2019-05-20 20:07:51 +03:00
// SPDX-License-Identifier: GPL-2.0-or-later
2011-08-31 15:05:16 +04:00
/* mpihelp-div.c - MPI helper functions
* Copyright ( C ) 1994 , 1996 Free Software Foundation , Inc .
* Copyright ( C ) 1998 , 1999 Free Software Foundation , Inc .
*
* This file is part of GnuPG .
*
* Note : This code is heavily based on the GNU MP Library .
* Actually it ' s the same code with only minor changes in the
* way the data is stored ; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc .
* The GNU MP Library itself is published under the LGPL ;
* however I decided to publish this code under the plain GPL .
*/
# include "mpi-internal.h"
# include "longlong.h"
# ifndef UMUL_TIME
# define UMUL_TIME 1
# endif
# ifndef UDIV_TIME
# define UDIV_TIME UMUL_TIME
# endif
2020-09-20 19:20:55 +03:00
mpi_limb_t
mpihelp_mod_1 ( mpi_ptr_t dividend_ptr , mpi_size_t dividend_size ,
mpi_limb_t divisor_limb )
{
mpi_size_t i ;
mpi_limb_t n1 , n0 , r ;
2020-09-25 11:19:55 +03:00
mpi_limb_t dummy __maybe_unused ;
2020-09-20 19:20:55 +03:00
/* Botch: Should this be handled at all? Rely on callers? */
if ( ! dividend_size )
return 0 ;
/* If multiplication is much faster than division, and the
* dividend is large , pre - invert the divisor , and use
* only multiplications in the inner loop .
*
* This test should be read :
* Does it ever help to use udiv_qrnnd_preinv ?
* & & Does what we save compensate for the inversion overhead ?
*/
if ( UDIV_TIME > ( 2 * UMUL_TIME + 6 )
& & ( UDIV_TIME - ( 2 * UMUL_TIME + 6 ) ) * dividend_size > UDIV_TIME ) {
int normalization_steps ;
normalization_steps = count_leading_zeros ( divisor_limb ) ;
if ( normalization_steps ) {
mpi_limb_t divisor_limb_inverted ;
divisor_limb < < = normalization_steps ;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a ( N + 1 ) - bit approximation to 1 / DIVISOR_LIMB , with the
* most significant bit ( with weight 2 * * N ) implicit .
*
* Special case for DIVISOR_LIMB = = 100. . .000 .
*/
if ( ! ( divisor_limb < < 1 ) )
divisor_limb_inverted = ~ ( mpi_limb_t ) 0 ;
else
udiv_qrnnd ( divisor_limb_inverted , dummy ,
- divisor_limb , 0 , divisor_limb ) ;
n1 = dividend_ptr [ dividend_size - 1 ] ;
r = n1 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ;
/* Possible optimization:
* if ( r = = 0
* & & divisor_limb > ( ( n1 < < normalization_steps )
* | ( dividend_ptr [ dividend_size - 2 ] > > . . . ) ) )
* . . . one division less . . .
*/
for ( i = dividend_size - 2 ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
UDIV_QRNND_PREINV ( dummy , r , r ,
( ( n1 < < normalization_steps )
| ( n0 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ) ) ,
divisor_limb , divisor_limb_inverted ) ;
n1 = n0 ;
}
UDIV_QRNND_PREINV ( dummy , r , r ,
n1 < < normalization_steps ,
divisor_limb , divisor_limb_inverted ) ;
return r > > normalization_steps ;
} else {
mpi_limb_t divisor_limb_inverted ;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a ( N + 1 ) - bit approximation to 1 / DIVISOR_LIMB , with the
* most significant bit ( with weight 2 * * N ) implicit .
*
* Special case for DIVISOR_LIMB = = 100. . .000 .
*/
if ( ! ( divisor_limb < < 1 ) )
divisor_limb_inverted = ~ ( mpi_limb_t ) 0 ;
else
udiv_qrnnd ( divisor_limb_inverted , dummy ,
- divisor_limb , 0 , divisor_limb ) ;
i = dividend_size - 1 ;
r = dividend_ptr [ i ] ;
if ( r > = divisor_limb )
r = 0 ;
else
i - - ;
for ( ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
UDIV_QRNND_PREINV ( dummy , r , r ,
n0 , divisor_limb , divisor_limb_inverted ) ;
}
return r ;
}
} else {
if ( UDIV_NEEDS_NORMALIZATION ) {
int normalization_steps ;
normalization_steps = count_leading_zeros ( divisor_limb ) ;
if ( normalization_steps ) {
divisor_limb < < = normalization_steps ;
n1 = dividend_ptr [ dividend_size - 1 ] ;
r = n1 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ;
/* Possible optimization:
* if ( r = = 0
* & & divisor_limb > ( ( n1 < < normalization_steps )
* | ( dividend_ptr [ dividend_size - 2 ] > > . . . ) ) )
* . . . one division less . . .
*/
for ( i = dividend_size - 2 ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
udiv_qrnnd ( dummy , r , r ,
( ( n1 < < normalization_steps )
| ( n0 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ) ) ,
divisor_limb ) ;
n1 = n0 ;
}
udiv_qrnnd ( dummy , r , r ,
n1 < < normalization_steps ,
divisor_limb ) ;
return r > > normalization_steps ;
}
}
/* No normalization needed, either because udiv_qrnnd doesn't require
* it , or because DIVISOR_LIMB is already normalized .
*/
i = dividend_size - 1 ;
r = dividend_ptr [ i ] ;
if ( r > = divisor_limb )
r = 0 ;
else
i - - ;
for ( ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
udiv_qrnnd ( dummy , r , r , n0 , divisor_limb ) ;
}
return r ;
}
}
2011-08-31 15:05:16 +04:00
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
* the NSIZE - DSIZE least significant quotient limbs at QP
* and the DSIZE long remainder at NP . If QEXTRA_LIMBS is
* non - zero , generate that many fraction bits and append them after the
* other quotient limbs .
* Return the most significant limb of the quotient , this is always 0 or 1.
*
* Preconditions :
* 0. NSIZE > = DSIZE .
* 1. The most significant bit of the divisor must be set .
* 2. QP must either not overlap with the input operands at all , or
* QP + DSIZE > = NP must hold true . ( This means that it ' s
* possible to put the quotient in the high part of NUM , right after the
* remainder in NUM .
* 3. NSIZE > = DSIZE , even if QEXTRA_LIMBS is non - zero .
*/
mpi_limb_t
mpihelp_divrem ( mpi_ptr_t qp , mpi_size_t qextra_limbs ,
mpi_ptr_t np , mpi_size_t nsize , mpi_ptr_t dp , mpi_size_t dsize )
{
mpi_limb_t most_significant_q_limb = 0 ;
switch ( dsize ) {
case 0 :
/* We are asked to divide by zero, so go ahead and do it! (To make
the compiler not remove this statement , return the value . ) */
2012-01-26 21:13:20 +04:00
/*
* existing clients of this function have been modified
* not to call it with dsize = = 0 , so this should not happen
*/
2011-08-31 15:05:16 +04:00
return 1 / dsize ;
case 1 :
{
mpi_size_t i ;
mpi_limb_t n1 ;
mpi_limb_t d ;
d = dp [ 0 ] ;
n1 = np [ nsize - 1 ] ;
if ( n1 > = d ) {
n1 - = d ;
most_significant_q_limb = 1 ;
}
qp + = qextra_limbs ;
for ( i = nsize - 2 ; i > = 0 ; i - - )
udiv_qrnnd ( qp [ i ] , n1 , n1 , np [ i ] , d ) ;
qp - = qextra_limbs ;
for ( i = qextra_limbs - 1 ; i > = 0 ; i - - )
udiv_qrnnd ( qp [ i ] , n1 , n1 , 0 , d ) ;
np [ 0 ] = n1 ;
}
break ;
case 2 :
{
mpi_size_t i ;
mpi_limb_t n1 , n0 , n2 ;
mpi_limb_t d1 , d0 ;
np + = nsize - 2 ;
d1 = dp [ 1 ] ;
d0 = dp [ 0 ] ;
n1 = np [ 1 ] ;
n0 = np [ 0 ] ;
if ( n1 > = d1 & & ( n1 > d1 | | n0 > = d0 ) ) {
sub_ddmmss ( n1 , n0 , n1 , n0 , d1 , d0 ) ;
most_significant_q_limb = 1 ;
}
for ( i = qextra_limbs + nsize - 2 - 1 ; i > = 0 ; i - - ) {
mpi_limb_t q ;
mpi_limb_t r ;
if ( i > = qextra_limbs )
np - - ;
else
np [ 0 ] = 0 ;
if ( n1 = = d1 ) {
/* Q should be either 111..111 or 111..110. Need special
* treatment of this rare case as normal division would
* give overflow . */
q = ~ ( mpi_limb_t ) 0 ;
r = n0 + d1 ;
if ( r < d1 ) { /* Carry in the addition? */
add_ssaaaa ( n1 , n0 , r - d0 ,
np [ 0 ] , 0 , d0 ) ;
qp [ i ] = q ;
continue ;
}
n1 = d0 - ( d0 ! = 0 ? 1 : 0 ) ;
n0 = - d0 ;
} else {
udiv_qrnnd ( q , r , n1 , n0 , d1 ) ;
umul_ppmm ( n1 , n0 , d0 , q ) ;
}
n2 = np [ 0 ] ;
q_test :
if ( n1 > r | | ( n1 = = r & & n0 > n2 ) ) {
/* The estimated Q was too large. */
q - - ;
sub_ddmmss ( n1 , n0 , n1 , n0 , 0 , d0 ) ;
r + = d1 ;
if ( r > = d1 ) /* If not carry, test Q again. */
goto q_test ;
}
qp [ i ] = q ;
sub_ddmmss ( n1 , n0 , r , n2 , n1 , n0 ) ;
}
np [ 1 ] = n1 ;
np [ 0 ] = n0 ;
}
break ;
default :
{
mpi_size_t i ;
mpi_limb_t dX , d1 , n0 ;
np + = nsize - dsize ;
dX = dp [ dsize - 1 ] ;
d1 = dp [ dsize - 2 ] ;
n0 = np [ dsize - 1 ] ;
if ( n0 > = dX ) {
if ( n0 > dX
| | mpihelp_cmp ( np , dp , dsize - 1 ) > = 0 ) {
mpihelp_sub_n ( np , np , dp , dsize ) ;
n0 = np [ dsize - 1 ] ;
most_significant_q_limb = 1 ;
}
}
for ( i = qextra_limbs + nsize - dsize - 1 ; i > = 0 ; i - - ) {
mpi_limb_t q ;
mpi_limb_t n1 , n2 ;
mpi_limb_t cy_limb ;
if ( i > = qextra_limbs ) {
np - - ;
n2 = np [ dsize ] ;
} else {
n2 = np [ dsize - 1 ] ;
MPN_COPY_DECR ( np + 1 , np , dsize - 1 ) ;
np [ 0 ] = 0 ;
}
if ( n0 = = dX ) {
/* This might over-estimate q, but it's probably not worth
* the extra code here to find out . */
q = ~ ( mpi_limb_t ) 0 ;
} else {
mpi_limb_t r ;
udiv_qrnnd ( q , r , n0 , np [ dsize - 1 ] , dX ) ;
umul_ppmm ( n1 , n0 , d1 , q ) ;
while ( n1 > r
| | ( n1 = = r
& & n0 > np [ dsize - 2 ] ) ) {
q - - ;
r + = dX ;
if ( r < dX ) /* I.e. "carry in previous addition?" */
break ;
n1 - = n0 < d1 ;
n0 - = d1 ;
}
}
/* Possible optimization: We already have (q * n0) and (1 * n1)
* after the calculation of q . Taking advantage of that , we
* could make this loop make two iterations less . */
cy_limb = mpihelp_submul_1 ( np , dp , dsize , q ) ;
if ( n2 ! = cy_limb ) {
mpihelp_add_n ( np , np , dp , dsize ) ;
q - - ;
}
qp [ i ] = q ;
n0 = np [ dsize - 1 ] ;
}
}
}
return most_significant_q_limb ;
}
2020-09-20 19:20:55 +03:00
/****************
* Divide ( DIVIDEND_PTR , , DIVIDEND_SIZE ) by DIVISOR_LIMB .
* Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR .
* Return the single - limb remainder .
* There are no constraints on the value of the divisor .
*
* QUOT_PTR and DIVIDEND_PTR might point to the same limb .
*/
mpi_limb_t
mpihelp_divmod_1 ( mpi_ptr_t quot_ptr ,
mpi_ptr_t dividend_ptr , mpi_size_t dividend_size ,
mpi_limb_t divisor_limb )
{
mpi_size_t i ;
mpi_limb_t n1 , n0 , r ;
2020-09-25 11:19:55 +03:00
mpi_limb_t dummy __maybe_unused ;
2020-09-20 19:20:55 +03:00
if ( ! dividend_size )
return 0 ;
/* If multiplication is much faster than division, and the
* dividend is large , pre - invert the divisor , and use
* only multiplications in the inner loop .
*
* This test should be read :
* Does it ever help to use udiv_qrnnd_preinv ?
* & & Does what we save compensate for the inversion overhead ?
*/
if ( UDIV_TIME > ( 2 * UMUL_TIME + 6 )
& & ( UDIV_TIME - ( 2 * UMUL_TIME + 6 ) ) * dividend_size > UDIV_TIME ) {
int normalization_steps ;
normalization_steps = count_leading_zeros ( divisor_limb ) ;
if ( normalization_steps ) {
mpi_limb_t divisor_limb_inverted ;
divisor_limb < < = normalization_steps ;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a ( N + 1 ) - bit approximation to 1 / DIVISOR_LIMB , with the
* most significant bit ( with weight 2 * * N ) implicit .
*/
/* Special case for DIVISOR_LIMB == 100...000. */
if ( ! ( divisor_limb < < 1 ) )
divisor_limb_inverted = ~ ( mpi_limb_t ) 0 ;
else
udiv_qrnnd ( divisor_limb_inverted , dummy ,
- divisor_limb , 0 , divisor_limb ) ;
n1 = dividend_ptr [ dividend_size - 1 ] ;
r = n1 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ;
/* Possible optimization:
* if ( r = = 0
* & & divisor_limb > ( ( n1 < < normalization_steps )
* | ( dividend_ptr [ dividend_size - 2 ] > > . . . ) ) )
* . . . one division less . . .
*/
for ( i = dividend_size - 2 ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
UDIV_QRNND_PREINV ( quot_ptr [ i + 1 ] , r , r ,
( ( n1 < < normalization_steps )
| ( n0 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ) ) ,
divisor_limb , divisor_limb_inverted ) ;
n1 = n0 ;
}
UDIV_QRNND_PREINV ( quot_ptr [ 0 ] , r , r ,
n1 < < normalization_steps ,
divisor_limb , divisor_limb_inverted ) ;
return r > > normalization_steps ;
} else {
mpi_limb_t divisor_limb_inverted ;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a ( N + 1 ) - bit approximation to 1 / DIVISOR_LIMB , with the
* most significant bit ( with weight 2 * * N ) implicit .
*/
/* Special case for DIVISOR_LIMB == 100...000. */
if ( ! ( divisor_limb < < 1 ) )
divisor_limb_inverted = ~ ( mpi_limb_t ) 0 ;
else
udiv_qrnnd ( divisor_limb_inverted , dummy ,
- divisor_limb , 0 , divisor_limb ) ;
i = dividend_size - 1 ;
r = dividend_ptr [ i ] ;
if ( r > = divisor_limb )
r = 0 ;
else
quot_ptr [ i - - ] = 0 ;
for ( ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
UDIV_QRNND_PREINV ( quot_ptr [ i ] , r , r ,
n0 , divisor_limb , divisor_limb_inverted ) ;
}
return r ;
}
} else {
if ( UDIV_NEEDS_NORMALIZATION ) {
int normalization_steps ;
normalization_steps = count_leading_zeros ( divisor_limb ) ;
if ( normalization_steps ) {
divisor_limb < < = normalization_steps ;
n1 = dividend_ptr [ dividend_size - 1 ] ;
r = n1 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ;
/* Possible optimization:
* if ( r = = 0
* & & divisor_limb > ( ( n1 < < normalization_steps )
* | ( dividend_ptr [ dividend_size - 2 ] > > . . . ) ) )
* . . . one division less . . .
*/
for ( i = dividend_size - 2 ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
udiv_qrnnd ( quot_ptr [ i + 1 ] , r , r ,
( ( n1 < < normalization_steps )
| ( n0 > > ( BITS_PER_MPI_LIMB - normalization_steps ) ) ) ,
divisor_limb ) ;
n1 = n0 ;
}
udiv_qrnnd ( quot_ptr [ 0 ] , r , r ,
n1 < < normalization_steps ,
divisor_limb ) ;
return r > > normalization_steps ;
}
}
/* No normalization needed, either because udiv_qrnnd doesn't require
* it , or because DIVISOR_LIMB is already normalized .
*/
i = dividend_size - 1 ;
r = dividend_ptr [ i ] ;
if ( r > = divisor_limb )
r = 0 ;
else
quot_ptr [ i - - ] = 0 ;
for ( ; i > = 0 ; i - - ) {
n0 = dividend_ptr [ i ] ;
udiv_qrnnd ( quot_ptr [ i ] , r , r , n0 , divisor_limb ) ;
}
return r ;
}
}