linux/arch/x86_64/mm/pageattr.c

234 lines
5.8 KiB
C
Raw Normal View History

/*
* Copyright 2002 Andi Kleen, SuSE Labs.
* Thanks to Ben LaHaise for precious feedback.
*/
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
static inline pte_t *lookup_address(unsigned long address)
{
pgd_t *pgd = pgd_offset_k(address);
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd))
return NULL;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
return NULL;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return NULL;
if (pmd_large(*pmd))
return (pte_t *)pmd;
pte = pte_offset_kernel(pmd, address);
if (pte && !pte_present(*pte))
pte = NULL;
return pte;
}
static struct page *split_large_page(unsigned long address, pgprot_t prot,
pgprot_t ref_prot)
{
int i;
unsigned long addr;
struct page *base = alloc_pages(GFP_KERNEL, 0);
pte_t *pbase;
if (!base)
return NULL;
address = __pa(address);
addr = address & LARGE_PAGE_MASK;
pbase = (pte_t *)page_address(base);
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
pbase[i] = pfn_pte(addr >> PAGE_SHIFT,
addr == address ? prot : ref_prot);
}
return base;
}
static void flush_kernel_map(void *address)
{
if (0 && address && cpu_has_clflush) {
/* is this worth it? */
int i;
for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
asm volatile("clflush (%0)" :: "r" (address + i));
} else
asm volatile("wbinvd":::"memory");
if (address)
__flush_tlb_one(address);
else
__flush_tlb_all();
}
static inline void flush_map(unsigned long address)
{
on_each_cpu(flush_kernel_map, (void *)address, 1, 1);
}
struct deferred_page {
struct deferred_page *next;
struct page *fpage;
unsigned long address;
};
static struct deferred_page *df_list; /* protected by init_mm.mmap_sem */
static inline void save_page(unsigned long address, struct page *fpage)
{
struct deferred_page *df;
df = kmalloc(sizeof(struct deferred_page), GFP_KERNEL);
if (!df) {
flush_map(address);
__free_page(fpage);
} else {
df->next = df_list;
df->fpage = fpage;
df->address = address;
df_list = df;
}
}
/*
* No more special protections in this 2/4MB area - revert to a
* large page again.
*/
static void revert_page(unsigned long address, pgprot_t ref_prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t large_pte;
pgd = pgd_offset_k(address);
BUG_ON(pgd_none(*pgd));
pud = pud_offset(pgd,address);
BUG_ON(pud_none(*pud));
pmd = pmd_offset(pud, address);
BUG_ON(pmd_val(*pmd) & _PAGE_PSE);
pgprot_val(ref_prot) |= _PAGE_PSE;
large_pte = mk_pte_phys(__pa(address) & LARGE_PAGE_MASK, ref_prot);
set_pte((pte_t *)pmd, large_pte);
}
static int
__change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot,
pgprot_t ref_prot)
{
pte_t *kpte;
struct page *kpte_page;
unsigned kpte_flags;
kpte = lookup_address(address);
if (!kpte) return 0;
kpte_page = virt_to_page(((unsigned long)kpte) & PAGE_MASK);
kpte_flags = pte_val(*kpte);
if (pgprot_val(prot) != pgprot_val(ref_prot)) {
if ((kpte_flags & _PAGE_PSE) == 0) {
set_pte(kpte, pfn_pte(pfn, prot));
} else {
/*
* split_large_page will take the reference for this change_page_attr
* on the split page.
*/
struct page *split = split_large_page(address, prot, ref_prot);
if (!split)
return -ENOMEM;
set_pte(kpte,mk_pte(split, ref_prot));
kpte_page = split;
}
get_page(kpte_page);
} else if ((kpte_flags & _PAGE_PSE) == 0) {
set_pte(kpte, pfn_pte(pfn, ref_prot));
__put_page(kpte_page);
} else
BUG();
/* on x86-64 the direct mapping set at boot is not using 4k pages */
BUG_ON(PageReserved(kpte_page));
switch (page_count(kpte_page)) {
case 1:
save_page(address, kpte_page);
revert_page(address, ref_prot);
break;
case 0:
BUG(); /* memleak and failed 2M page regeneration */
}
return 0;
}
/*
* Change the page attributes of an page in the linear mapping.
*
* This should be used when a page is mapped with a different caching policy
* than write-back somewhere - some CPUs do not like it when mappings with
* different caching policies exist. This changes the page attributes of the
* in kernel linear mapping too.
*
* The caller needs to ensure that there are no conflicting mappings elsewhere.
* This function only deals with the kernel linear map.
*
* Caller must call global_flush_tlb() after this.
*/
int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot)
{
int err = 0;
int i;
down_write(&init_mm.mmap_sem);
for (i = 0; i < numpages; i++, address += PAGE_SIZE) {
unsigned long pfn = __pa(address) >> PAGE_SHIFT;
err = __change_page_attr(address, pfn, prot, PAGE_KERNEL);
if (err)
break;
/* Handle kernel mapping too which aliases part of the
* lowmem */
if (__pa(address) < KERNEL_TEXT_SIZE) {
unsigned long addr2;
pgprot_t prot2 = prot;
addr2 = __START_KERNEL_map + __pa(address);
pgprot_val(prot2) &= ~_PAGE_NX;
err = __change_page_attr(addr2, pfn, prot2, PAGE_KERNEL_EXEC);
}
}
up_write(&init_mm.mmap_sem);
return err;
}
/* Don't call this for MMIO areas that may not have a mem_map entry */
int change_page_attr(struct page *page, int numpages, pgprot_t prot)
{
unsigned long addr = (unsigned long)page_address(page);
return change_page_attr_addr(addr, numpages, prot);
}
void global_flush_tlb(void)
{
struct deferred_page *df, *next_df;
down_read(&init_mm.mmap_sem);
df = xchg(&df_list, NULL);
up_read(&init_mm.mmap_sem);
flush_map((df && !df->next) ? df->address : 0);
for (; df; df = next_df) {
next_df = df->next;
if (df->fpage)
__free_page(df->fpage);
kfree(df);
}
}
EXPORT_SYMBOL(change_page_attr);
EXPORT_SYMBOL(global_flush_tlb);