linux/arch/parisc/Kconfig

345 lines
7.9 KiB
Plaintext
Raw Normal View History

config PARISC
def_bool y
Kconfig: consolidate CONFIG_DEBUG_STRICT_USER_COPY_CHECKS The help text for this config is duplicated across the x86, parisc, and s390 Kconfig.debug files. Arnd Bergman noted that the help text was slightly misleading and should be fixed to state that enabling this option isn't a problem when using pre 4.4 gcc. To simplify the rewording, consolidate the text into lib/Kconfig.debug and modify it there to be more explicit about when you should say N to this config. Also, make the text a bit more generic by stating that this option enables compile time checks so we can cover architectures which emit warnings vs. ones which emit errors. The details of how an architecture decided to implement the checks isn't as important as the concept of compile time checking of copy_from_user() calls. While we're doing this, remove all the copy_from_user_overflow() code that's duplicated many times and place it into lib/ so that any architecture supporting this option can get the function for free. Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Helge Deller <deller@gmx.de> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 15:28:42 -07:00
select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
select ARCH_MIGHT_HAVE_PC_PARPORT
select HAVE_IDE
select HAVE_OPROFILE
select HAVE_FUNCTION_TRACER if 64BIT
select HAVE_FUNCTION_GRAPH_TRACER if 64BIT
select ARCH_WANT_FRAME_POINTERS
select RTC_CLASS
select RTC_DRV_GENERIC
select INIT_ALL_POSSIBLE
select BUG
perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 12:02:48 +02:00
select HAVE_PERF_EVENTS
select GENERIC_ATOMIC64 if !64BIT
select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
select BROKEN_RODATA
select GENERIC_IRQ_PROBE
select GENERIC_PCI_IOMAP
Add Kconfig option ARCH_HAVE_NMI_SAFE_CMPXCHG cmpxchg() is widely used by lockless code, including NMI-safe lockless code. But on some architectures, the cmpxchg() implementation is not NMI-safe, on these architectures the lockless code may need a spin_trylock_irqsave() based implementation. This patch adds a Kconfig option: ARCH_HAVE_NMI_SAFE_CMPXCHG, so that NMI-safe lockless code can depend on it or provide different implementation according to it. On many architectures, cmpxchg is only NMI-safe for several specific operand sizes. So, ARCH_HAVE_NMI_SAFE_CMPXCHG define in this patch only guarantees cmpxchg is NMI-safe for sizeof(unsigned long). Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Acked-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Richard Henderson <rth@twiddle.net> CC: Mikael Starvik <starvik@axis.com> Acked-by: David Howells <dhowells@redhat.com> CC: Yoshinori Sato <ysato@users.sourceforge.jp> CC: Tony Luck <tony.luck@intel.com> CC: Hirokazu Takata <takata@linux-m32r.org> CC: Geert Uytterhoeven <geert@linux-m68k.org> CC: Michal Simek <monstr@monstr.eu> Acked-by: Ralf Baechle <ralf@linux-mips.org> CC: Kyle McMartin <kyle@mcmartin.ca> CC: Martin Schwidefsky <schwidefsky@de.ibm.com> CC: Chen Liqin <liqin.chen@sunplusct.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ingo Molnar <mingo@redhat.com> CC: Chris Zankel <chris@zankel.net> Signed-off-by: Len Brown <len.brown@intel.com>
2011-07-13 13:14:22 +08:00
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select GENERIC_SMP_IDLE_THREAD
select GENERIC_STRNCPY_FROM_USER
select SYSCTL_ARCH_UNALIGN_ALLOW
select SYSCTL_EXCEPTION_TRACE
2012-09-28 14:31:03 +09:30
select HAVE_MOD_ARCH_SPECIFIC
select VIRT_TO_BUS
2012-09-28 14:31:03 +09:30
select MODULES_USE_ELF_RELA
select CLONE_BACKWARDS
select TTY # Needed for pdc_cons.c
select HAVE_DEBUG_STACKOVERFLOW
select HAVE_ARCH_AUDITSYSCALL
help
The PA-RISC microprocessor is designed by Hewlett-Packard and used
in many of their workstations & servers (HP9000 700 and 800 series,
and later HP3000 series). The PA-RISC Linux project home page is
at <http://www.parisc-linux.org/>.
config MMU
def_bool y
config STACK_GROWSUP
def_bool y
config GENERIC_LOCKBREAK
bool
default y
depends on SMP && PREEMPT
config RWSEM_GENERIC_SPINLOCK
def_bool y
config RWSEM_XCHGADD_ALGORITHM
bool
config ARCH_HAS_ILOG2_U32
bool
default n
config ARCH_HAS_ILOG2_U64
bool
default n
config GENERIC_BUG
bool
default y
depends on BUG
config GENERIC_HWEIGHT
bool
default y
config GENERIC_CALIBRATE_DELAY
bool
default y
config TIME_LOW_RES
bool
depends on SMP
default y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
# unless you want to implement ACPI on PA-RISC ... ;-)
config PM
bool
config STACKTRACE_SUPPORT
def_bool y
config NEED_DMA_MAP_STATE
def_bool y
config NEED_SG_DMA_LENGTH
def_bool y
config ISA_DMA_API
bool
config ARCH_MAY_HAVE_PC_FDC
bool
depends on BROKEN
default y
source "init/Kconfig"
container freezer: implement freezer cgroup subsystem This patch implements a new freezer subsystem in the control groups framework. It provides a way to stop and resume execution of all tasks in a cgroup by writing in the cgroup filesystem. The freezer subsystem in the container filesystem defines a file named freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the cgroup. Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup. Reading will return the current state. * Examples of usage : # mkdir /containers/freezer # mount -t cgroup -ofreezer freezer /containers # mkdir /containers/0 # echo $some_pid > /containers/0/tasks to get status of the freezer subsystem : # cat /containers/0/freezer.state RUNNING to freeze all tasks in the container : # echo FROZEN > /containers/0/freezer.state # cat /containers/0/freezer.state FREEZING # cat /containers/0/freezer.state FROZEN to unfreeze all tasks in the container : # echo RUNNING > /containers/0/freezer.state # cat /containers/0/freezer.state RUNNING This is the basic mechanism which should do the right thing for user space task in a simple scenario. It's important to note that freezing can be incomplete. In that case we return EBUSY. This means that some tasks in the cgroup are busy doing something that prevents us from completely freezing the cgroup at this time. After EBUSY, the cgroup will remain partially frozen -- reflected by freezer.state reporting "FREEZING" when read. The state will remain "FREEZING" until one of these things happens: 1) Userspace cancels the freezing operation by writing "RUNNING" to the freezer.state file 2) Userspace retries the freezing operation by writing "FROZEN" to the freezer.state file (writing "FREEZING" is not legal and returns EIO) 3) The tasks that blocked the cgroup from entering the "FROZEN" state disappear from the cgroup's set of tasks. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: export thaw_process] Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Acked-by: Serge E. Hallyn <serue@us.ibm.com> Tested-by: Matt Helsley <matthltc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 20:27:21 -07:00
source "kernel/Kconfig.freezer"
menu "Processor type and features"
choice
prompt "Processor type"
default PA7000
config PA7000
bool "PA7000/PA7100"
---help---
This is the processor type of your CPU. This information is
used for optimizing purposes. In order to compile a kernel
that can run on all 32-bit PA CPUs (albeit not optimally fast),
you can specify "PA7000" here.
Specifying "PA8000" here will allow you to select a 64-bit kernel
which is required on some machines.
config PA7100LC
bool "PA7100LC"
help
Select this option for the PCX-L processor, as used in the
712, 715/64, 715/80, 715/100, 715/100XC, 725/100, 743, 748,
D200, D210, D300, D310 and E-class
config PA7200
bool "PA7200"
help
Select this option for the PCX-T' processor, as used in the
C100, C110, J100, J110, J210XC, D250, D260, D350, D360,
K100, K200, K210, K220, K400, K410 and K420
config PA7300LC
bool "PA7300LC"
help
Select this option for the PCX-L2 processor, as used in the
744, A180, B132L, B160L, B180L, C132L, C160L, C180L,
D220, D230, D320 and D330.
config PA8X00
bool "PA8000 and up"
help
Select this option for PCX-U to PCX-W2 processors.
endchoice
# Define implied options from the CPU selection here
config PA20
def_bool y
depends on PA8X00
config PA11
def_bool y
depends on PA7000 || PA7100LC || PA7200 || PA7300LC
config PREFETCH
def_bool y
depends on PA8X00 || PA7200
config MLONGCALLS
bool "Enable the -mlong-calls compiler option for big kernels"
def_bool y if (!MODULES)
depends on PA8X00
help
If you configure the kernel to include many drivers built-in instead
as modules, the kernel executable may become too big, so that the
linker will not be able to resolve some long branches and fails to link
your vmlinux kernel. In that case enabling this option will help you
to overcome this limit by using the -mlong-calls compiler option.
Usually you want to say N here, unless you e.g. want to build
a kernel which includes all necessary drivers built-in and which can
be used for TFTP booting without the need to have an initrd ramdisk.
Enabling this option will probably slow down your kernel.
config 64BIT
bool "64-bit kernel"
depends on PA8X00
help
Enable this if you want to support 64bit kernel on PA-RISC platform.
At the moment, only people willing to use more than 2GB of RAM,
or having a 64bit-only capable PA-RISC machine should say Y here.
Since there is no 64bit userland on PA-RISC, there is no point to
enable this option otherwise. The 64bit kernel is significantly bigger
and slower than the 32bit one.
choice
prompt "Kernel page size"
default PARISC_PAGE_SIZE_4KB
config PARISC_PAGE_SIZE_4KB
bool "4KB"
help
This lets you select the page size of the kernel. For best
performance, a page size of 16KB is recommended. For best
compatibility with 32bit applications, a page size of 4KB should be
selected (the vast majority of 32bit binaries work perfectly fine
with a larger page size).
4KB For best 32bit compatibility
16KB For best performance
64KB For best performance, might give more overhead.
If you don't know what to do, choose 4KB.
config PARISC_PAGE_SIZE_16KB
bool "16KB"
depends on PA8X00
config PARISC_PAGE_SIZE_64KB
bool "64KB"
depends on PA8X00
endchoice
config SMP
bool "Symmetric multi-processing support"
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, say N. If you have a system with more
than one CPU, say Y.
If you say N here, the kernel will run on uni- and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
uniprocessor machines. On a uniprocessor machine, the kernel
will run faster if you say N here.
See also <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO
available at <http://www.tldp.org/docs.html#howto>.
If you don't know what to do here, say N.
config IRQSTACKS
bool "Use separate kernel stacks when processing interrupts"
default y
help
If you say Y here the kernel will use separate kernel stacks
for handling hard and soft interrupts. This can help avoid
overflowing the process kernel stacks.
config HOTPLUG_CPU
bool
default y if SMP
config ARCH_SELECT_MEMORY_MODEL
def_bool y
depends on 64BIT
config ARCH_DISCONTIGMEM_ENABLE
def_bool y
depends on 64BIT
config ARCH_FLATMEM_ENABLE
def_bool y
config ARCH_DISCONTIGMEM_DEFAULT
def_bool y
depends on ARCH_DISCONTIGMEM_ENABLE
[PATCH] Configurable NODES_SHIFT Current implementations define NODES_SHIFT in include/asm-xxx/numnodes.h for each arch. Its definition is sometimes configurable. Indeed, ia64 defines 5 NODES_SHIFT values in the current git tree. But it looks a bit messy. SGI-SN2(ia64) system requires 1024 nodes, and the number of nodes already has been changeable by config. Suitable node's number may be changed in the future even if it is other architecture. So, I wrote configurable node's number. This patch set defines just default value for each arch which needs multi nodes except ia64. But, it is easy to change to configurable if necessary. On ia64 the number of nodes can be already configured in generic ia64 and SN2 config. But, NODES_SHIFT is defined for DIG64 and HP'S machine too. So, I changed it so that all platforms can be configured via CONFIG_NODES_SHIFT. It would be simpler. See also: http://marc.theaimsgroup.com/?l=linux-kernel&m=114358010523896&w=2 Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jack Steiner <steiner@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-10 22:53:53 -07:00
config NODES_SHIFT
int
default "3"
depends on NEED_MULTIPLE_NODES
source "kernel/Kconfig.preempt"
source "kernel/Kconfig.hz"
source "mm/Kconfig"
config COMPAT
def_bool y
depends on 64BIT
config SYSVIPC_COMPAT
def_bool y
depends on COMPAT && SYSVIPC
config AUDIT_ARCH
def_bool y
config HPUX
bool "Support for HP-UX binaries"
depends on !64BIT
config NR_CPUS
int "Maximum number of CPUs (2-32)"
range 2 32
depends on SMP
default "32"
endmenu
source "drivers/parisc/Kconfig"
menu "Executable file formats"
source "fs/Kconfig.binfmt"
endmenu
source "net/Kconfig"
source "drivers/Kconfig"
source "fs/Kconfig"
source "arch/parisc/Kconfig.debug"
config SECCOMP
def_bool y
prompt "Enable seccomp to safely compute untrusted bytecode"
---help---
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
and the task is only allowed to execute a few safe syscalls
defined by each seccomp mode.
If unsure, say Y. Only embedded should say N here.
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"