalidate pages that span EOF
* that have been marked dirty. Further, the dirty state can leak into
* the file interior if the file is extended, resulting in all sorts of
* bad things happening as the state does not match the underlying data.
*
* XXX: this really indicates that bufferheads in XFS need to die. Warts like
* this only exist because of bufferheads and how the generic code manages them.
*/
STATIC int
xfs_vm_set_page_dirty(
struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
loff_t end_offset;
loff_t offset;
int newly_dirty;
memcg: add per cgroup dirty page accounting When modifying PG_Dirty on cached file pages, update the new MEM_CGROUP_STAT_DIRTY counter. This is done in the same places where global NR_FILE_DIRTY is managed. The new memcg stat is visible in the per memcg memory.stat cgroupfs file. The most recent past attempt at this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632 The new accounting supports future efforts to add per cgroup dirty page throttling and writeback. It also helps an administrator break down a container's memory usage and provides evidence to understand memcg oom kills (the new dirty count is included in memcg oom kill messages). The ability to move page accounting between memcg (memory.move_charge_at_immigrate) makes this accounting more complicated than the global counter. The existing mem_cgroup_{begin,end}_page_stat() lock is used to serialize move accounting with stat updates. Typical update operation: memcg = mem_cgroup_begin_page_stat(page) if (TestSetPageDirty()) { [...] mem_cgroup_update_page_stat(memcg) } mem_cgroup_end_page_stat(memcg) Summary of mem_cgroup_end_page_stat() overhead: - Without CONFIG_MEMCG it's a no-op - With CONFIG_MEMCG and no inter memcg task movement, it's just rcu_read_lock() - With CONFIG_MEMCG and inter memcg task movement, it's rcu_read_lock() + spin_lock_irqsave() A memcg parameter is added to several routines because their callers now grab mem_cgroup_begin_page_stat() which returns the memcg later needed by for mem_cgroup_update_page_stat(). Because mem_cgroup_begin_page_stat() may disable interrupts, some adjustments are needed: - move __mark_inode_dirty() from __set_page_dirty() to its caller. __mark_inode_dirty() locking does not want interrupts disabled. - use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in __delete_from_page_cache(), replace_page_cache_page(), invalidate_complete_page2(), and __remove_mapping(). text data bss dec hex filename 8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before 8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after +192 text bytes 8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before 8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after +773 text bytes Performance tests run on v4.0-rc1-36-g4f671fe2f952. Lower is better for all metrics, they're all wall clock or cycle counts. The read and write fault benchmarks just measure fault time, they do not include I/O time. * CONFIG_MEMCG not set: baseline patched kbuild 1m25.030000(+-0.088% 3 samples) 1m25.426667(+-0.120% 3 samples) dd write 100 MiB 0.859211561 +-15.10% 0.874162885 +-15.03% dd write 200 MiB 1.670653105 +-17.87% 1.669384764 +-11.99% dd write 1000 MiB 8.434691190 +-14.15% 8.474733215 +-14.77% read fault cycles 254.0(+-0.000% 10 samples) 253.0(+-0.000% 10 samples) write fault cycles 2021.2(+-3.070% 10 samples) 1984.5(+-1.036% 10 samples) * CONFIG_MEMCG=y root_memcg: baseline patched kbuild 1m25.716667(+-0.105% 3 samples) 1m25.686667(+-0.153% 3 samples) dd write 100 MiB 0.855650830 +-14.90% 0.887557919 +-14.90% dd write 200 MiB 1.688322953 +-12.72% 1.667682724 +-13.33% dd write 1000 MiB 8.418601605 +-14.30% 8.673532299 +-15.00% read fault cycles 266.0(+-0.000% 10 samples) 266.0(+-0.000% 10 samples) write fault cycles 2051.7(+-1.349% 10 samples) 2049.6(+-1.686% 10 samples) * CONFIG_MEMCG=y non-root_memcg: baseline patched kbuild 1m26.120000(+-0.273% 3 samples) 1m25.763333(+-0.127% 3 samples) dd write 100 MiB 0.861723964 +-15.25% 0.818129350 +-14.82% dd write 200 MiB 1.669887569 +-13.30% 1.698645885 +-13.27% dd write 1000 MiB 8.383191730 +-14.65% 8.351742280 +-14.52% read fault cycles 265.7(+-0.172% 10 samples) 267.0(+-0.000% 10 samples) write fault cycles 2070.6(+-1.512% 10 samples) 2084.4(+-2.148% 10 samples) As expected anon page faults are not affected by this patch. tj: Updated to apply on top of the recent cancel_dirty_page() changes. Signed-off-by: Sha Zhengju <handai.szj@gmail.com> Signed-off-by: Greg Thelen <gthelen@google.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 00:13:16 +03:00
struct mem_cgroup *memcg;
xfs: don't dirty buffers beyond EOF generic/263 is failing fsx at this point with a page spanning EOF that cannot be invalidated. The operations are: 1190 mapwrite 0x52c00 thru 0x5e569 (0xb96a bytes) 1191 mapread 0x5c000 thru 0x5d636 (0x1637 bytes) 1192 write 0x5b600 thru 0x771ff (0x1bc00 bytes) where 1190 extents EOF from 0x54000 to 0x5e569. When the direct IO write attempts to invalidate the cached page over this range, it fails with -EBUSY and so any attempt to do page invalidation fails. The real question is this: Why can't that page be invalidated after it has been written to disk and cleaned? Well, there's data on the first two buffers in the page (1k block size, 4k page), but the third buffer on the page (i.e. beyond EOF) is failing drop_buffers because it's bh->b_state == 0x3, which is BH_Uptodate | BH_Dirty. IOWs, there's dirty buffers beyond EOF. Say what? OK, set_buffer_dirty() is called on all buffers from __set_page_buffers_dirty(), regardless of whether the buffer is beyond EOF or not, which means that when we get to ->writepage, we have buffers marked dirty beyond EOF that we need to clean. So, we need to implement our own .set_page_dirty method that doesn't dirty buffers beyond EOF. This is messy because the buffer code is not meant to be shared and it has interesting locking issues on the buffer dirty bits. So just copy and paste it and then modify it to suit what we need. Note: the solutions the other filesystems and generic block code use of marking the buffers clean in ->writepage does not work for XFS. It still leaves dirty buffers beyond EOF and invalidations still fail. Hence rather than play whack-a-mole, this patch simply prevents those buffers from being dirtied in the first place. cc: <stable@kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-02 06:12:51 +04:00
if (unlikely(!mapping))
return !TestSetPageDirty(page);
end_offset = i_size_read(inode);
offset = page_offset(page);
spin_lock(&mapping->private_lock);
if (page_has_buffers(page)) {
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh = head;
do {
if (offset < end_offset)
set_buffer_dirty(bh);
bh = bh->b_this_page;
offset += 1 << inode->i_blkbits;
} while (bh != head);
}
memcg: add per cgroup dirty page accounting When modifying PG_Dirty on cached file pages, update the new MEM_CGROUP_STAT_DIRTY counter. This is done in the same places where global NR_FILE_DIRTY is managed. The new memcg stat is visible in the per memcg memory.stat cgroupfs file. The most recent past attempt at this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632 The new accounting supports future efforts to add per cgroup dirty page throttling and writeback. It also helps an administrator break down a container's memory usage and provides evidence to understand memcg oom kills (the new dirty count is included in memcg oom kill messages). The ability to move page accounting between memcg (memory.move_charge_at_immigrate) makes this accounting more complicated than the global counter. The existing mem_cgroup_{begin,end}_page_stat() lock is used to serialize move accounting with stat updates. Typical update operation: memcg = mem_cgroup_begin_page_stat(page) if (TestSetPageDirty()) { [...] mem_cgroup_update_page_stat(memcg) } mem_cgroup_end_page_stat(memcg) Summary of mem_cgroup_end_page_stat() overhead: - Without CONFIG_MEMCG it's a no-op - With CONFIG_MEMCG and no inter memcg task movement, it's just rcu_read_lock() - With CONFIG_MEMCG and inter memcg task movement, it's rcu_read_lock() + spin_lock_irqsave() A memcg parameter is added to several routines because their callers now grab mem_cgroup_begin_page_stat() which returns the memcg later needed by for mem_cgroup_update_page_stat(). Because mem_cgroup_begin_page_stat() may disable interrupts, some adjustments are needed: - move __mark_inode_dirty() from __set_page_dirty() to its caller. __mark_inode_dirty() locking does not want interrupts disabled. - use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in __delete_from_page_cache(), replace_page_cache_page(), invalidate_complete_page2(), and __remove_mapping(). text data bss dec hex filename 8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before 8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after +192 text bytes 8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before 8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after +773 text bytes Performance tests run on v4.0-rc1-36-g4f671fe2f952. Lower is better for all metrics, they're all wall clock or cycle counts. The read and write fault benchmarks just measure fault time, they do not include I/O time. * CONFIG_MEMCG not set: baseline patched kbuild 1m25.030000(+-0.088% 3 samples) 1m25.426667(+-0.120% 3 samples) dd write 100 MiB 0.859211561 +-15.10% 0.874162885 +-15.03% dd write 200 MiB 1.670653105 +-17.87% 1.669384764 +-11.99% dd write 1000 MiB 8.434691190 +-14.15% 8.474733215 +-14.77% read fault cycles 254.0(+-0.000% 10 samples) 253.0(+-0.000% 10 samples) write fault cycles 2021.2(+-3.070% 10 samples) 1984.5(+-1.036% 10 samples) * CONFIG_MEMCG=y root_memcg: baseline patched kbuild 1m25.716667(+-0.105% 3 samples) 1m25.686667(+-0.153% 3 samples) dd write 100 MiB 0.855650830 +-14.90% 0.887557919 +-14.90% dd write 200 MiB 1.688322953 +-12.72% 1.667682724 +-13.33% dd write 1000 MiB 8.418601605 +-14.30% 8.673532299 +-15.00% read fault cycles 266.0(+-0.000% 10 samples) 266.0(+-0.000% 10 samples) write fault cycles 2051.7(+-1.349% 10 samples) 2049.6(+-1.686% 10 samples) * CONFIG_MEMCG=y non-root_memcg: baseline patched kbuild 1m26.120000(+-0.273% 3 samples) 1m25.763333(+-0.127% 3 samples) dd write 100 MiB 0.861723964 +-15.25% 0.818129350 +-14.82% dd write 200 MiB 1.669887569 +-13.30% 1.698645885 +-13.27% dd write 1000 MiB 8.383191730 +-14.65% 8.351742280 +-14.52% read fault cycles 265.7(+-0.172% 10 samples) 267.0(+-0.000% 10 samples) write fault cycles 2070.6(+-1.512% 10 samples) 2084.4(+-2.148% 10 samples) As expected anon page faults are not affected by this patch. tj: Updated to apply on top of the recent cancel_dirty_page() changes. Signed-off-by: Sha Zhengju <handai.szj@gmail.com> Signed-off-by: Greg Thelen <gthelen@google.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 00:13:16 +03:00
/*
* Use mem_group_begin_page_stat() to keep PageDirty synchronized with
* per-memcg dirty page counters.
*/
memcg = mem_cgroup_begin_page_stat(page);
xfs: don't dirty buffers beyond EOF generic/263 is failing fsx at this point with a page spanning EOF that cannot be invalidated. The operations are: 1190 mapwrite 0x52c00 thru 0x5e569 (0xb96a bytes) 1191 mapread 0x5c000 thru 0x5d636 (0x1637 bytes) 1192 write 0x5b600 thru 0x771ff (0x1bc00 bytes) where 1190 extents EOF from 0x54000 to 0x5e569. When the direct IO write attempts to invalidate the cached page over this range, it fails with -EBUSY and so any attempt to do page invalidation fails. The real question is this: Why can't that page be invalidated after it has been written to disk and cleaned? Well, there's data on the first two buffers in the page (1k block size, 4k page), but the third buffer on the page (i.e. beyond EOF) is failing drop_buffers because it's bh->b_state == 0x3, which is BH_Uptodate | BH_Dirty. IOWs, there's dirty buffers beyond EOF. Say what? OK, set_buffer_dirty() is called on all buffers from __set_page_buffers_dirty(), regardless of whether the buffer is beyond EOF or not, which means that when we get to ->writepage, we have buffers marked dirty beyond EOF that we need to clean. So, we need to implement our own .set_page_dirty method that doesn't dirty buffers beyond EOF. This is messy because the buffer code is not meant to be shared and it has interesting locking issues on the buffer dirty bits. So just copy and paste it and then modify it to suit what we need. Note: the solutions the other filesystems and generic block code use of marking the buffers clean in ->writepage does not work for XFS. It still leaves dirty buffers beyond EOF and invalidations still fail. Hence rather than play whack-a-mole, this patch simply prevents those buffers from being dirtied in the first place. cc: <stable@kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-02 06:12:51 +04:00
newly_dirty = !TestSetPageDirty(page);
spin_unlock(&mapping->private_lock);
if (newly_dirty) {
/* sigh - __set_page_dirty() is static, so copy it here, too */
unsigned long flags;
spin_lock_irqsave(&mapping->tree_lock, flags);
if (page->mapping) { /* Race with truncate? */
WARN_ON_ONCE(!PageUptodate(page));
memcg: add per cgroup dirty page accounting When modifying PG_Dirty on cached file pages, update the new MEM_CGROUP_STAT_DIRTY counter. This is done in the same places where global NR_FILE_DIRTY is managed. The new memcg stat is visible in the per memcg memory.stat cgroupfs file. The most recent past attempt at this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632 The new accounting supports future efforts to add per cgroup dirty page throttling and writeback. It also helps an administrator break down a container's memory usage and provides evidence to understand memcg oom kills (the new dirty count is included in memcg oom kill messages). The ability to move page accounting between memcg (memory.move_charge_at_immigrate) makes this accounting more complicated than the global counter. The existing mem_cgroup_{begin,end}_page_stat() lock is used to serialize move accounting with stat updates. Typical update operation: memcg = mem_cgroup_begin_page_stat(page) if (TestSetPageDirty()) { [...] mem_cgroup_update_page_stat(memcg) } mem_cgroup_end_page_stat(memcg) Summary of mem_cgroup_end_page_stat() overhead: - Without CONFIG_MEMCG it's a no-op - With CONFIG_MEMCG and no inter memcg task movement, it's just rcu_read_lock() - With CONFIG_MEMCG and inter memcg task movement, it's rcu_read_lock() + spin_lock_irqsave() A memcg parameter is added to several routines because their callers now grab mem_cgroup_begin_page_stat() which returns the memcg later needed by for mem_cgroup_update_page_stat(). Because mem_cgroup_begin_page_stat() may disable interrupts, some adjustments are needed: - move __mark_inode_dirty() from __set_page_dirty() to its caller. __mark_inode_dirty() locking does not want interrupts disabled. - use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in __delete_from_page_cache(), replace_page_cache_page(), invalidate_complete_page2(), and __remove_mapping(). text data bss dec hex filename 8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before 8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after +192 text bytes 8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before 8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after +773 text bytes Performance tests run on v4.0-rc1-36-g4f671fe2f952. Lower is better for all metrics, they're all wall clock or cycle counts. The read and write fault benchmarks just measure fault time, they do not include I/O time. * CONFIG_MEMCG not set: baseline patched kbuild 1m25.030000(+-0.088% 3 samples) 1m25.426667(+-0.120% 3 samples) dd write 100 MiB 0.859211561 +-15.10% 0.874162885 +-15.03% dd write 200 MiB 1.670653105 +-17.87% 1.669384764 +-11.99% dd write 1000 MiB 8.434691190 +-14.15% 8.474733215 +-14.77% read fault cycles 254.0(+-0.000% 10 samples) 253.0(+-0.000% 10 samples) write fault cycles 2021.2(+-3.070% 10 samples) 1984.5(+-1.036% 10 samples) * CONFIG_MEMCG=y root_memcg: baseline patched kbuild 1m25.716667(+-0.105% 3 samples) 1m25.686667(+-0.153% 3 samples) dd write 100 MiB 0.855650830 +-14.90% 0.887557919 +-14.90% dd write 200 MiB 1.688322953 +-12.72% 1.667682724 +-13.33% dd write 1000 MiB 8.418601605 +-14.30% 8.673532299 +-15.00% read fault cycles 266.0(+-0.000% 10 samples) 266.0(+-0.000% 10 samples) write fault cycles 2051.7(+-1.349% 10 samples) 2049.6(+-1.686% 10 samples) * CONFIG_MEMCG=y non-root_memcg: baseline patched kbuild 1m26.120000(+-0.273% 3 samples) 1m25.763333(+-0.127% 3 samples) dd write 100 MiB 0.861723964 +-15.25% 0.818129350 +-14.82% dd write 200 MiB 1.669887569 +-13.30% 1.698645885 +-13.27% dd write 1000 MiB 8.383191730 +-14.65% 8.351742280 +-14.52% read fault cycles 265.7(+-0.172% 10 samples) 267.0(+-0.000% 10 samples) write fault cycles 2070.6(+-1.512% 10 samples) 2084.4(+-2.148% 10 samples) As expected anon page faults are not affected by this patch. tj: Updated to apply on top of the recent cancel_dirty_page() changes. Signed-off-by: Sha Zhengju <handai.szj@gmail.com> Signed-off-by: Greg Thelen <gthelen@google.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 00:13:16 +03:00
account_page_dirtied(page, mapping, memcg);
xfs: don't dirty buffers beyond EOF generic/263 is failing fsx at this point with a page spanning EOF that cannot be invalidated. The operations are: 1190 mapwrite 0x52c00 thru 0x5e569 (0xb96a bytes) 1191 mapread 0x5c000 thru 0x5d636 (0x1637 bytes) 1192 write 0x5b600 thru 0x771ff (0x1bc00 bytes) where 1190 extents EOF from 0x54000 to 0x5e569. When the direct IO write attempts to invalidate the cached page over this range, it fails with -EBUSY and so any attempt to do page invalidation fails. The real question is this: Why can't that page be invalidated after it has been written to disk and cleaned? Well, there's data on the first two buffers in the page (1k block size, 4k page), but the third buffer on the page (i.e. beyond EOF) is failing drop_buffers because it's bh->b_state == 0x3, which is BH_Uptodate | BH_Dirty. IOWs, there's dirty buffers beyond EOF. Say what? OK, set_buffer_dirty() is called on all buffers from __set_page_buffers_dirty(), regardless of whether the buffer is beyond EOF or not, which means that when we get to ->writepage, we have buffers marked dirty beyond EOF that we need to clean. So, we need to implement our own .set_page_dirty method that doesn't dirty buffers beyond EOF. This is messy because the buffer code is not meant to be shared and it has interesting locking issues on the buffer dirty bits. So just copy and paste it and then modify it to suit what we need. Note: the solutions the other filesystems and generic block code use of marking the buffers clean in ->writepage does not work for XFS. It still leaves dirty buffers beyond EOF and invalidations still fail. Hence rather than play whack-a-mole, this patch simply prevents those buffers from being dirtied in the first place. cc: <stable@kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-02 06:12:51 +04:00
radix_tree_tag_set(&mapping->page_tree,
page_index(page), PAGECACHE_TAG_DIRTY);
}
spin_unlock_irqrestore(&mapping->tree_lock, flags);
}
memcg: add per cgroup dirty page accounting When modifying PG_Dirty on cached file pages, update the new MEM_CGROUP_STAT_DIRTY counter. This is done in the same places where global NR_FILE_DIRTY is managed. The new memcg stat is visible in the per memcg memory.stat cgroupfs file. The most recent past attempt at this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632 The new accounting supports future efforts to add per cgroup dirty page throttling and writeback. It also helps an administrator break down a container's memory usage and provides evidence to understand memcg oom kills (the new dirty count is included in memcg oom kill messages). The ability to move page accounting between memcg (memory.move_charge_at_immigrate) makes this accounting more complicated than the global counter. The existing mem_cgroup_{begin,end}_page_stat() lock is used to serialize move accounting with stat updates. Typical update operation: memcg = mem_cgroup_begin_page_stat(page) if (TestSetPageDirty()) { [...] mem_cgroup_update_page_stat(memcg) } mem_cgroup_end_page_stat(memcg) Summary of mem_cgroup_end_page_stat() overhead: - Without CONFIG_MEMCG it's a no-op - With CONFIG_MEMCG and no inter memcg task movement, it's just rcu_read_lock() - With CONFIG_MEMCG and inter memcg task movement, it's rcu_read_lock() + spin_lock_irqsave() A memcg parameter is added to several routines because their callers now grab mem_cgroup_begin_page_stat() which returns the memcg later needed by for mem_cgroup_update_page_stat(). Because mem_cgroup_begin_page_stat() may disable interrupts, some adjustments are needed: - move __mark_inode_dirty() from __set_page_dirty() to its caller. __mark_inode_dirty() locking does not want interrupts disabled. - use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in __delete_from_page_cache(), replace_page_cache_page(), invalidate_complete_page2(), and __remove_mapping(). text data bss dec hex filename 8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before 8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after +192 text bytes 8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before 8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after +773 text bytes Performance tests run on v4.0-rc1-36-g4f671fe2f952. Lower is better for all metrics, they're all wall clock or cycle counts. The read and write fault benchmarks just measure fault time, they do not include I/O time. * CONFIG_MEMCG not set: baseline patched kbuild 1m25.030000(+-0.088% 3 samples) 1m25.426667(+-0.120% 3 samples) dd write 100 MiB 0.859211561 +-15.10% 0.874162885 +-15.03% dd write 200 MiB 1.670653105 +-17.87% 1.669384764 +-11.99% dd write 1000 MiB 8.434691190 +-14.15% 8.474733215 +-14.77% read fault cycles 254.0(+-0.000% 10 samples) 253.0(+-0.000% 10 samples) write fault cycles 2021.2(+-3.070% 10 samples) 1984.5(+-1.036% 10 samples) * CONFIG_MEMCG=y root_memcg: baseline patched kbuild 1m25.716667(+-0.105% 3 samples) 1m25.686667(+-0.153% 3 samples) dd write 100 MiB 0.855650830 +-14.90% 0.887557919 +-14.90% dd write 200 MiB 1.688322953 +-12.72% 1.667682724 +-13.33% dd write 1000 MiB 8.418601605 +-14.30% 8.673532299 +-15.00% read fault cycles 266.0(+-0.000% 10 samples) 266.0(+-0.000% 10 samples) write fault cycles 2051.7(+-1.349% 10 samples) 2049.6(+-1.686% 10 samples) * CONFIG_MEMCG=y non-root_memcg: baseline patched kbuild 1m26.120000(+-0.273% 3 samples) 1m25.763333(+-0.127% 3 samples) dd write 100 MiB 0.861723964 +-15.25% 0.818129350 +-14.82% dd write 200 MiB 1.669887569 +-13.30% 1.698645885 +-13.27% dd write 1000 MiB 8.383191730 +-14.65% 8.351742280 +-14.52% read fault cycles 265.7(+-0.172% 10 samples) 267.0(+-0.000% 10 samples) write fault cycles 2070.6(+-1.512% 10 samples) 2084.4(+-2.148% 10 samples) As expected anon page faults are not affected by this patch. tj: Updated to apply on top of the recent cancel_dirty_page() changes. Signed-off-by: Sha Zhengju <handai.szj@gmail.com> Signed-off-by: Greg Thelen <gthelen@google.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-05-23 00:13:16 +03:00
mem_cgroup_end_page_stat(memcg);
if (newly_dirty)
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
xfs: don't dirty buffers beyond EOF generic/263 is failing fsx at this point with a page spanning EOF that cannot be invalidated. The operations are: 1190 mapwrite 0x52c00 thru 0x5e569 (0xb96a bytes) 1191 mapread 0x5c000 thru 0x5d636 (0x1637 bytes) 1192 write 0x5b600 thru 0x771ff (0x1bc00 bytes) where 1190 extents EOF from 0x54000 to 0x5e569. When the direct IO write attempts to invalidate the cached page over this range, it fails with -EBUSY and so any attempt to do page invalidation fails. The real question is this: Why can't that page be invalidated after it has been written to disk and cleaned? Well, there's data on the first two buffers in the page (1k block size, 4k page), but the third buffer on the page (i.e. beyond EOF) is failing drop_buffers because it's bh->b_state == 0x3, which is BH_Uptodate | BH_Dirty. IOWs, there's dirty buffers beyond EOF. Say what? OK, set_buffer_dirty() is called on all buffers from __set_page_buffers_dirty(), regardless of whether the buffer is beyond EOF or not, which means that when we get to ->writepage, we have buffers marked dirty beyond EOF that we need to clean. So, we need to implement our own .set_page_dirty method that doesn't dirty buffers beyond EOF. This is messy because the buffer code is not meant to be shared and it has interesting locking issues on the buffer dirty bits. So just copy and paste it and then modify it to suit what we need. Note: the solutions the other filesystems and generic block code use of marking the buffers clean in ->writepage does not work for XFS. It still leaves dirty buffers beyond EOF and invalidations still fail. Hence rather than play whack-a-mole, this patch simply prevents those buffers from being dirtied in the first place. cc: <stable@kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-02 06:12:51 +04:00
return newly_dirty;
}
const struct address_space_operations xfs_address_space_operations = {
.readpage = xfs_vm_readpage,
.readpages = xfs_vm_readpages,
.writepage = xfs_vm_writepage,
.writepages = xfs_vm_writepages,
xfs: don't dirty buffers beyond EOF generic/263 is failing fsx at this point with a page spanning EOF that cannot be invalidated. The operations are: 1190 mapwrite 0x52c00 thru 0x5e569 (0xb96a bytes) 1191 mapread 0x5c000 thru 0x5d636 (0x1637 bytes) 1192 write 0x5b600 thru 0x771ff (0x1bc00 bytes) where 1190 extents EOF from 0x54000 to 0x5e569. When the direct IO write attempts to invalidate the cached page over this range, it fails with -EBUSY and so any attempt to do page invalidation fails. The real question is this: Why can't that page be invalidated after it has been written to disk and cleaned? Well, there's data on the first two buffers in the page (1k block size, 4k page), but the third buffer on the page (i.e. beyond EOF) is failing drop_buffers because it's bh->b_state == 0x3, which is BH_Uptodate | BH_Dirty. IOWs, there's dirty buffers beyond EOF. Say what? OK, set_buffer_dirty() is called on all buffers from __set_page_buffers_dirty(), regardless of whether the buffer is beyond EOF or not, which means that when we get to ->writepage, we have buffers marked dirty beyond EOF that we need to clean. So, we need to implement our own .set_page_dirty method that doesn't dirty buffers beyond EOF. This is messy because the buffer code is not meant to be shared and it has interesting locking issues on the buffer dirty bits. So just copy and paste it and then modify it to suit what we need. Note: the solutions the other filesystems and generic block code use of marking the buffers clean in ->writepage does not work for XFS. It still leaves dirty buffers beyond EOF and invalidations still fail. Hence rather than play whack-a-mole, this patch simply prevents those buffers from being dirtied in the first place. cc: <stable@kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-02 06:12:51 +04:00
.set_page_dirty = xfs_vm_set_page_dirty,
.releasepage = xfs_vm_releasepage,
.invalidatepage = xfs_vm_invalidatepage,
.write_begin = xfs_vm_write_begin,
.write_end = xfs_vm_write_end,
.bmap = xfs_vm_bmap,
.direct_IO = xfs_vm_direct_IO,
.migratepage = buffer_migrate_page,
xfs: pagecache usage optimization Hi. I introduced "is_partially_uptodate" aops for XFS. A page can have multiple buffers and even if a page is not uptodate, some buffers can be uptodate on pagesize != blocksize environment. This aops checks that all buffers which correspond to a part of a file that we want to read are uptodate. If so, we do not have to issue actual read IO to HDD even if a page is not uptodate because the portion we want to read are uptodate. "block_is_partially_uptodate" function is already used by ext2/3/4. With the following patch random read/write mixed workloads or random read after random write workloads can be optimized and we can get performance improvement. I did a performance test using the sysbench. #sysbench --num-threads=4 --max-requests=100000 --test=fileio --file-num=1 \ --file-block-size=8K --file-total-size=1G --file-test-mode=rndrw \ --file-fsync-freq=0 --file-rw-ratio=0.5 run -2.6.29-rc6 Test execution summary: total time: 123.8645s total number of events: 100000 total time taken by event execution: 442.4994 per-request statistics: min: 0.0000s avg: 0.0044s max: 0.3387s approx. 95 percentile: 0.0118s -2.6.29-rc6-patched Test execution summary: total time: 108.0757s total number of events: 100000 total time taken by event execution: 417.7505 per-request statistics: min: 0.0000s avg: 0.0042s max: 0.3217s approx. 95 percentile: 0.0118s arch: ia64 pagesize: 16k blocksize: 4k Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Felix Blyakher <felixb@sgi.com>
2009-03-29 11:53:38 +04:00
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};