linux/drivers/scsi/lpfc/lpfc_nportdisc.c

2909 lines
86 KiB
C
Raw Normal View History

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
* Broadcom refers to Broadcom Limited and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/fc/fc_fs.h>
#include <linux/nvme-fc-driver.h>
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_nvme.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_debugfs.h"
/* Called to verify a rcv'ed ADISC was intended for us. */
static int
lpfc_check_adisc(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_name *nn, struct lpfc_name *pn)
{
/* First, we MUST have a RPI registered */
if (!(ndlp->nlp_flag & NLP_RPI_REGISTERED))
return 0;
/* Compare the ADISC rsp WWNN / WWPN matches our internal node
* table entry for that node.
*/
if (memcmp(nn, &ndlp->nlp_nodename, sizeof (struct lpfc_name)))
return 0;
if (memcmp(pn, &ndlp->nlp_portname, sizeof (struct lpfc_name)))
return 0;
/* we match, return success */
return 1;
}
int
lpfc_check_sparm(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct serv_parm *sp, uint32_t class, int flogi)
{
volatile struct serv_parm *hsp = &vport->fc_sparam;
uint16_t hsp_value, ssp_value = 0;
/*
* The receive data field size and buffer-to-buffer receive data field
* size entries are 16 bits but are represented as two 8-bit fields in
* the driver data structure to account for rsvd bits and other control
* bits. Reconstruct and compare the fields as a 16-bit values before
* correcting the byte values.
*/
if (sp->cls1.classValid) {
if (!flogi) {
hsp_value = ((hsp->cls1.rcvDataSizeMsb << 8) |
hsp->cls1.rcvDataSizeLsb);
ssp_value = ((sp->cls1.rcvDataSizeMsb << 8) |
sp->cls1.rcvDataSizeLsb);
if (!ssp_value)
goto bad_service_param;
if (ssp_value > hsp_value) {
sp->cls1.rcvDataSizeLsb =
hsp->cls1.rcvDataSizeLsb;
sp->cls1.rcvDataSizeMsb =
hsp->cls1.rcvDataSizeMsb;
}
}
} else if (class == CLASS1)
goto bad_service_param;
if (sp->cls2.classValid) {
if (!flogi) {
hsp_value = ((hsp->cls2.rcvDataSizeMsb << 8) |
hsp->cls2.rcvDataSizeLsb);
ssp_value = ((sp->cls2.rcvDataSizeMsb << 8) |
sp->cls2.rcvDataSizeLsb);
if (!ssp_value)
goto bad_service_param;
if (ssp_value > hsp_value) {
sp->cls2.rcvDataSizeLsb =
hsp->cls2.rcvDataSizeLsb;
sp->cls2.rcvDataSizeMsb =
hsp->cls2.rcvDataSizeMsb;
}
}
} else if (class == CLASS2)
goto bad_service_param;
if (sp->cls3.classValid) {
if (!flogi) {
hsp_value = ((hsp->cls3.rcvDataSizeMsb << 8) |
hsp->cls3.rcvDataSizeLsb);
ssp_value = ((sp->cls3.rcvDataSizeMsb << 8) |
sp->cls3.rcvDataSizeLsb);
if (!ssp_value)
goto bad_service_param;
if (ssp_value > hsp_value) {
sp->cls3.rcvDataSizeLsb =
hsp->cls3.rcvDataSizeLsb;
sp->cls3.rcvDataSizeMsb =
hsp->cls3.rcvDataSizeMsb;
}
}
} else if (class == CLASS3)
goto bad_service_param;
/*
* Preserve the upper four bits of the MSB from the PLOGI response.
* These bits contain the Buffer-to-Buffer State Change Number
* from the target and need to be passed to the FW.
*/
hsp_value = (hsp->cmn.bbRcvSizeMsb << 8) | hsp->cmn.bbRcvSizeLsb;
ssp_value = (sp->cmn.bbRcvSizeMsb << 8) | sp->cmn.bbRcvSizeLsb;
if (ssp_value > hsp_value) {
sp->cmn.bbRcvSizeLsb = hsp->cmn.bbRcvSizeLsb;
sp->cmn.bbRcvSizeMsb = (sp->cmn.bbRcvSizeMsb & 0xF0) |
(hsp->cmn.bbRcvSizeMsb & 0x0F);
}
memcpy(&ndlp->nlp_nodename, &sp->nodeName, sizeof (struct lpfc_name));
memcpy(&ndlp->nlp_portname, &sp->portName, sizeof (struct lpfc_name));
return 1;
bad_service_param:
lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY,
"0207 Device %x "
"(%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x) sent "
"invalid service parameters. Ignoring device.\n",
ndlp->nlp_DID,
sp->nodeName.u.wwn[0], sp->nodeName.u.wwn[1],
sp->nodeName.u.wwn[2], sp->nodeName.u.wwn[3],
sp->nodeName.u.wwn[4], sp->nodeName.u.wwn[5],
sp->nodeName.u.wwn[6], sp->nodeName.u.wwn[7]);
return 0;
}
static void *
lpfc_check_elscmpl_iocb(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_iocbq *rspiocb)
{
struct lpfc_dmabuf *pcmd, *prsp;
uint32_t *lp;
void *ptr = NULL;
IOCB_t *irsp;
irsp = &rspiocb->iocb;
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
/* For lpfc_els_abort, context2 could be zero'ed to delay
* freeing associated memory till after ABTS completes.
*/
if (pcmd) {
prsp = list_get_first(&pcmd->list, struct lpfc_dmabuf,
list);
if (prsp) {
lp = (uint32_t *) prsp->virt;
ptr = (void *)((uint8_t *)lp + sizeof(uint32_t));
}
} else {
/* Force ulpStatus error since we are returning NULL ptr */
if (!(irsp->ulpStatus)) {
irsp->ulpStatus = IOSTAT_LOCAL_REJECT;
irsp->un.ulpWord[4] = IOERR_SLI_ABORTED;
}
ptr = NULL;
}
return ptr;
}
/*
* Free resources / clean up outstanding I/Os
* associated with a LPFC_NODELIST entry. This
* routine effectively results in a "software abort".
*/
void
lpfc_els_abort(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
{
LIST_HEAD(abort_list);
scsi: lpfc: NVME Initiator: Base modifications NVME Initiator: Base modifications This patch adds base modifications for NVME initiator support. The base modifications consist of: - Formal split of SLI3 rings from SLI-4 WQs (sometimes referred to as rings as well) as implementation now widely varies between the two. - Addition of configuration modes: SCSI initiator only; NVME initiator only; NVME target only; and SCSI and NVME initiator. The configuration mode drives overall adapter configuration, offloads enabled, and resource splits. NVME support is only available on SLI-4 devices and newer fw. - Implements the following based on configuration mode: - Exchange resources are split by protocol; Obviously, if only 1 mode, then no split occurs. Default is 50/50. module attribute allows tuning. - Pools and config parameters are separated per-protocol - Each protocol has it's own set of queues, but share interrupt vectors. SCSI: SLI3 devices have few queues and the original style of queue allocation remains. SLI4 devices piggy back on an "io-channel" concept that eventually needs to merge with scsi-mq/blk-mq support (it is underway). For now, the paradigm continues as it existed prior. io channel allocates N msix and N WQs (N=4 default) and either round robins or uses cpu # modulo N for scheduling. A bunch of module parameters allow the configuration to be tuned. NVME (initiator): Allocates an msix per cpu (or whatever pci_alloc_irq_vectors gets) Allocates a WQ per cpu, and maps the WQs to msix on a WQ # modulo msix vector count basis. Module parameters exist to cap/control the config if desired. - Each protocol has its own buffer and dma pools. I apologize for the size of the patch. Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> ---- Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-02-12 13:52:30 -08:00
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *iocb, *next_iocb;
scsi: lpfc: NVME Initiator: Base modifications NVME Initiator: Base modifications This patch adds base modifications for NVME initiator support. The base modifications consist of: - Formal split of SLI3 rings from SLI-4 WQs (sometimes referred to as rings as well) as implementation now widely varies between the two. - Addition of configuration modes: SCSI initiator only; NVME initiator only; NVME target only; and SCSI and NVME initiator. The configuration mode drives overall adapter configuration, offloads enabled, and resource splits. NVME support is only available on SLI-4 devices and newer fw. - Implements the following based on configuration mode: - Exchange resources are split by protocol; Obviously, if only 1 mode, then no split occurs. Default is 50/50. module attribute allows tuning. - Pools and config parameters are separated per-protocol - Each protocol has it's own set of queues, but share interrupt vectors. SCSI: SLI3 devices have few queues and the original style of queue allocation remains. SLI4 devices piggy back on an "io-channel" concept that eventually needs to merge with scsi-mq/blk-mq support (it is underway). For now, the paradigm continues as it existed prior. io channel allocates N msix and N WQs (N=4 default) and either round robins or uses cpu # modulo N for scheduling. A bunch of module parameters allow the configuration to be tuned. NVME (initiator): Allocates an msix per cpu (or whatever pci_alloc_irq_vectors gets) Allocates a WQ per cpu, and maps the WQs to msix on a WQ # modulo msix vector count basis. Module parameters exist to cap/control the config if desired. - Each protocol has its own buffer and dma pools. I apologize for the size of the patch. Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> ---- Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-02-12 13:52:30 -08:00
pring = lpfc_phba_elsring(phba);
/* In case of error recovery path, we might have a NULL pring here */
if (unlikely(!pring))
return;
/* Abort outstanding I/O on NPort <nlp_DID> */
lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_DISCOVERY,
"2819 Abort outstanding I/O on NPort x%x "
"Data: x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state,
ndlp->nlp_rpi);
/* Clean up all fabric IOs first.*/
lpfc_fabric_abort_nport(ndlp);
/*
* Lock the ELS ring txcmplq for SLI3/SLI4 and build a local list
* of all ELS IOs that need an ABTS. The IOs need to stay on the
* txcmplq so that the abort operation completes them successfully.
*/
spin_lock_irq(&phba->hbalock);
if (phba->sli_rev == LPFC_SLI_REV4)
spin_lock(&pring->ring_lock);
list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) {
/* Add to abort_list on on NDLP match. */
if (lpfc_check_sli_ndlp(phba, pring, iocb, ndlp))
list_add_tail(&iocb->dlist, &abort_list);
}
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring->ring_lock);
spin_unlock_irq(&phba->hbalock);
/* Abort the targeted IOs and remove them from the abort list. */
list_for_each_entry_safe(iocb, next_iocb, &abort_list, dlist) {
spin_lock_irq(&phba->hbalock);
list_del_init(&iocb->dlist);
lpfc_sli_issue_abort_iotag(phba, pring, iocb);
spin_unlock_irq(&phba->hbalock);
}
INIT_LIST_HEAD(&abort_list);
/* Now process the txq */
spin_lock_irq(&phba->hbalock);
if (phba->sli_rev == LPFC_SLI_REV4)
spin_lock(&pring->ring_lock);
list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) {
/* Check to see if iocb matches the nport we are looking for */
if (lpfc_check_sli_ndlp(phba, pring, iocb, ndlp)) {
list_del_init(&iocb->list);
list_add_tail(&iocb->list, &abort_list);
}
}
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring->ring_lock);
spin_unlock_irq(&phba->hbalock);
[SCSI] lpfc 8.3.1: misc fixes/changes 8.3.1 Fixes/Changes : - Fix incorrect byte-swapping on word 4 of IOCB (data length) which caused LUNs to not be discovered on big-endian (e.g. PPC) - Remove a bad cast of MBslimaddr which loses the __iomem (sparse) - Make lpfc_debugfs_mask_disc_trc static (sparse) - Correct misspelled word BlockGuard in lpfc_logmsg.h comment - Replaced repeated code segment for canceling IOCBs from a list with a function call, lpfc_sli_cancel_iocbs(). - Increased HBQ buffers to support 40KB SSC sequences. - Added sysfs interface to update speed and topology parameter without link bounce. - Fixed bug with sysfs fc_host WWNs not being updated after changing the WWNs. - Check if the active mailbox is NULL in the beginning of the mailbox timeout handler - fixes panic in the mailbox timeout handler while running IO stress test - Fixed system panic in lpfc_pci_remove_one() due to ndlp indirect reference to phba through vport - Removed de-reference of scsi device after call to scsi_done() to fix panic in scsi completion path while accessing scsi device after scsi_done is called. - Fixed "Nodelist not empty" message when unloading the driver after target reboot test - Added LP2105 HBA model description - Added code to print all 16 words of unrecognized ASYNC events - Fixed memory leak in vport create + delete loop - Added support for handling dual error bit from HBA - Fixed a driver NULL pointer dereference in lpfc_sli_process_sol_iocb - Fixed a discovery bug with FC switch reboot in lpfc_setup_disc_node - Take NULL termintator into account when calculating available buffer space Signed-off-by: James Smart <james.smart@emulex.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2009-04-06 18:48:10 -04:00
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &abort_list,
IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
lpfc_cancel_retry_delay_tmo(phba->pport, ndlp);
}
static int
lpfc_rcv_plogi(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_dmabuf *pcmd;
uint64_t nlp_portwwn = 0;
uint32_t *lp;
IOCB_t *icmd;
struct serv_parm *sp;
uint32_t ed_tov;
LPFC_MBOXQ_t *mbox;
struct ls_rjt stat;
uint32_t vid, flag;
int rc;
memset(&stat, 0, sizeof (struct ls_rjt));
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
lp = (uint32_t *) pcmd->virt;
sp = (struct serv_parm *) ((uint8_t *) lp + sizeof (uint32_t));
if (wwn_to_u64(sp->portName.u.wwn) == 0) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0140 PLOGI Reject: invalid nname\n");
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_INVALID_PNAME;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
return 0;
}
if (wwn_to_u64(sp->nodeName.u.wwn) == 0) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0141 PLOGI Reject: invalid pname\n");
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_INVALID_NNAME;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
return 0;
}
nlp_portwwn = wwn_to_u64(ndlp->nlp_portname.u.wwn);
if ((lpfc_check_sparm(vport, ndlp, sp, CLASS3, 0) == 0)) {
/* Reject this request because invalid parameters */
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_SPARM_OPTIONS;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
return 0;
}
icmd = &cmdiocb->iocb;
/* PLOGI chkparm OK */
lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
"0114 PLOGI chkparm OK Data: x%x x%x x%x "
"x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state, ndlp->nlp_flag,
ndlp->nlp_rpi, vport->port_state,
vport->fc_flag);
if (vport->cfg_fcp_class == 2 && sp->cls2.classValid)
ndlp->nlp_fcp_info |= CLASS2;
else
ndlp->nlp_fcp_info |= CLASS3;
ndlp->nlp_class_sup = 0;
if (sp->cls1.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS1;
if (sp->cls2.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS2;
if (sp->cls3.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS3;
if (sp->cls4.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS4;
ndlp->nlp_maxframe =
((sp->cmn.bbRcvSizeMsb & 0x0F) << 8) | sp->cmn.bbRcvSizeLsb;
/* if already logged in, do implicit logout */
switch (ndlp->nlp_state) {
case NLP_STE_NPR_NODE:
if (!(ndlp->nlp_flag & NLP_NPR_ADISC))
break;
case NLP_STE_REG_LOGIN_ISSUE:
case NLP_STE_PRLI_ISSUE:
case NLP_STE_UNMAPPED_NODE:
case NLP_STE_MAPPED_NODE:
/* For initiators, lpfc_plogi_confirm_nport skips fabric did.
* For target mode, execute implicit logo.
* Fabric nodes go into NPR.
*/
if (!(ndlp->nlp_type & NLP_FABRIC) &&
!(phba->nvmet_support)) {
lpfc_els_rsp_acc(vport, ELS_CMD_PLOGI, cmdiocb,
ndlp, NULL);
return 1;
}
if (nlp_portwwn != 0 &&
nlp_portwwn != wwn_to_u64(sp->portName.u.wwn))
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0143 PLOGI recv'd from DID: x%x "
"WWPN changed: old %llx new %llx\n",
ndlp->nlp_DID,
(unsigned long long)nlp_portwwn,
(unsigned long long)
wwn_to_u64(sp->portName.u.wwn));
ndlp->nlp_prev_state = ndlp->nlp_state;
/* rport needs to be unregistered first */
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
break;
}
ndlp->nlp_type &= ~(NLP_FCP_TARGET | NLP_FCP_INITIATOR);
ndlp->nlp_type &= ~(NLP_NVME_TARGET | NLP_NVME_INITIATOR);
ndlp->nlp_fcp_info &= ~NLP_FCP_2_DEVICE;
ndlp->nlp_flag &= ~NLP_FIRSTBURST;
/* Check for Nport to NPort pt2pt protocol */
if ((vport->fc_flag & FC_PT2PT) &&
!(vport->fc_flag & FC_PT2PT_PLOGI)) {
/* rcv'ed PLOGI decides what our NPortId will be */
vport->fc_myDID = icmd->un.rcvels.parmRo;
ed_tov = be32_to_cpu(sp->cmn.e_d_tov);
if (sp->cmn.edtovResolution) {
/* E_D_TOV ticks are in nanoseconds */
ed_tov = (phba->fc_edtov + 999999) / 1000000;
}
/*
* For pt-to-pt, use the larger EDTOV
* RATOV = 2 * EDTOV
*/
if (ed_tov > phba->fc_edtov)
phba->fc_edtov = ed_tov;
phba->fc_ratov = (2 * phba->fc_edtov) / 1000;
memcpy(&phba->fc_fabparam, sp, sizeof(struct serv_parm));
/* Issue config_link / reg_vfi to account for updated TOV's */
if (phba->sli_rev == LPFC_SLI_REV4)
lpfc_issue_reg_vfi(vport);
else {
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (mbox == NULL)
goto out;
lpfc_config_link(phba, mbox);
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
mbox->vport = vport;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
mempool_free(mbox, phba->mbox_mem_pool);
goto out;
}
}
lpfc_can_disctmo(vport);
}
ndlp->nlp_flag &= ~NLP_SUPPRESS_RSP;
if ((phba->sli.sli_flag & LPFC_SLI_SUPPRESS_RSP) &&
sp->cmn.valid_vendor_ver_level) {
vid = be32_to_cpu(sp->un.vv.vid);
flag = be32_to_cpu(sp->un.vv.flags);
if ((vid == LPFC_VV_EMLX_ID) && (flag & LPFC_VV_SUPPRESS_RSP))
ndlp->nlp_flag |= NLP_SUPPRESS_RSP;
}
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
goto out;
/* Registering an existing RPI behaves differently for SLI3 vs SLI4 */
if (phba->sli_rev == LPFC_SLI_REV4)
lpfc_unreg_rpi(vport, ndlp);
rc = lpfc_reg_rpi(phba, vport->vpi, icmd->un.rcvels.remoteID,
(uint8_t *) sp, mbox, ndlp->nlp_rpi);
if (rc) {
mempool_free(mbox, phba->mbox_mem_pool);
goto out;
}
/* ACC PLOGI rsp command needs to execute first,
* queue this mbox command to be processed later.
*/
mbox->mbox_cmpl = lpfc_mbx_cmpl_reg_login;
/*
* mbox->context2 = lpfc_nlp_get(ndlp) deferred until mailbox
* command issued in lpfc_cmpl_els_acc().
*/
mbox->vport = vport;
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= (NLP_ACC_REGLOGIN | NLP_RCV_PLOGI);
spin_unlock_irq(shost->host_lock);
/*
* If there is an outstanding PLOGI issued, abort it before
* sending ACC rsp for received PLOGI. If pending plogi
* is not canceled here, the plogi will be rejected by
* remote port and will be retried. On a configuration with
* single discovery thread, this will cause a huge delay in
* discovery. Also this will cause multiple state machines
* running in parallel for this node.
*/
if (ndlp->nlp_state == NLP_STE_PLOGI_ISSUE) {
/* software abort outstanding PLOGI */
lpfc_els_abort(phba, ndlp);
}
if ((vport->port_type == LPFC_NPIV_PORT &&
vport->cfg_restrict_login)) {
/* In order to preserve RPIs, we want to cleanup
* the default RPI the firmware created to rcv
* this ELS request. The only way to do this is
* to register, then unregister the RPI.
*/
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_RM_DFLT_RPI;
spin_unlock_irq(shost->host_lock);
stat.un.b.lsRjtRsnCode = LSRJT_INVALID_CMD;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
rc = lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb,
ndlp, mbox);
if (rc)
mempool_free(mbox, phba->mbox_mem_pool);
return 1;
}
rc = lpfc_els_rsp_acc(vport, ELS_CMD_PLOGI, cmdiocb, ndlp, mbox);
if (rc)
mempool_free(mbox, phba->mbox_mem_pool);
return 1;
out:
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_OUT_OF_RESOURCE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return 0;
}
/**
* lpfc_mbx_cmpl_resume_rpi - Resume RPI completion routine
* @phba: pointer to lpfc hba data structure.
* @mboxq: pointer to mailbox object
*
* This routine is invoked to issue a completion to a rcv'ed
* ADISC or PDISC after the paused RPI has been resumed.
**/
static void
lpfc_mbx_cmpl_resume_rpi(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
struct lpfc_vport *vport;
struct lpfc_iocbq *elsiocb;
struct lpfc_nodelist *ndlp;
uint32_t cmd;
elsiocb = (struct lpfc_iocbq *)mboxq->context1;
ndlp = (struct lpfc_nodelist *) mboxq->context2;
vport = mboxq->vport;
cmd = elsiocb->drvrTimeout;
if (cmd == ELS_CMD_ADISC) {
lpfc_els_rsp_adisc_acc(vport, elsiocb, ndlp);
} else {
lpfc_els_rsp_acc(vport, ELS_CMD_PLOGI, elsiocb,
ndlp, NULL);
}
kfree(elsiocb);
mempool_free(mboxq, phba->mbox_mem_pool);
}
static int
lpfc_rcv_padisc(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *elsiocb;
struct lpfc_dmabuf *pcmd;
struct serv_parm *sp;
struct lpfc_name *pnn, *ppn;
struct ls_rjt stat;
ADISC *ap;
IOCB_t *icmd;
uint32_t *lp;
uint32_t cmd;
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
lp = (uint32_t *) pcmd->virt;
cmd = *lp++;
if (cmd == ELS_CMD_ADISC) {
ap = (ADISC *) lp;
pnn = (struct lpfc_name *) & ap->nodeName;
ppn = (struct lpfc_name *) & ap->portName;
} else {
sp = (struct serv_parm *) lp;
pnn = (struct lpfc_name *) & sp->nodeName;
ppn = (struct lpfc_name *) & sp->portName;
}
icmd = &cmdiocb->iocb;
if (icmd->ulpStatus == 0 && lpfc_check_adisc(vport, ndlp, pnn, ppn)) {
/*
* As soon as we send ACC, the remote NPort can
* start sending us data. Thus, for SLI4 we must
* resume the RPI before the ACC goes out.
*/
if (vport->phba->sli_rev == LPFC_SLI_REV4) {
elsiocb = kmalloc(sizeof(struct lpfc_iocbq),
GFP_KERNEL);
if (elsiocb) {
/* Save info from cmd IOCB used in rsp */
memcpy((uint8_t *)elsiocb, (uint8_t *)cmdiocb,
sizeof(struct lpfc_iocbq));
/* Save the ELS cmd */
elsiocb->drvrTimeout = cmd;
lpfc_sli4_resume_rpi(ndlp,
lpfc_mbx_cmpl_resume_rpi, elsiocb);
goto out;
}
}
if (cmd == ELS_CMD_ADISC) {
lpfc_els_rsp_adisc_acc(vport, cmdiocb, ndlp);
} else {
lpfc_els_rsp_acc(vport, ELS_CMD_PLOGI, cmdiocb,
ndlp, NULL);
}
out:
/* If we are authenticated, move to the proper state */
if (ndlp->nlp_type & NLP_FCP_TARGET)
lpfc_nlp_set_state(vport, ndlp, NLP_STE_MAPPED_NODE);
else
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
return 1;
}
/* Reject this request because invalid parameters */
stat.un.b.lsRjtRsvd0 = 0;
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_SPARM_OPTIONS;
stat.un.b.vendorUnique = 0;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
/* 1 sec timeout */
mod_timer(&ndlp->nlp_delayfunc, jiffies + msecs_to_jiffies(1000));
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
ndlp->nlp_prev_state = ndlp->nlp_state;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return 0;
}
static int
lpfc_rcv_logo(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb, uint32_t els_cmd)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_vport **vports;
int i, active_vlink_present = 0 ;
/* Put ndlp in NPR state with 1 sec timeout for plogi, ACC logo */
/* Only call LOGO ACC for first LOGO, this avoids sending unnecessary
* PLOGIs during LOGO storms from a device.
*/
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(shost->host_lock);
if (els_cmd == ELS_CMD_PRLO)
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
else
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
if (ndlp->nlp_DID == Fabric_DID) {
if (vport->port_state <= LPFC_FDISC)
goto out;
lpfc_linkdown_port(vport);
spin_lock_irq(shost->host_lock);
vport->fc_flag |= FC_VPORT_LOGO_RCVD;
spin_unlock_irq(shost->host_lock);
vports = lpfc_create_vport_work_array(phba);
if (vports) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL;
i++) {
if ((!(vports[i]->fc_flag &
FC_VPORT_LOGO_RCVD)) &&
(vports[i]->port_state > LPFC_FDISC)) {
active_vlink_present = 1;
break;
}
}
lpfc_destroy_vport_work_array(phba, vports);
}
/*
* Don't re-instantiate if vport is marked for deletion.
* If we are here first then vport_delete is going to wait
* for discovery to complete.
*/
if (!(vport->load_flag & FC_UNLOADING) &&
active_vlink_present) {
/*
* If there are other active VLinks present,
* re-instantiate the Vlink using FDISC.
*/
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000));
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
vport->port_state = LPFC_FDISC;
} else {
spin_lock_irq(shost->host_lock);
phba->pport->fc_flag &= ~FC_LOGO_RCVD_DID_CHNG;
spin_unlock_irq(shost->host_lock);
lpfc_retry_pport_discovery(phba);
}
} else if ((!(ndlp->nlp_type & NLP_FABRIC) &&
((ndlp->nlp_type & NLP_FCP_TARGET) ||
!(ndlp->nlp_type & NLP_FCP_INITIATOR))) ||
(ndlp->nlp_state == NLP_STE_ADISC_ISSUE)) {
/* Only try to re-login if this is NOT a Fabric Node */
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
}
out:
ndlp->nlp_prev_state = ndlp->nlp_state;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(shost->host_lock);
/* The driver has to wait until the ACC completes before it continues
* processing the LOGO. The action will resume in
* lpfc_cmpl_els_logo_acc routine. Since part of processing includes an
* unreg_login, the driver waits so the ACC does not get aborted.
*/
return 0;
}
static uint32_t
lpfc_rcv_prli_support_check(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct ls_rjt stat;
uint32_t *payload;
uint32_t cmd;
payload = ((struct lpfc_dmabuf *)cmdiocb->context2)->virt;
cmd = *payload;
if (vport->phba->nvmet_support) {
/* Must be a NVME PRLI */
if (cmd == ELS_CMD_PRLI)
goto out;
} else {
/* Initiator mode. */
if (!vport->nvmei_support && (cmd == ELS_CMD_NVMEPRLI))
goto out;
}
return 1;
out:
lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME_DISC,
"6115 Rcv PRLI (%x) check failed: ndlp rpi %d "
"state x%x flags x%x\n",
cmd, ndlp->nlp_rpi, ndlp->nlp_state,
ndlp->nlp_flag);
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_CMD_UNSUPPORTED;
stat.un.b.lsRjtRsnCodeExp = LSEXP_REQ_UNSUPPORTED;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb,
ndlp, NULL);
return 0;
}
static void
lpfc_rcv_prli(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_dmabuf *pcmd;
uint32_t *lp;
PRLI *npr;
struct fc_rport *rport = ndlp->rport;
u32 roles;
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
lp = (uint32_t *) pcmd->virt;
npr = (PRLI *) ((uint8_t *) lp + sizeof (uint32_t));
if ((npr->prliType == PRLI_FCP_TYPE) ||
(npr->prliType == PRLI_NVME_TYPE)) {
if (npr->initiatorFunc) {
if (npr->prliType == PRLI_FCP_TYPE)
ndlp->nlp_type |= NLP_FCP_INITIATOR;
if (npr->prliType == PRLI_NVME_TYPE)
ndlp->nlp_type |= NLP_NVME_INITIATOR;
}
if (npr->targetFunc) {
if (npr->prliType == PRLI_FCP_TYPE)
ndlp->nlp_type |= NLP_FCP_TARGET;
if (npr->prliType == PRLI_NVME_TYPE)
ndlp->nlp_type |= NLP_NVME_TARGET;
if (npr->writeXferRdyDis)
ndlp->nlp_flag |= NLP_FIRSTBURST;
}
if (npr->Retry)
ndlp->nlp_fcp_info |= NLP_FCP_2_DEVICE;
/* If this driver is in nvme target mode, set the ndlp's fc4
* type to NVME provided the PRLI response claims NVME FC4
* type. Target mode does not issue gft_id so doesn't get
* the fc4 type set until now.
*/
if (phba->nvmet_support && (npr->prliType == PRLI_NVME_TYPE)) {
ndlp->nlp_fc4_type |= NLP_FC4_NVME;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
}
if (npr->prliType == PRLI_FCP_TYPE)
ndlp->nlp_fc4_type |= NLP_FC4_FCP;
}
if (rport) {
/* We need to update the rport role values */
roles = FC_RPORT_ROLE_UNKNOWN;
if (ndlp->nlp_type & NLP_FCP_INITIATOR)
roles |= FC_RPORT_ROLE_FCP_INITIATOR;
if (ndlp->nlp_type & NLP_FCP_TARGET)
roles |= FC_RPORT_ROLE_FCP_TARGET;
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_RPORT,
"rport rolechg: role:x%x did:x%x flg:x%x",
roles, ndlp->nlp_DID, ndlp->nlp_flag);
if (phba->cfg_enable_fc4_type != LPFC_ENABLE_NVME)
fc_remote_port_rolechg(rport, roles);
}
}
static uint32_t
lpfc_disc_set_adisc(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
if (!(ndlp->nlp_flag & NLP_RPI_REGISTERED)) {
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
return 0;
}
if (!(vport->fc_flag & FC_PT2PT)) {
/* Check config parameter use-adisc or FCP-2 */
if ((vport->cfg_use_adisc && (vport->fc_flag & FC_RSCN_MODE)) ||
((ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) &&
(ndlp->nlp_type & NLP_FCP_TARGET))) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_NPR_ADISC;
spin_unlock_irq(shost->host_lock);
return 1;
}
}
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
lpfc_unreg_rpi(vport, ndlp);
return 0;
}
/**
* lpfc_release_rpi - Release a RPI by issuing unreg_login mailbox cmd.
* @phba : Pointer to lpfc_hba structure.
* @vport: Pointer to lpfc_vport structure.
* @rpi : rpi to be release.
*
* This function will send a unreg_login mailbox command to the firmware
* to release a rpi.
**/
void
lpfc_release_rpi(struct lpfc_hba *phba,
struct lpfc_vport *vport,
uint16_t rpi)
{
LPFC_MBOXQ_t *pmb;
int rc;
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!pmb)
lpfc_printf_vlog(vport, KERN_ERR, LOG_MBOX,
"2796 mailbox memory allocation failed \n");
else {
lpfc_unreg_login(phba, vport->vpi, rpi, pmb);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
mempool_free(pmb, phba->mbox_mem_pool);
}
}
static uint32_t
lpfc_disc_illegal(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba;
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
uint16_t rpi;
phba = vport->phba;
/* Release the RPI if reglogin completing */
if (!(phba->pport->load_flag & FC_UNLOADING) &&
(evt == NLP_EVT_CMPL_REG_LOGIN) &&
(!pmb->u.mb.mbxStatus)) {
rpi = pmb->u.mb.un.varWords[0];
lpfc_release_rpi(phba, vport, rpi);
}
lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY,
"0271 Illegal State Transition: node x%x "
"event x%x, state x%x Data: x%x x%x\n",
ndlp->nlp_DID, evt, ndlp->nlp_state, ndlp->nlp_rpi,
ndlp->nlp_flag);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_plogi_illegal(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
/* This transition is only legal if we previously
* rcv'ed a PLOGI. Since we don't want 2 discovery threads
* working on the same NPortID, do nothing for this thread
* to stop it.
*/
if (!(ndlp->nlp_flag & NLP_RCV_PLOGI)) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY,
"0272 Illegal State Transition: node x%x "
"event x%x, state x%x Data: x%x x%x\n",
ndlp->nlp_DID, evt, ndlp->nlp_state, ndlp->nlp_rpi,
ndlp->nlp_flag);
}
return ndlp->nlp_state;
}
/* Start of Discovery State Machine routines */
static uint32_t
lpfc_rcv_plogi_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb)) {
return ndlp->nlp_state;
}
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_rcv_els_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
lpfc_issue_els_logo(vport, ndlp, 0);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(shost->host_lock);
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_logo_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_rm_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_recov_unused_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb = arg;
struct lpfc_dmabuf *pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
uint32_t *lp = (uint32_t *) pcmd->virt;
struct serv_parm *sp = (struct serv_parm *) (lp + 1);
struct ls_rjt stat;
int port_cmp;
memset(&stat, 0, sizeof (struct ls_rjt));
/* For a PLOGI, we only accept if our portname is less
* than the remote portname.
*/
phba->fc_stat.elsLogiCol++;
port_cmp = memcmp(&vport->fc_portname, &sp->portName,
sizeof(struct lpfc_name));
if (port_cmp >= 0) {
/* Reject this request because the remote node will accept
ours */
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_CMD_IN_PROGRESS;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
} else {
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb) &&
(ndlp->nlp_flag & NLP_NPR_2B_DISC) &&
(vport->num_disc_nodes)) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_2B_DISC;
spin_unlock_irq(shost->host_lock);
/* Check if there are more PLOGIs to be sent */
lpfc_more_plogi(vport);
if (vport->num_disc_nodes == 0) {
spin_lock_irq(shost->host_lock);
vport->fc_flag &= ~FC_NDISC_ACTIVE;
spin_unlock_irq(shost->host_lock);
lpfc_can_disctmo(vport);
lpfc_end_rscn(vport);
}
}
} /* If our portname was less */
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof (struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_LOGICAL_BSY;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_els_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* software abort outstanding PLOGI */
lpfc_els_abort(phba, ndlp);
if (evt == NLP_EVT_RCV_LOGO) {
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
} else {
lpfc_issue_els_logo(vport, ndlp, 0);
}
/* Put ndlp in npr state set plogi timer for 1 sec */
mod_timer(&ndlp->nlp_delayfunc, jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
ndlp->nlp_prev_state = NLP_STE_PLOGI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_plogi_plogi_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *cmdiocb, *rspiocb;
struct lpfc_dmabuf *pcmd, *prsp, *mp;
uint32_t *lp;
uint32_t vid, flag;
IOCB_t *irsp;
struct serv_parm *sp;
uint32_t ed_tov;
LPFC_MBOXQ_t *mbox;
int rc;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
if (ndlp->nlp_flag & NLP_ACC_REGLOGIN) {
/* Recovery from PLOGI collision logic */
return ndlp->nlp_state;
}
irsp = &rspiocb->iocb;
if (irsp->ulpStatus)
goto out;
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
prsp = list_get_first(&pcmd->list, struct lpfc_dmabuf, list);
if (!prsp)
goto out;
lp = (uint32_t *) prsp->virt;
sp = (struct serv_parm *) ((uint8_t *) lp + sizeof (uint32_t));
[SCSI] lpfc 8.2.6 : Multiple discovery fixes Multiple Discovery Fixes: - Fix race on discovery due to link events coinciding with vport_delete. - Use NLP_FABRIC state to filter out switch-based pseudo initiators that reuse the same WWNs. - Correct erroneous setting of DID=0 in lpfc_matchdid() - Correct extra reference count that was in the lookup path for the remoteid from an unsolicited ELS. - Correct double-free bug in els abort path. - Correct FDMI server discovery logic for switch that return a WWN of 0. - Fix bugs in ndlp mgmt when a node changes address - Correct bug that did not delete RSCNs for vports upon link transitions - Fix "0216 Link event during NS query" error which pops up when vports are swapped to different switch ports. - Add sanity checks on ndlp structures - Fix devloss log message to dump WWN correctly - Hold off mgmt commands that were interferring with discovery mailbox cmds - Remove unnecessary FC_ESTABLISH_LINK logic. - Correct some race conditions in the worker thread, resulting in devloss: - Clear the work_port_events field before handling the work port events - Clear the deferred ring event before handling a deferred ring event - Hold the hba lock when waking up the work thread - Send an acc for the rscn even when we aren't going to handle it - Fix locking behavior that was not properly protecting the ACTIVE flag, thus allowing mailbox command order to shift. Signed-off-by: James Smart <james.smart@emulex.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2008-04-07 10:15:56 -04:00
/* Some switches have FDMI servers returning 0 for WWN */
if ((ndlp->nlp_DID != FDMI_DID) &&
(wwn_to_u64(sp->portName.u.wwn) == 0 ||
wwn_to_u64(sp->nodeName.u.wwn) == 0)) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0142 PLOGI RSP: Invalid WWN.\n");
goto out;
}
if (!lpfc_check_sparm(vport, ndlp, sp, CLASS3, 0))
goto out;
/* PLOGI chkparm OK */
lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
"0121 PLOGI chkparm OK Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
if (vport->cfg_fcp_class == 2 && (sp->cls2.classValid))
ndlp->nlp_fcp_info |= CLASS2;
else
ndlp->nlp_fcp_info |= CLASS3;
ndlp->nlp_class_sup = 0;
if (sp->cls1.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS1;
if (sp->cls2.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS2;
if (sp->cls3.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS3;
if (sp->cls4.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS4;
ndlp->nlp_maxframe =
((sp->cmn.bbRcvSizeMsb & 0x0F) << 8) | sp->cmn.bbRcvSizeLsb;
if ((vport->fc_flag & FC_PT2PT) &&
(vport->fc_flag & FC_PT2PT_PLOGI)) {
ed_tov = be32_to_cpu(sp->cmn.e_d_tov);
if (sp->cmn.edtovResolution) {
/* E_D_TOV ticks are in nanoseconds */
ed_tov = (phba->fc_edtov + 999999) / 1000000;
}
ndlp->nlp_flag &= ~NLP_SUPPRESS_RSP;
if ((phba->sli.sli_flag & LPFC_SLI_SUPPRESS_RSP) &&
sp->cmn.valid_vendor_ver_level) {
vid = be32_to_cpu(sp->un.vv.vid);
flag = be32_to_cpu(sp->un.vv.flags);
if ((vid == LPFC_VV_EMLX_ID) &&
(flag & LPFC_VV_SUPPRESS_RSP))
ndlp->nlp_flag |= NLP_SUPPRESS_RSP;
}
/*
* Use the larger EDTOV
* RATOV = 2 * EDTOV for pt-to-pt
*/
if (ed_tov > phba->fc_edtov)
phba->fc_edtov = ed_tov;
phba->fc_ratov = (2 * phba->fc_edtov) / 1000;
memcpy(&phba->fc_fabparam, sp, sizeof(struct serv_parm));
/* Issue config_link / reg_vfi to account for updated TOV's */
if (phba->sli_rev == LPFC_SLI_REV4) {
lpfc_issue_reg_vfi(vport);
} else {
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0133 PLOGI: no memory "
"for config_link "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
goto out;
}
lpfc_config_link(phba, mbox);
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
mbox->vport = vport;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
mempool_free(mbox, phba->mbox_mem_pool);
goto out;
}
}
}
lpfc_unreg_rpi(vport, ndlp);
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0018 PLOGI: no memory for reg_login "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
goto out;
}
if (lpfc_reg_rpi(phba, vport->vpi, irsp->un.elsreq64.remoteID,
(uint8_t *) sp, mbox, ndlp->nlp_rpi) == 0) {
switch (ndlp->nlp_DID) {
case NameServer_DID:
mbox->mbox_cmpl = lpfc_mbx_cmpl_ns_reg_login;
break;
case FDMI_DID:
mbox->mbox_cmpl = lpfc_mbx_cmpl_fdmi_reg_login;
break;
default:
ndlp->nlp_flag |= NLP_REG_LOGIN_SEND;
mbox->mbox_cmpl = lpfc_mbx_cmpl_reg_login;
}
mbox->context2 = lpfc_nlp_get(ndlp);
mbox->vport = vport;
if (lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT)
!= MBX_NOT_FINISHED) {
lpfc_nlp_set_state(vport, ndlp,
NLP_STE_REG_LOGIN_ISSUE);
return ndlp->nlp_state;
}
if (ndlp->nlp_flag & NLP_REG_LOGIN_SEND)
ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND;
/* decrement node reference count to the failed mbox
* command
*/
lpfc_nlp_put(ndlp);
mp = (struct lpfc_dmabuf *) mbox->context1;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
mempool_free(mbox, phba->mbox_mem_pool);
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0134 PLOGI: cannot issue reg_login "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
} else {
mempool_free(mbox, phba->mbox_mem_pool);
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0135 PLOGI: cannot format reg_login "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
}
out:
if (ndlp->nlp_DID == NameServer_DID) {
lpfc_vport_set_state(vport, FC_VPORT_FAILED);
lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
"0261 Cannot Register NameServer login\n");
}
/*
** In case the node reference counter does not go to zero, ensure that
** the stale state for the node is not processed.
*/
ndlp->nlp_prev_state = ndlp->nlp_state;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DEFER_RM;
spin_unlock_irq(shost->host_lock);
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_cmpl_logo_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_reglogin_plogi_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp, void *arg, uint32_t evt)
{
struct lpfc_hba *phba;
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
MAILBOX_t *mb = &pmb->u.mb;
uint16_t rpi;
phba = vport->phba;
/* Release the RPI */
if (!(phba->pport->load_flag & FC_UNLOADING) &&
!mb->mbxStatus) {
rpi = pmb->u.mb.un.varWords[0];
lpfc_release_rpi(phba, vport, rpi);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(shost->host_lock);
return ndlp->nlp_state;
} else {
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
static uint32_t
lpfc_device_recov_plogi_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
/* software abort outstanding PLOGI */
lpfc_els_abort(phba, ndlp);
ndlp->nlp_prev_state = NLP_STE_PLOGI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb;
/* software abort outstanding ADISC */
lpfc_els_abort(phba, ndlp);
cmdiocb = (struct lpfc_iocbq *) arg;
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb)) {
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_2B_DISC;
spin_unlock_irq(shost->host_lock);
if (vport->num_disc_nodes)
lpfc_more_adisc(vport);
}
return ndlp->nlp_state;
}
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
/* software abort outstanding ADISC */
lpfc_els_abort(phba, ndlp);
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_adisc_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
/* Treat like rcv logo */
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_PRLO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_adisc_adisc_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb, *rspiocb;
IOCB_t *irsp;
ADISC *ap;
int rc;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
ap = (ADISC *)lpfc_check_elscmpl_iocb(phba, cmdiocb, rspiocb);
irsp = &rspiocb->iocb;
if ((irsp->ulpStatus) ||
(!lpfc_check_adisc(vport, ndlp, &ap->nodeName, &ap->portName))) {
/* 1 sec timeout */
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000));
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
memset(&ndlp->nlp_nodename, 0, sizeof(struct lpfc_name));
memset(&ndlp->nlp_portname, 0, sizeof(struct lpfc_name));
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
lpfc_unreg_rpi(vport, ndlp);
return ndlp->nlp_state;
}
if (phba->sli_rev == LPFC_SLI_REV4) {
rc = lpfc_sli4_resume_rpi(ndlp, NULL, NULL);
if (rc) {
/* Stay in state and retry. */
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
return ndlp->nlp_state;
}
}
if (ndlp->nlp_type & NLP_FCP_TARGET) {
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_MAPPED_NODE);
} else {
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(shost->host_lock);
return ndlp->nlp_state;
} else {
/* software abort outstanding ADISC */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
static uint32_t
lpfc_device_recov_adisc_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
/* software abort outstanding ADISC */
lpfc_els_abort(phba, ndlp);
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
struct ls_rjt stat;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb)) {
return ndlp->nlp_state;
}
if (vport->phba->nvmet_support) {
/* NVME Target mode. Handle and respond to the PRLI and
* transition to UNMAPPED provided the RPI has completed
* registration.
*/
if (ndlp->nlp_flag & NLP_RPI_REGISTERED) {
lpfc_rcv_prli(vport, ndlp, cmdiocb);
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
} else {
/* RPI registration has not completed. Reject the PRLI
* to prevent an illegal state transition when the
* rpi registration does complete.
*/
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_LOGICAL_BSY;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb,
ndlp, NULL);
return ndlp->nlp_state;
}
} else {
/* Initiator mode. */
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
LPFC_MBOXQ_t *mb;
LPFC_MBOXQ_t *nextmb;
struct lpfc_dmabuf *mp;
cmdiocb = (struct lpfc_iocbq *) arg;
/* cleanup any ndlp on mbox q waiting for reglogin cmpl */
if ((mb = phba->sli.mbox_active)) {
if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) &&
(ndlp == (struct lpfc_nodelist *) mb->context2)) {
ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND;
lpfc_nlp_put(ndlp);
mb->context2 = NULL;
mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
}
}
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) &&
(ndlp == (struct lpfc_nodelist *) mb->context2)) {
mp = (struct lpfc_dmabuf *) (mb->context1);
if (mp) {
__lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND;
lpfc_nlp_put(ndlp);
list_del(&mb->list);
phba->sli.mboxq_cnt--;
mempool_free(mb, phba->mbox_mem_pool);
}
}
spin_unlock_irq(&phba->hbalock);
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_reglogin_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
MAILBOX_t *mb = &pmb->u.mb;
uint32_t did = mb->un.varWords[1];
int rc = 0;
if (mb->mbxStatus) {
/* RegLogin failed */
lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY,
"0246 RegLogin failed Data: x%x x%x x%x x%x "
"x%x\n",
did, mb->mbxStatus, vport->port_state,
mb->un.varRegLogin.vpi,
mb->un.varRegLogin.rpi);
/*
* If RegLogin failed due to lack of HBA resources do not
* retry discovery.
*/
if (mb->mbxStatus == MBXERR_RPI_FULL) {
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return ndlp->nlp_state;
}
/* Put ndlp in npr state set plogi timer for 1 sec */
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
lpfc_issue_els_logo(vport, ndlp, 0);
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return ndlp->nlp_state;
}
/* SLI4 ports have preallocated logical rpis. */
if (phba->sli_rev < LPFC_SLI_REV4)
ndlp->nlp_rpi = mb->un.varWords[0];
ndlp->nlp_flag |= NLP_RPI_REGISTERED;
/* Only if we are not a fabric nport do we issue PRLI */
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"3066 RegLogin Complete on x%x x%x x%x\n",
did, ndlp->nlp_type, ndlp->nlp_fc4_type);
if (!(ndlp->nlp_type & NLP_FABRIC) &&
(phba->nvmet_support == 0)) {
/* The driver supports FCP and NVME concurrently. If the
* ndlp's nlp_fc4_type is still zero, the driver doesn't
* know what PRLI to send yet. Figure that out now and
* call PRLI depending on the outcome.
*/
if (vport->fc_flag & FC_PT2PT) {
/* If we are pt2pt, there is no Fabric to determine
* the FC4 type of the remote nport. So if NVME
* is configured try it.
*/
ndlp->nlp_fc4_type |= NLP_FC4_FCP;
if ((phba->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) ||
(phba->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) {
ndlp->nlp_fc4_type |= NLP_FC4_NVME;
/* We need to update the localport also */
lpfc_nvme_update_localport(vport);
}
} else if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
ndlp->nlp_fc4_type |= NLP_FC4_FCP;
} else if (ndlp->nlp_fc4_type == 0) {
rc = lpfc_ns_cmd(vport, SLI_CTNS_GFT_ID,
0, ndlp->nlp_DID);
return ndlp->nlp_state;
}
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PRLI_ISSUE);
lpfc_issue_els_prli(vport, ndlp, 0);
} else {
if ((vport->fc_flag & FC_PT2PT) && phba->nvmet_support)
phba->targetport->port_id = vport->fc_myDID;
/* Only Fabric ports should transition. NVME target
* must complete PRLI.
*/
if (ndlp->nlp_type & NLP_FABRIC) {
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(shost->host_lock);
return ndlp->nlp_state;
} else {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
static uint32_t
lpfc_device_recov_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
/* If we are a target we won't immediately transition into PRLI,
* so if REG_LOGIN already completed we don't need to ignore it.
*/
if (!(ndlp->nlp_flag & NLP_RPI_REGISTERED) ||
!vport->phba->nvmet_support)
ndlp->nlp_flag |= NLP_IGNR_REG_CMPL;
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
return ndlp->nlp_state;
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* Software abort outstanding PRLI before sending acc */
lpfc_els_abort(vport->phba, ndlp);
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
/* This routine is envoked when we rcv a PRLO request from a nport
* we are logged into. We should send back a PRLO rsp setting the
* appropriate bits.
* NEXT STATE = PRLI_ISSUE
*/
static uint32_t
lpfc_rcv_prlo_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_prli_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *cmdiocb, *rspiocb;
struct lpfc_hba *phba = vport->phba;
IOCB_t *irsp;
PRLI *npr;
struct lpfc_nvme_prli *nvpr;
void *temp_ptr;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
/* A solicited PRLI is either FCP or NVME. The PRLI cmd/rsp
* format is different so NULL the two PRLI types so that the
* driver correctly gets the correct context.
*/
npr = NULL;
nvpr = NULL;
temp_ptr = lpfc_check_elscmpl_iocb(phba, cmdiocb, rspiocb);
if (cmdiocb->iocb_flag & LPFC_PRLI_FCP_REQ)
npr = (PRLI *) temp_ptr;
else if (cmdiocb->iocb_flag & LPFC_PRLI_NVME_REQ)
nvpr = (struct lpfc_nvme_prli *) temp_ptr;
irsp = &rspiocb->iocb;
if (irsp->ulpStatus) {
if ((vport->port_type == LPFC_NPIV_PORT) &&
vport->cfg_restrict_login) {
goto out;
}
/* When the rport rejected the FCP PRLI as unsupported.
* This should only happen in Pt2Pt so an NVME PRLI
* should be outstanding still.
*/
if (npr && ndlp->nlp_flag & NLP_FCP_PRLI_RJT) {
ndlp->nlp_fc4_type &= ~NLP_FC4_FCP;
goto out_err;
}
/* The LS Req had some error. Don't let this be a
* target.
*/
if ((ndlp->fc4_prli_sent == 1) &&
(ndlp->nlp_state == NLP_STE_PRLI_ISSUE) &&
(ndlp->nlp_type & (NLP_FCP_TARGET | NLP_FCP_INITIATOR)))
/* The FCP PRLI completed successfully but
* the NVME PRLI failed. Since they are sent in
* succession, allow the FCP to complete.
*/
goto out_err;
ndlp->nlp_prev_state = NLP_STE_PRLI_ISSUE;
ndlp->nlp_type |= NLP_FCP_INITIATOR;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
return ndlp->nlp_state;
}
if (npr && (npr->acceptRspCode == PRLI_REQ_EXECUTED) &&
(npr->prliType == PRLI_FCP_TYPE)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6028 FCP NPR PRLI Cmpl Init %d Target %d\n",
npr->initiatorFunc,
npr->targetFunc);
if (npr->initiatorFunc)
ndlp->nlp_type |= NLP_FCP_INITIATOR;
if (npr->targetFunc) {
ndlp->nlp_type |= NLP_FCP_TARGET;
if (npr->writeXferRdyDis)
ndlp->nlp_flag |= NLP_FIRSTBURST;
}
if (npr->Retry)
ndlp->nlp_fcp_info |= NLP_FCP_2_DEVICE;
} else if (nvpr &&
(bf_get_be32(prli_acc_rsp_code, nvpr) ==
PRLI_REQ_EXECUTED) &&
(bf_get_be32(prli_type_code, nvpr) ==
PRLI_NVME_TYPE)) {
/* Complete setting up the remote ndlp personality. */
if (bf_get_be32(prli_init, nvpr))
ndlp->nlp_type |= NLP_NVME_INITIATOR;
/* Target driver cannot solicit NVME FB. */
if (bf_get_be32(prli_tgt, nvpr)) {
/* Complete the nvme target roles. The transport
* needs to know if the rport is capable of
* discovery in addition to its role.
*/
ndlp->nlp_type |= NLP_NVME_TARGET;
if (bf_get_be32(prli_disc, nvpr))
ndlp->nlp_type |= NLP_NVME_DISCOVERY;
/*
* If prli_fba is set, the Target supports FirstBurst.
* If prli_fb_sz is 0, the FirstBurst size is unlimited,
* otherwise it defines the actual size supported by
* the NVME Target.
*/
if ((bf_get_be32(prli_fba, nvpr) == 1) &&
(phba->cfg_nvme_enable_fb) &&
(!phba->nvmet_support)) {
/* Both sides support FB. The target's first
* burst size is a 512 byte encoded value.
*/
ndlp->nlp_flag |= NLP_FIRSTBURST;
ndlp->nvme_fb_size = bf_get_be32(prli_fb_sz,
nvpr);
/* Expressed in units of 512 bytes */
if (ndlp->nvme_fb_size)
ndlp->nvme_fb_size <<=
LPFC_NVME_FB_SHIFT;
else
ndlp->nvme_fb_size = LPFC_NVME_MAX_FB;
}
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6029 NVME PRLI Cmpl w1 x%08x "
"w4 x%08x w5 x%08x flag x%x, "
"fcp_info x%x nlp_type x%x\n",
be32_to_cpu(nvpr->word1),
be32_to_cpu(nvpr->word4),
be32_to_cpu(nvpr->word5),
ndlp->nlp_flag, ndlp->nlp_fcp_info,
ndlp->nlp_type);
}
if (!(ndlp->nlp_type & NLP_FCP_TARGET) &&
(vport->port_type == LPFC_NPIV_PORT) &&
vport->cfg_restrict_login) {
out:
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_TARGET_REMOVE;
spin_unlock_irq(shost->host_lock);
lpfc_issue_els_logo(vport, ndlp, 0);
ndlp->nlp_prev_state = NLP_STE_PRLI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return ndlp->nlp_state;
}
out_err:
/* The ndlp state cannot move to MAPPED or UNMAPPED before all PRLIs
* are complete.
*/
if (ndlp->fc4_prli_sent == 0) {
ndlp->nlp_prev_state = NLP_STE_PRLI_ISSUE;
if (ndlp->nlp_type & (NLP_FCP_TARGET | NLP_NVME_TARGET))
lpfc_nlp_set_state(vport, ndlp, NLP_STE_MAPPED_NODE);
else if (ndlp->nlp_type &
(NLP_FCP_INITIATOR | NLP_NVME_INITIATOR))
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
} else
lpfc_printf_vlog(vport,
KERN_INFO, LOG_ELS,
"3067 PRLI's still outstanding "
"on x%06x - count %d, Pend Node Mode "
"transition...\n",
ndlp->nlp_DID, ndlp->fc4_prli_sent);
return ndlp->nlp_state;
}
/*! lpfc_device_rm_prli_issue
*
* \pre
* \post
* \param phba
* \param ndlp
* \param arg
* \param evt
* \return uint32_t
*
* \b Description:
* This routine is envoked when we a request to remove a nport we are in the
* process of PRLIing. We should software abort outstanding prli, unreg
* login, send a logout. We will change node state to UNUSED_NODE, put it
* on plogi list so it can be freed when LOGO completes.
*
*/
static uint32_t
lpfc_device_rm_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(shost->host_lock);
return ndlp->nlp_state;
} else {
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
/*! lpfc_device_recov_prli_issue
*
* \pre
* \post
* \param phba
* \param ndlp
* \param arg
* \param evt
* \return uint32_t
*
* \b Description:
* The routine is envoked when the state of a device is unknown, like
* during a link down. We should remove the nodelist entry from the
* unmapped list, issue a UNREG_LOGIN, do a software abort of the
* outstanding PRLI command, then free the node entry.
*/
static uint32_t
lpfc_device_recov_prli_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
/* software abort outstanding PRLI */
lpfc_els_abort(phba, ndlp);
ndlp->nlp_prev_state = NLP_STE_PRLI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(shost->host_lock);
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_logo_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
ndlp->nlp_prev_state = NLP_STE_LOGO_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
/*
* DevLoss has timed out and is calling for Device Remove.
* In this case, abort the LOGO and cleanup the ndlp
*/
lpfc_unreg_rpi(vport, ndlp);
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_recov_logo_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
/*
* Device Recovery events have no meaning for a node with a LOGO
* outstanding. The LOGO has to complete first and handle the
* node from that point.
*/
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
return ndlp->nlp_state;
lpfc_rcv_prli(vport, ndlp, cmdiocb);
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_recov_unmap_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
ndlp->nlp_prev_state = NLP_STE_UNMAPPED_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
return ndlp->nlp_state;
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_mapped_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* flush the target */
scsi: lpfc: NVME Initiator: Base modifications NVME Initiator: Base modifications This patch adds base modifications for NVME initiator support. The base modifications consist of: - Formal split of SLI3 rings from SLI-4 WQs (sometimes referred to as rings as well) as implementation now widely varies between the two. - Addition of configuration modes: SCSI initiator only; NVME initiator only; NVME target only; and SCSI and NVME initiator. The configuration mode drives overall adapter configuration, offloads enabled, and resource splits. NVME support is only available on SLI-4 devices and newer fw. - Implements the following based on configuration mode: - Exchange resources are split by protocol; Obviously, if only 1 mode, then no split occurs. Default is 50/50. module attribute allows tuning. - Pools and config parameters are separated per-protocol - Each protocol has it's own set of queues, but share interrupt vectors. SCSI: SLI3 devices have few queues and the original style of queue allocation remains. SLI4 devices piggy back on an "io-channel" concept that eventually needs to merge with scsi-mq/blk-mq support (it is underway). For now, the paradigm continues as it existed prior. io channel allocates N msix and N WQs (N=4 default) and either round robins or uses cpu # modulo N for scheduling. A bunch of module parameters allow the configuration to be tuned. NVME (initiator): Allocates an msix per cpu (or whatever pci_alloc_irq_vectors gets) Allocates a WQ per cpu, and maps the WQs to msix on a WQ # modulo msix vector count basis. Module parameters exist to cap/control the config if desired. - Each protocol has its own buffer and dma pools. I apologize for the size of the patch. Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> ---- Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-02-12 13:52:30 -08:00
lpfc_sli_abort_iocb(vport, &phba->sli.sli3_ring[LPFC_FCP_RING],
ndlp->nlp_sid, 0, LPFC_CTX_TGT);
/* Treat like rcv logo */
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_PRLO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_recov_mapped_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
ndlp->nlp_prev_state = NLP_STE_MAPPED_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* Ignore PLOGI if we have an outstanding LOGO */
if (ndlp->nlp_flag & (NLP_LOGO_SND | NLP_LOGO_ACC))
return ndlp->nlp_state;
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb)) {
lpfc_cancel_retry_delay_tmo(vport, ndlp);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NPR_ADISC | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
} else if (!(ndlp->nlp_flag & NLP_NPR_2B_DISC)) {
/* send PLOGI immediately, move to PLOGI issue state */
if (!(ndlp->nlp_flag & NLP_DELAY_TMO)) {
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof (struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
if (!(ndlp->nlp_flag & NLP_DELAY_TMO)) {
if (ndlp->nlp_flag & NLP_NPR_ADISC) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
spin_unlock_irq(shost->host_lock);
lpfc_nlp_set_state(vport, ndlp, NLP_STE_ADISC_ISSUE);
lpfc_issue_els_adisc(vport, ndlp, 0);
} else {
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
/*
* Do not start discovery if discovery is about to start
* or discovery in progress for this node. Starting discovery
* here will affect the counting of discovery threads.
*/
if (!(ndlp->nlp_flag & NLP_DELAY_TMO) &&
!(ndlp->nlp_flag & NLP_NPR_2B_DISC)) {
if (ndlp->nlp_flag & NLP_NPR_ADISC) {
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_ADISC_ISSUE);
lpfc_issue_els_adisc(vport, ndlp, 0);
} else {
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(shost->host_lock);
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
if ((ndlp->nlp_flag & NLP_DELAY_TMO) == 0) {
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(shost->host_lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
} else {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(shost->host_lock);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_plogi_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb, *rspiocb;
IOCB_t *irsp;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
irsp = &rspiocb->iocb;
if (irsp->ulpStatus) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_DEFER_RM;
spin_unlock_irq(shost->host_lock);
return NLP_STE_FREED_NODE;
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_prli_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb, *rspiocb;
IOCB_t *irsp;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
irsp = &rspiocb->iocb;
if (irsp->ulpStatus && (ndlp->nlp_flag & NLP_NODEV_REMOVE)) {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_logo_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
/* For the fabric port just clear the fc flags. */
if (ndlp->nlp_DID == Fabric_DID) {
spin_lock_irq(shost->host_lock);
vport->fc_flag &= ~(FC_FABRIC | FC_PUBLIC_LOOP);
spin_unlock_irq(shost->host_lock);
}
lpfc_unreg_rpi(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_adisc_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb, *rspiocb;
IOCB_t *irsp;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
irsp = &rspiocb->iocb;
if (irsp->ulpStatus && (ndlp->nlp_flag & NLP_NODEV_REMOVE)) {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_reglogin_npr_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
MAILBOX_t *mb = &pmb->u.mb;
if (!mb->mbxStatus) {
/* SLI4 ports have preallocated logical rpis. */
if (vport->phba->sli_rev < LPFC_SLI_REV4)
ndlp->nlp_rpi = mb->un.varWords[0];
ndlp->nlp_flag |= NLP_RPI_REGISTERED;
if (ndlp->nlp_flag & NLP_LOGO_ACC) {
lpfc_unreg_rpi(vport, ndlp);
}
} else {
if (ndlp->nlp_flag & NLP_NODEV_REMOVE) {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(shost->host_lock);
return ndlp->nlp_state;
}
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_recov_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
lpfc_cancel_retry_delay_tmo(vport, ndlp);
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(shost->host_lock);
return ndlp->nlp_state;
}
/* This next section defines the NPort Discovery State Machine */
/* There are 4 different double linked lists nodelist entries can reside on.
* The plogi list and adisc list are used when Link Up discovery or RSCN
* processing is needed. Each list holds the nodes that we will send PLOGI
* or ADISC on. These lists will keep track of what nodes will be effected
* by an RSCN, or a Link Up (Typically, all nodes are effected on Link Up).
* The unmapped_list will contain all nodes that we have successfully logged
* into at the Fibre Channel level. The mapped_list will contain all nodes
* that are mapped FCP targets.
*/
/*
* The bind list is a list of undiscovered (potentially non-existent) nodes
* that we have saved binding information on. This information is used when
* nodes transition from the unmapped to the mapped list.
*/
/* For UNUSED_NODE state, the node has just been allocated .
* For PLOGI_ISSUE and REG_LOGIN_ISSUE, the node is on
* the PLOGI list. For REG_LOGIN_COMPL, the node is taken off the PLOGI list
* and put on the unmapped list. For ADISC processing, the node is taken off
* the ADISC list and placed on either the mapped or unmapped list (depending
* on its previous state). Once on the unmapped list, a PRLI is issued and the
* state changed to PRLI_ISSUE. When the PRLI completion occurs, the state is
* changed to UNMAPPED_NODE. If the completion indicates a mapped
* node, the node is taken off the unmapped list. The binding list is checked
* for a valid binding, or a binding is automatically assigned. If binding
* assignment is unsuccessful, the node is left on the unmapped list. If
* binding assignment is successful, the associated binding list entry (if
* any) is removed, and the node is placed on the mapped list.
*/
/*
* For a Link Down, all nodes on the ADISC, PLOGI, unmapped or mapped
* lists will receive a DEVICE_RECOVERY event. If the linkdown or devloss timers
* expire, all effected nodes will receive a DEVICE_RM event.
*/
/*
* For a Link Up or RSCN, all nodes will move from the mapped / unmapped lists
* to either the ADISC or PLOGI list. After a Nameserver query or ALPA loopmap
* check, additional nodes may be added or removed (via DEVICE_RM) to / from
* the PLOGI or ADISC lists. Once the PLOGI and ADISC lists are populated,
* we will first process the ADISC list. 32 entries are processed initially and
* ADISC is initited for each one. Completions / Events for each node are
* funnelled thru the state machine. As each node finishes ADISC processing, it
* starts ADISC for any nodes waiting for ADISC processing. If no nodes are
* waiting, and the ADISC list count is identically 0, then we are done. For
* Link Up discovery, since all nodes on the PLOGI list are UNREG_LOGIN'ed, we
* can issue a CLEAR_LA and reenable Link Events. Next we will process the PLOGI
* list. 32 entries are processed initially and PLOGI is initited for each one.
* Completions / Events for each node are funnelled thru the state machine. As
* each node finishes PLOGI processing, it starts PLOGI for any nodes waiting
* for PLOGI processing. If no nodes are waiting, and the PLOGI list count is
* indentically 0, then we are done. We have now completed discovery / RSCN
* handling. Upon completion, ALL nodes should be on either the mapped or
* unmapped lists.
*/
static uint32_t (*lpfc_disc_action[NLP_STE_MAX_STATE * NLP_EVT_MAX_EVENT])
(struct lpfc_vport *, struct lpfc_nodelist *, void *, uint32_t) = {
/* Action routine Event Current State */
lpfc_rcv_plogi_unused_node, /* RCV_PLOGI UNUSED_NODE */
lpfc_rcv_els_unused_node, /* RCV_PRLI */
lpfc_rcv_logo_unused_node, /* RCV_LOGO */
lpfc_rcv_els_unused_node, /* RCV_ADISC */
lpfc_rcv_els_unused_node, /* RCV_PDISC */
lpfc_rcv_els_unused_node, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_cmpl_logo_unused_node, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_unused_node, /* DEVICE_RM */
lpfc_device_recov_unused_node, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_plogi_issue, /* RCV_PLOGI PLOGI_ISSUE */
lpfc_rcv_prli_plogi_issue, /* RCV_PRLI */
lpfc_rcv_logo_plogi_issue, /* RCV_LOGO */
lpfc_rcv_els_plogi_issue, /* RCV_ADISC */
lpfc_rcv_els_plogi_issue, /* RCV_PDISC */
lpfc_rcv_els_plogi_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_plogi_issue, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_cmpl_logo_plogi_issue, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_cmpl_reglogin_plogi_issue,/* CMPL_REG_LOGIN */
lpfc_device_rm_plogi_issue, /* DEVICE_RM */
lpfc_device_recov_plogi_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_adisc_issue, /* RCV_PLOGI ADISC_ISSUE */
lpfc_rcv_prli_adisc_issue, /* RCV_PRLI */
lpfc_rcv_logo_adisc_issue, /* RCV_LOGO */
lpfc_rcv_padisc_adisc_issue, /* RCV_ADISC */
lpfc_rcv_padisc_adisc_issue, /* RCV_PDISC */
lpfc_rcv_prlo_adisc_issue, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_cmpl_adisc_adisc_issue, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_adisc_issue, /* DEVICE_RM */
lpfc_device_recov_adisc_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_reglogin_issue, /* RCV_PLOGI REG_LOGIN_ISSUE */
lpfc_rcv_prli_reglogin_issue, /* RCV_PLOGI */
lpfc_rcv_logo_reglogin_issue, /* RCV_LOGO */
lpfc_rcv_padisc_reglogin_issue, /* RCV_ADISC */
lpfc_rcv_padisc_reglogin_issue, /* RCV_PDISC */
lpfc_rcv_prlo_reglogin_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_cmpl_reglogin_reglogin_issue,/* CMPL_REG_LOGIN */
lpfc_device_rm_reglogin_issue, /* DEVICE_RM */
lpfc_device_recov_reglogin_issue,/* DEVICE_RECOVERY */
lpfc_rcv_plogi_prli_issue, /* RCV_PLOGI PRLI_ISSUE */
lpfc_rcv_prli_prli_issue, /* RCV_PRLI */
lpfc_rcv_logo_prli_issue, /* RCV_LOGO */
lpfc_rcv_padisc_prli_issue, /* RCV_ADISC */
lpfc_rcv_padisc_prli_issue, /* RCV_PDISC */
lpfc_rcv_prlo_prli_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_illegal, /* CMPL_PLOGI */
lpfc_cmpl_prli_prli_issue, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_prli_issue, /* DEVICE_RM */
lpfc_device_recov_prli_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_logo_issue, /* RCV_PLOGI LOGO_ISSUE */
lpfc_rcv_prli_logo_issue, /* RCV_PRLI */
lpfc_rcv_logo_logo_issue, /* RCV_LOGO */
lpfc_rcv_padisc_logo_issue, /* RCV_ADISC */
lpfc_rcv_padisc_logo_issue, /* RCV_PDISC */
lpfc_rcv_prlo_logo_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_cmpl_logo_logo_issue, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_logo_issue, /* DEVICE_RM */
lpfc_device_recov_logo_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_unmap_node, /* RCV_PLOGI UNMAPPED_NODE */
lpfc_rcv_prli_unmap_node, /* RCV_PRLI */
lpfc_rcv_logo_unmap_node, /* RCV_LOGO */
lpfc_rcv_padisc_unmap_node, /* RCV_ADISC */
lpfc_rcv_padisc_unmap_node, /* RCV_PDISC */
lpfc_rcv_prlo_unmap_node, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_disc_illegal, /* DEVICE_RM */
lpfc_device_recov_unmap_node, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_mapped_node, /* RCV_PLOGI MAPPED_NODE */
lpfc_rcv_prli_mapped_node, /* RCV_PRLI */
lpfc_rcv_logo_mapped_node, /* RCV_LOGO */
lpfc_rcv_padisc_mapped_node, /* RCV_ADISC */
lpfc_rcv_padisc_mapped_node, /* RCV_PDISC */
lpfc_rcv_prlo_mapped_node, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_disc_illegal, /* DEVICE_RM */
lpfc_device_recov_mapped_node, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_npr_node, /* RCV_PLOGI NPR_NODE */
lpfc_rcv_prli_npr_node, /* RCV_PRLI */
lpfc_rcv_logo_npr_node, /* RCV_LOGO */
lpfc_rcv_padisc_npr_node, /* RCV_ADISC */
lpfc_rcv_padisc_npr_node, /* RCV_PDISC */
lpfc_rcv_prlo_npr_node, /* RCV_PRLO */
lpfc_cmpl_plogi_npr_node, /* CMPL_PLOGI */
lpfc_cmpl_prli_npr_node, /* CMPL_PRLI */
lpfc_cmpl_logo_npr_node, /* CMPL_LOGO */
lpfc_cmpl_adisc_npr_node, /* CMPL_ADISC */
lpfc_cmpl_reglogin_npr_node, /* CMPL_REG_LOGIN */
lpfc_device_rm_npr_node, /* DEVICE_RM */
lpfc_device_recov_npr_node, /* DEVICE_RECOVERY */
};
int
lpfc_disc_state_machine(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
uint32_t cur_state, rc;
uint32_t(*func) (struct lpfc_vport *, struct lpfc_nodelist *, void *,
uint32_t);
uint32_t got_ndlp = 0;
if (lpfc_nlp_get(ndlp))
got_ndlp = 1;
cur_state = ndlp->nlp_state;
/* DSM in event <evt> on NPort <nlp_DID> in state <cur_state> */
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"0211 DSM in event x%x on NPort x%x in "
"state %d Data: x%x\n",
evt, ndlp->nlp_DID, cur_state, ndlp->nlp_flag);
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_DSM,
"DSM in: evt:%d ste:%d did:x%x",
evt, cur_state, ndlp->nlp_DID);
func = lpfc_disc_action[(cur_state * NLP_EVT_MAX_EVENT) + evt];
rc = (func) (vport, ndlp, arg, evt);
/* DSM out state <rc> on NPort <nlp_DID> */
if (got_ndlp) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"0212 DSM out state %d on NPort x%x Data: x%x\n",
rc, ndlp->nlp_DID, ndlp->nlp_flag);
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_DSM,
"DSM out: ste:%d did:x%x flg:x%x",
rc, ndlp->nlp_DID, ndlp->nlp_flag);
/* Decrement the ndlp reference count held for this function */
lpfc_nlp_put(ndlp);
} else {
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"0213 DSM out state %d on NPort free\n", rc);
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_DSM,
"DSM out: ste:%d did:x%x flg:x%x",
rc, 0, 0);
}
return rc;
}