2006-10-17 00:09:42 -07:00
/*
This is a maximally equidistributed combined Tausworthe generator
based on code from GNU Scientific Library 1.5 ( 30 Jun 2004 )
x_n = ( s1_n ^ s2_n ^ s3_n )
s1_ { n + 1 } = ( ( ( s1_n & 4294967294 ) < < 12 ) ^ ( ( ( s1_n < < 13 ) ^ s1_n ) > > 19 ) )
s2_ { n + 1 } = ( ( ( s2_n & 4294967288 ) < < 4 ) ^ ( ( ( s2_n < < 2 ) ^ s2_n ) > > 25 ) )
s3_ { n + 1 } = ( ( ( s3_n & 4294967280 ) < < 17 ) ^ ( ( ( s3_n < < 3 ) ^ s3_n ) > > 11 ) )
The period of this generator is about 2 ^ 88.
From : P . L ' Ecuyer , " Maximally Equidistributed Combined Tausworthe
Generators " , Mathematics of Computation, 65, 213 (1996), 203--213.
This is available on the net from L ' Ecuyer ' s home page ,
http : //www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
ftp : //ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
There is an erratum in the paper " Tables of Maximally
Equidistributed Combined LFSR Generators " , Mathematics of
Computation , 68 , 225 ( 1999 ) , 261 - - 269 :
http : //www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
. . . the k_j most significant bits of z_j must be non -
zero , for each j . ( Note : this restriction also applies to the
computer code given in [ 4 ] , but was mistakenly not mentioned in
that paper . )
This affects the seeding procedure by imposing the requirement
s1 > 1 , s2 > 7 , s3 > 15.
*/
# include <linux/types.h>
# include <linux/percpu.h>
# include <linux/module.h>
2006-10-18 01:47:25 -04:00
# include <linux/jiffies.h>
2006-10-17 00:09:42 -07:00
# include <linux/random.h>
struct rnd_state {
u32 s1 , s2 , s3 ;
} ;
static DEFINE_PER_CPU ( struct rnd_state , net_rand_state ) ;
static u32 __random32 ( struct rnd_state * state )
{
# define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)
state - > s1 = TAUSWORTHE ( state - > s1 , 13 , 19 , 4294967294UL , 12 ) ;
state - > s2 = TAUSWORTHE ( state - > s2 , 2 , 25 , 4294967288UL , 4 ) ;
state - > s3 = TAUSWORTHE ( state - > s3 , 3 , 11 , 4294967280UL , 17 ) ;
return ( state - > s1 ^ state - > s2 ^ state - > s3 ) ;
}
static void __set_random32 ( struct rnd_state * state , unsigned long s )
{
if ( s = = 0 )
s = 1 ; /* default seed is 1 */
# define LCG(n) (69069 * n)
state - > s1 = LCG ( s ) ;
state - > s2 = LCG ( state - > s1 ) ;
state - > s3 = LCG ( state - > s2 ) ;
/* "warm it up" */
__random32 ( state ) ;
__random32 ( state ) ;
__random32 ( state ) ;
__random32 ( state ) ;
__random32 ( state ) ;
__random32 ( state ) ;
}
/**
* random32 - pseudo random number generator
*
* A 32 bit pseudo - random number is generated using a fast
* algorithm suitable for simulation . This algorithm is NOT
* considered safe for cryptographic use .
*/
u32 random32 ( void )
{
unsigned long r ;
struct rnd_state * state = & get_cpu_var ( net_rand_state ) ;
r = __random32 ( state ) ;
put_cpu_var ( state ) ;
return r ;
}
EXPORT_SYMBOL ( random32 ) ;
/**
* srandom32 - add entropy to pseudo random number generator
* @ seed : seed value
*
* Add some additional seeding to the random32 ( ) pool .
* Note : this pool is per cpu so it only affects current CPU .
*/
void srandom32 ( u32 entropy )
{
struct rnd_state * state = & get_cpu_var ( net_rand_state ) ;
__set_random32 ( state , state - > s1 ^ entropy ) ;
put_cpu_var ( state ) ;
}
EXPORT_SYMBOL ( srandom32 ) ;
/*
* Generate some initially weak seeding values to allow
* to start the random32 ( ) engine .
*/
static int __init random32_init ( void )
{
int i ;
for_each_possible_cpu ( i ) {
struct rnd_state * state = & per_cpu ( net_rand_state , i ) ;
__set_random32 ( state , i + jiffies ) ;
}
return 0 ;
}
core_initcall ( random32_init ) ;
/*
* Generate better values after random number generator
* is fully initalized .
*/
static int __init random32_reseed ( void )
{
int i ;
unsigned long seed ;
for_each_possible_cpu ( i ) {
struct rnd_state * state = & per_cpu ( net_rand_state , i ) ;
get_random_bytes ( & seed , sizeof ( seed ) ) ;
__set_random32 ( state , seed ) ;
}
return 0 ;
}
late_initcall ( random32_reseed ) ;