2019-05-27 09:55:01 +03:00
// SPDX-License-Identifier: GPL-2.0-or-later
2007-04-27 02:48:28 +04:00
/* RxRPC packet reception
*
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
* Copyright ( C ) 2007 , 2016 Red Hat , Inc . All Rights Reserved .
2007-04-27 02:48:28 +04:00
* Written by David Howells ( dhowells @ redhat . com )
*/
2016-06-02 22:08:52 +03:00
# define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2007-04-27 02:48:28 +04:00
# include "ar-internal.h"
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
static void rxrpc_proto_abort ( const char * why ,
struct rxrpc_call * call , rxrpc_seq_t seq )
{
2017-04-06 12:11:56 +03:00
if ( rxrpc_abort_call ( why , call , seq , RX_PROTOCOL_ERROR , - EBADMSG ) ) {
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
set_bit ( RXRPC_CALL_EV_ABORT , & call - > events ) ;
rxrpc_queue_call ( call ) ;
}
}
2016-09-24 20:05:27 +03:00
/*
* Do TCP - style congestion management [ RFC 5681 ] .
*/
static void rxrpc_congestion_management ( struct rxrpc_call * call ,
struct sk_buff * skb ,
2016-09-30 00:37:16 +03:00
struct rxrpc_ack_summary * summary ,
rxrpc_serial_t acked_serial )
2016-09-24 20:05:27 +03:00
{
enum rxrpc_congest_change change = rxrpc_cong_no_change ;
unsigned int cumulative_acks = call - > cong_cumul_acks ;
unsigned int cwnd = call - > cong_cwnd ;
bool resend = false ;
summary - > flight_size =
2022-04-01 01:55:08 +03:00
( call - > tx_top - call - > acks_hard_ack ) - summary - > nr_acks ;
2016-09-24 20:05:27 +03:00
if ( test_and_clear_bit ( RXRPC_CALL_RETRANS_TIMEOUT , & call - > flags ) ) {
summary - > retrans_timeo = true ;
call - > cong_ssthresh = max_t ( unsigned int ,
summary - > flight_size / 2 , 2 ) ;
cwnd = 1 ;
2016-09-30 11:26:12 +03:00
if ( cwnd > = call - > cong_ssthresh & &
2016-09-24 20:05:27 +03:00
call - > cong_mode = = RXRPC_CALL_SLOW_START ) {
call - > cong_mode = RXRPC_CALL_CONGEST_AVOIDANCE ;
call - > cong_tstamp = skb - > tstamp ;
cumulative_acks = 0 ;
}
}
cumulative_acks + = summary - > nr_new_acks ;
cumulative_acks + = summary - > nr_rot_new_acks ;
if ( cumulative_acks > 255 )
cumulative_acks = 255 ;
summary - > mode = call - > cong_mode ;
summary - > cwnd = call - > cong_cwnd ;
summary - > ssthresh = call - > cong_ssthresh ;
summary - > cumulative_acks = cumulative_acks ;
summary - > dup_acks = call - > cong_dup_acks ;
switch ( call - > cong_mode ) {
case RXRPC_CALL_SLOW_START :
2022-05-07 12:06:13 +03:00
if ( summary - > saw_nacks )
2016-09-24 20:05:27 +03:00
goto packet_loss_detected ;
if ( summary - > cumulative_acks > 0 )
cwnd + = 1 ;
2016-09-30 11:26:12 +03:00
if ( cwnd > = call - > cong_ssthresh ) {
2016-09-24 20:05:27 +03:00
call - > cong_mode = RXRPC_CALL_CONGEST_AVOIDANCE ;
call - > cong_tstamp = skb - > tstamp ;
}
goto out ;
case RXRPC_CALL_CONGEST_AVOIDANCE :
2022-05-07 12:06:13 +03:00
if ( summary - > saw_nacks )
2016-09-24 20:05:27 +03:00
goto packet_loss_detected ;
/* We analyse the number of packets that get ACK'd per RTT
* period and increase the window if we managed to fill it .
*/
2020-05-11 16:54:34 +03:00
if ( call - > peer - > rtt_count = = 0 )
2016-09-24 20:05:27 +03:00
goto out ;
if ( ktime_before ( skb - > tstamp ,
2020-05-11 16:54:34 +03:00
ktime_add_us ( call - > cong_tstamp ,
call - > peer - > srtt_us > > 3 ) ) )
2016-09-24 20:05:27 +03:00
goto out_no_clear_ca ;
change = rxrpc_cong_rtt_window_end ;
call - > cong_tstamp = skb - > tstamp ;
if ( cumulative_acks > = cwnd )
cwnd + + ;
goto out ;
case RXRPC_CALL_PACKET_LOSS :
2022-05-07 12:06:13 +03:00
if ( ! summary - > saw_nacks )
2016-09-24 20:05:27 +03:00
goto resume_normality ;
if ( summary - > new_low_nack ) {
change = rxrpc_cong_new_low_nack ;
call - > cong_dup_acks = 1 ;
if ( call - > cong_extra > 1 )
call - > cong_extra = 1 ;
goto send_extra_data ;
}
call - > cong_dup_acks + + ;
if ( call - > cong_dup_acks < 3 )
goto send_extra_data ;
change = rxrpc_cong_begin_retransmission ;
call - > cong_mode = RXRPC_CALL_FAST_RETRANSMIT ;
call - > cong_ssthresh = max_t ( unsigned int ,
summary - > flight_size / 2 , 2 ) ;
cwnd = call - > cong_ssthresh + 3 ;
call - > cong_extra = 0 ;
call - > cong_dup_acks = 0 ;
resend = true ;
goto out ;
case RXRPC_CALL_FAST_RETRANSMIT :
if ( ! summary - > new_low_nack ) {
if ( summary - > nr_new_acks = = 0 )
cwnd + = 1 ;
call - > cong_dup_acks + + ;
if ( call - > cong_dup_acks = = 2 ) {
change = rxrpc_cong_retransmit_again ;
call - > cong_dup_acks = 0 ;
resend = true ;
}
} else {
change = rxrpc_cong_progress ;
cwnd = call - > cong_ssthresh ;
2022-05-07 12:06:13 +03:00
if ( ! summary - > saw_nacks )
2016-09-24 20:05:27 +03:00
goto resume_normality ;
}
goto out ;
default :
BUG ( ) ;
goto out ;
}
resume_normality :
change = rxrpc_cong_cleared_nacks ;
call - > cong_dup_acks = 0 ;
call - > cong_extra = 0 ;
call - > cong_tstamp = skb - > tstamp ;
2016-09-30 11:26:12 +03:00
if ( cwnd < call - > cong_ssthresh )
2016-09-24 20:05:27 +03:00
call - > cong_mode = RXRPC_CALL_SLOW_START ;
else
call - > cong_mode = RXRPC_CALL_CONGEST_AVOIDANCE ;
out :
cumulative_acks = 0 ;
out_no_clear_ca :
2022-04-01 01:55:08 +03:00
if ( cwnd > = RXRPC_TX_MAX_WINDOW )
cwnd = RXRPC_TX_MAX_WINDOW ;
2016-09-24 20:05:27 +03:00
call - > cong_cwnd = cwnd ;
call - > cong_cumul_acks = cumulative_acks ;
2016-09-30 00:37:16 +03:00
trace_rxrpc_congest ( call , summary , acked_serial , change ) ;
2016-09-24 20:05:27 +03:00
if ( resend & & ! test_and_set_bit ( RXRPC_CALL_EV_RESEND , & call - > events ) )
rxrpc_queue_call ( call ) ;
return ;
packet_loss_detected :
change = rxrpc_cong_saw_nack ;
call - > cong_mode = RXRPC_CALL_PACKET_LOSS ;
call - > cong_dup_acks = 0 ;
goto send_extra_data ;
send_extra_data :
/* Send some previously unsent DATA if we have some to advance the ACK
* state .
*/
2022-04-01 01:55:08 +03:00
if ( test_bit ( RXRPC_CALL_TX_LAST , & call - > flags ) | |
summary - > nr_acks ! = call - > tx_top - call - > acks_hard_ack ) {
2016-09-24 20:05:27 +03:00
call - > cong_extra + + ;
wake_up ( & call - > waitq ) ;
}
goto out_no_clear_ca ;
}
2007-04-27 02:48:28 +04:00
/*
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
* Apply a hard ACK by advancing the Tx window .
2007-04-27 02:48:28 +04:00
*/
2018-10-08 17:46:01 +03:00
static bool rxrpc_rotate_tx_window ( struct rxrpc_call * call , rxrpc_seq_t to ,
2016-09-24 20:05:26 +03:00
struct rxrpc_ack_summary * summary )
2007-04-27 02:48:28 +04:00
{
2022-04-01 01:55:08 +03:00
struct rxrpc_txbuf * txb ;
2018-10-08 17:46:01 +03:00
bool rot_last = false ;
2007-04-27 02:48:28 +04:00
2022-04-01 01:55:08 +03:00
list_for_each_entry_rcu ( txb , & call - > tx_buffer , call_link , false ) {
if ( before_eq ( txb - > seq , call - > acks_hard_ack ) )
continue ;
2022-05-07 12:06:13 +03:00
summary - > nr_rot_new_acks + + ;
2022-04-01 01:55:08 +03:00
if ( test_bit ( RXRPC_TXBUF_LAST , & txb - > flags ) ) {
2016-09-23 14:39:22 +03:00
set_bit ( RXRPC_CALL_TX_LAST , & call - > flags ) ;
2018-10-08 17:46:01 +03:00
rot_last = true ;
}
2022-04-01 01:55:08 +03:00
if ( txb - > seq = = to )
break ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2007-04-27 02:48:28 +04:00
2022-04-01 01:55:08 +03:00
if ( rot_last )
set_bit ( RXRPC_CALL_TX_ALL_ACKED , & call - > flags ) ;
2007-04-27 02:48:28 +04:00
2022-04-01 01:55:08 +03:00
_enter ( " %x,%x,%x,%d " , to , call - > acks_hard_ack , call - > tx_top , rot_last ) ;
2016-09-14 00:36:21 +03:00
2022-04-01 01:55:08 +03:00
if ( call - > acks_lowest_nak = = call - > acks_hard_ack ) {
call - > acks_lowest_nak = to ;
} else if ( before_eq ( call - > acks_lowest_nak , to ) ) {
summary - > new_low_nack = true ;
call - > acks_lowest_nak = to ;
2007-04-27 02:48:28 +04:00
}
2018-10-08 17:46:01 +03:00
2022-04-01 01:55:08 +03:00
smp_store_release ( & call - > acks_hard_ack , to ) ;
trace_rxrpc_txqueue ( call , ( rot_last ?
rxrpc_txqueue_rotate_last :
rxrpc_txqueue_rotate ) ) ;
wake_up ( & call - > waitq ) ;
2018-10-08 17:46:01 +03:00
return rot_last ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/*
* End the transmission phase of a call .
*
* This occurs when we get an ACKALL packet , the first DATA packet of a reply ,
* or a final ACK packet .
*/
2016-09-23 14:39:22 +03:00
static bool rxrpc_end_tx_phase ( struct rxrpc_call * call , bool reply_begun ,
const char * abort_why )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
{
2018-10-08 17:46:05 +03:00
unsigned int state ;
2007-04-27 02:48:28 +04:00
2016-09-23 14:39:22 +03:00
ASSERT ( test_bit ( RXRPC_CALL_TX_LAST , & call - > flags ) ) ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
write_lock ( & call - > state_lock ) ;
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 02:50:17 +04:00
2018-10-08 17:46:05 +03:00
state = call - > state ;
switch ( state ) {
2016-09-23 14:39:22 +03:00
case RXRPC_CALL_CLIENT_SEND_REQUEST :
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_CALL_CLIENT_AWAIT_REPLY :
2016-09-23 14:39:22 +03:00
if ( reply_begun )
2018-10-08 17:46:05 +03:00
call - > state = state = RXRPC_CALL_CLIENT_RECV_REPLY ;
2016-09-23 14:39:22 +03:00
else
2018-10-08 17:46:05 +03:00
call - > state = state = RXRPC_CALL_CLIENT_AWAIT_REPLY ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
break ;
2016-09-23 14:39:22 +03:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_CALL_SERVER_AWAIT_ACK :
__rxrpc_call_completed ( call ) ;
2018-10-08 17:46:05 +03:00
state = call - > state ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
break ;
2016-09-23 14:39:22 +03:00
default :
goto bad_state ;
2007-04-27 02:48:28 +04:00
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
write_unlock ( & call - > state_lock ) ;
2018-10-08 17:46:05 +03:00
if ( state = = RXRPC_CALL_CLIENT_AWAIT_REPLY )
2022-04-01 01:55:08 +03:00
trace_rxrpc_txqueue ( call , rxrpc_txqueue_await_reply ) ;
2018-10-08 17:46:05 +03:00
else
2022-04-01 01:55:08 +03:00
trace_rxrpc_txqueue ( call , rxrpc_txqueue_end ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_leave ( " = ok " ) ;
return true ;
2016-09-23 14:39:22 +03:00
bad_state :
write_unlock ( & call - > state_lock ) ;
kdebug ( " end_tx %s " , rxrpc_call_states [ call - > state ] ) ;
rxrpc_proto_abort ( abort_why , call , call - > tx_top ) ;
return false ;
}
/*
* Begin the reply reception phase of a call .
*/
static bool rxrpc_receiving_reply ( struct rxrpc_call * call )
{
2016-09-24 20:05:26 +03:00
struct rxrpc_ack_summary summary = { 0 } ;
2017-11-24 13:18:41 +03:00
unsigned long now , timo ;
2016-09-23 14:39:22 +03:00
rxrpc_seq_t top = READ_ONCE ( call - > tx_top ) ;
2016-09-24 20:05:27 +03:00
if ( call - > ackr_reason ) {
2017-11-24 13:18:41 +03:00
now = jiffies ;
timo = now + MAX_JIFFY_OFFSET ;
WRITE_ONCE ( call - > resend_at , timo ) ;
2020-01-31 00:48:14 +03:00
WRITE_ONCE ( call - > delay_ack_at , timo ) ;
2017-11-24 13:18:41 +03:00
trace_rxrpc_timer ( call , rxrpc_timer_init_for_reply , now ) ;
2016-09-24 20:05:27 +03:00
}
2016-09-23 14:39:22 +03:00
if ( ! test_bit ( RXRPC_CALL_TX_LAST , & call - > flags ) ) {
2018-10-08 17:46:01 +03:00
if ( ! rxrpc_rotate_tx_window ( call , top , & summary ) ) {
rxrpc_proto_abort ( " TXL " , call , top ) ;
return false ;
}
2016-09-23 14:39:22 +03:00
}
2022-10-07 16:46:08 +03:00
return rxrpc_end_tx_phase ( call , true , " ETD " ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2022-08-27 16:27:56 +03:00
static void rxrpc_input_update_ack_window ( struct rxrpc_call * call ,
rxrpc_seq_t window , rxrpc_seq_t wtop )
{
atomic64_set_release ( & call - > ackr_window , ( ( u64 ) wtop ) < < 32 | window ) ;
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/*
2022-08-27 16:27:56 +03:00
* Push a DATA packet onto the Rx queue .
*/
static void rxrpc_input_queue_data ( struct rxrpc_call * call , struct sk_buff * skb ,
rxrpc_seq_t window , rxrpc_seq_t wtop ,
enum rxrpc_receive_trace why )
{
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
bool last = sp - > hdr . flags & RXRPC_LAST_PACKET ;
__skb_queue_tail ( & call - > recvmsg_queue , skb ) ;
rxrpc_input_update_ack_window ( call , window , wtop ) ;
trace_rxrpc_receive ( call , last ? why + 1 : why , sp - > hdr . serial , sp - > hdr . seq ) ;
}
/*
* Process a DATA packet .
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
*/
2022-10-07 19:44:39 +03:00
static void rxrpc_input_data_one ( struct rxrpc_call * call , struct sk_buff * skb )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
{
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
2022-08-27 16:27:56 +03:00
struct sk_buff * oos ;
2022-10-07 19:44:39 +03:00
rxrpc_serial_t serial = sp - > hdr . serial ;
2022-08-27 16:27:56 +03:00
u64 win = atomic64_read ( & call - > ackr_window ) ;
rxrpc_seq_t window = lower_32_bits ( win ) ;
rxrpc_seq_t wtop = upper_32_bits ( win ) ;
rxrpc_seq_t wlimit = window + call - > rx_winsize - 1 ;
rxrpc_seq_t seq = sp - > hdr . seq ;
2022-10-07 19:44:39 +03:00
bool last = sp - > hdr . flags & RXRPC_LAST_PACKET ;
2022-08-27 16:27:56 +03:00
int ack_reason = - 1 ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
2022-10-07 19:44:39 +03:00
rxrpc_inc_stat ( call - > rxnet , stat_rx_data ) ;
if ( sp - > hdr . flags & RXRPC_REQUEST_ACK )
rxrpc_inc_stat ( call - > rxnet , stat_rx_data_reqack ) ;
if ( sp - > hdr . flags & RXRPC_JUMBO_PACKET )
rxrpc_inc_stat ( call - > rxnet , stat_rx_data_jumbo ) ;
2019-08-19 11:25:37 +03:00
2022-10-07 19:44:39 +03:00
if ( last ) {
2022-08-27 16:27:56 +03:00
if ( test_and_set_bit ( RXRPC_CALL_RX_LAST , & call - > flags ) & &
seq + 1 ! = wtop ) {
2022-10-07 19:44:39 +03:00
rxrpc_proto_abort ( " LSN " , call , seq ) ;
2022-08-27 16:27:56 +03:00
goto err_free ;
2022-10-07 19:44:39 +03:00
}
} else {
if ( test_bit ( RXRPC_CALL_RX_LAST , & call - > flags ) & &
2022-08-27 16:27:56 +03:00
after_eq ( seq , wtop ) ) {
pr_warn ( " Packet beyond last: c=%x q=%x window=%x-%x wlimit=%x \n " ,
call - > debug_id , seq , window , wtop , wlimit ) ;
2022-10-07 19:44:39 +03:00
rxrpc_proto_abort ( " LSA " , call , seq ) ;
2022-08-27 16:27:56 +03:00
goto err_free ;
2022-10-07 19:44:39 +03:00
}
2019-08-19 11:25:37 +03:00
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
2022-08-27 16:27:56 +03:00
if ( after ( seq , call - > rx_highest_seq ) )
call - > rx_highest_seq = seq ;
2022-10-07 19:44:39 +03:00
trace_rxrpc_rx_data ( call - > debug_id , seq , serial , sp - > hdr . flags ) ;
2007-04-27 02:48:28 +04:00
2022-08-27 16:27:56 +03:00
if ( before ( seq , window ) ) {
ack_reason = RXRPC_ACK_DUPLICATE ;
goto send_ack ;
2022-10-07 19:44:39 +03:00
}
2022-08-27 16:27:56 +03:00
if ( after ( seq , wlimit ) ) {
ack_reason = RXRPC_ACK_EXCEEDS_WINDOW ;
goto send_ack ;
2022-10-07 19:44:39 +03:00
}
2022-08-27 16:27:56 +03:00
/* Queue the packet. */
if ( seq = = window ) {
rxrpc_seq_t reset_from ;
bool reset_sack = false ;
2022-10-07 19:44:39 +03:00
2022-08-27 16:27:56 +03:00
if ( sp - > hdr . flags & RXRPC_REQUEST_ACK )
ack_reason = RXRPC_ACK_REQUESTED ;
/* Send an immediate ACK if we fill in a hole */
else if ( ! skb_queue_empty ( & call - > rx_oos_queue ) )
ack_reason = RXRPC_ACK_DELAY ;
2022-10-07 19:44:39 +03:00
2022-08-27 16:27:56 +03:00
window + + ;
if ( after ( window , wtop ) )
wtop = window ;
2022-10-07 19:44:39 +03:00
2022-08-27 16:27:56 +03:00
spin_lock ( & call - > recvmsg_queue . lock ) ;
rxrpc_input_queue_data ( call , skb , window , wtop , rxrpc_receive_queue ) ;
skb = NULL ;
while ( ( oos = skb_peek ( & call - > rx_oos_queue ) ) ) {
struct rxrpc_skb_priv * osp = rxrpc_skb ( oos ) ;
if ( after ( osp - > hdr . seq , window ) )
break ;
__skb_unlink ( oos , & call - > rx_oos_queue ) ;
last = osp - > hdr . flags & RXRPC_LAST_PACKET ;
seq = osp - > hdr . seq ;
if ( ! reset_sack ) {
reset_from = seq ;
reset_sack = true ;
}
window + + ;
rxrpc_input_queue_data ( call , oos , window , wtop ,
rxrpc_receive_queue_oos ) ;
2022-10-07 19:44:39 +03:00
}
2022-08-27 16:27:56 +03:00
spin_unlock ( & call - > recvmsg_queue . lock ) ;
2022-10-07 19:44:39 +03:00
2022-08-27 16:27:56 +03:00
if ( reset_sack ) {
do {
call - > ackr_sack_table [ reset_from % RXRPC_SACK_SIZE ] = 0 ;
} while ( reset_from + + , before ( reset_from , window ) ) ;
}
2022-10-07 19:44:39 +03:00
} else {
2022-08-27 16:27:56 +03:00
bool keep = false ;
2022-10-07 19:44:39 +03:00
2022-08-27 16:27:56 +03:00
ack_reason = RXRPC_ACK_OUT_OF_SEQUENCE ;
if ( ! call - > ackr_sack_table [ seq % RXRPC_SACK_SIZE ] ) {
call - > ackr_sack_table [ seq % RXRPC_SACK_SIZE ] = 1 ;
keep = 1 ;
}
if ( after ( seq + 1 , wtop ) ) {
wtop = seq + 1 ;
rxrpc_input_update_ack_window ( call , window , wtop ) ;
}
if ( ! keep ) {
ack_reason = RXRPC_ACK_DUPLICATE ;
goto send_ack ;
}
skb_queue_walk ( & call - > rx_oos_queue , oos ) {
struct rxrpc_skb_priv * osp = rxrpc_skb ( oos ) ;
if ( after ( osp - > hdr . seq , seq ) ) {
__skb_queue_before ( & call - > rx_oos_queue , oos , skb ) ;
goto oos_queued ;
}
2022-10-07 19:44:39 +03:00
}
2022-08-27 16:27:56 +03:00
__skb_queue_tail ( & call - > rx_oos_queue , skb ) ;
oos_queued :
trace_rxrpc_receive ( call , last ? rxrpc_receive_oos_last : rxrpc_receive_oos ,
sp - > hdr . serial , sp - > hdr . seq ) ;
skb = NULL ;
2022-10-07 19:44:39 +03:00
}
2022-08-27 16:27:56 +03:00
send_ack :
if ( ack_reason < 0 & &
atomic_inc_return ( & call - > ackr_nr_unacked ) > 2 & &
test_and_set_bit ( RXRPC_CALL_IDLE_ACK_PENDING , & call - > flags ) ) {
ack_reason = RXRPC_ACK_IDLE ;
} else if ( ack_reason > = 0 ) {
set_bit ( RXRPC_CALL_IDLE_ACK_PENDING , & call - > flags ) ;
}
if ( ack_reason > = 0 )
rxrpc_send_ACK ( call , ack_reason , serial ,
2022-10-07 19:44:39 +03:00
rxrpc_propose_ack_input_data ) ;
else
rxrpc_propose_delay_ACK ( call , serial ,
rxrpc_propose_ack_input_data ) ;
2022-08-27 16:27:56 +03:00
err_free :
2022-10-07 19:44:39 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_freed ) ;
2007-04-27 02:48:28 +04:00
}
/*
2022-10-07 19:44:39 +03:00
* Split a jumbo packet and file the bits separately .
2007-04-27 02:48:28 +04:00
*/
2022-10-07 19:44:39 +03:00
static bool rxrpc_input_split_jumbo ( struct rxrpc_call * call , struct sk_buff * skb )
2007-04-27 02:48:28 +04:00
{
2022-10-07 19:44:39 +03:00
struct rxrpc_jumbo_header jhdr ;
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) , * jsp ;
struct sk_buff * jskb ;
unsigned int offset = sizeof ( struct rxrpc_wire_header ) ;
unsigned int len = skb - > len - offset ;
2007-04-27 02:48:28 +04:00
2022-10-07 19:44:39 +03:00
while ( sp - > hdr . flags & RXRPC_JUMBO_PACKET ) {
if ( len < RXRPC_JUMBO_SUBPKTLEN )
goto protocol_error ;
if ( sp - > hdr . flags & RXRPC_LAST_PACKET )
goto protocol_error ;
if ( skb_copy_bits ( skb , offset + RXRPC_JUMBO_DATALEN ,
& jhdr , sizeof ( jhdr ) ) < 0 )
goto protocol_error ;
jskb = skb_clone ( skb , GFP_ATOMIC ) ;
if ( ! jskb ) {
kdebug ( " couldn't clone " ) ;
return false ;
}
rxrpc_new_skb ( jskb , rxrpc_skb_cloned_jumbo ) ;
jsp = rxrpc_skb ( jskb ) ;
jsp - > offset = offset ;
jsp - > len = RXRPC_JUMBO_DATALEN ;
rxrpc_input_data_one ( call , jskb ) ;
sp - > hdr . flags = jhdr . flags ;
sp - > hdr . _rsvd = ntohs ( jhdr . _rsvd ) ;
sp - > hdr . seq + + ;
sp - > hdr . serial + + ;
offset + = RXRPC_JUMBO_SUBPKTLEN ;
len - = RXRPC_JUMBO_SUBPKTLEN ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2022-10-07 19:44:39 +03:00
sp - > offset = offset ;
sp - > len = len ;
rxrpc_input_data_one ( call , skb ) ;
return true ;
protocol_error :
return false ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/*
2019-08-19 11:25:36 +03:00
* Process a DATA packet , adding the packet to the Rx ring . The caller ' s
* packet ref must be passed on or discarded .
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
*/
2019-08-09 17:20:41 +03:00
static void rxrpc_input_data ( struct rxrpc_call * call , struct sk_buff * skb )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
{
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
2017-03-04 03:01:41 +03:00
enum rxrpc_call_state state ;
2022-10-07 19:44:39 +03:00
rxrpc_serial_t serial = sp - > hdr . serial ;
rxrpc_seq_t seq0 = sp - > hdr . seq ;
2007-04-27 02:48:28 +04:00
2022-08-27 16:27:56 +03:00
_enter ( " {%llx,%x},{%u,%x} " ,
atomic64_read ( & call - > ackr_window ) , call - > rx_highest_seq ,
skb - > len , seq0 ) ;
2007-04-27 02:48:28 +04:00
2022-10-07 19:44:39 +03:00
_proto ( " Rx DATA %%%u { #%u f=%02x } " ,
sp - > hdr . serial , seq0 , sp - > hdr . flags ) ;
2007-04-27 02:48:28 +04:00
2017-03-04 03:01:41 +03:00
state = READ_ONCE ( call - > state ) ;
2019-08-19 11:25:36 +03:00
if ( state > = RXRPC_CALL_COMPLETE ) {
2019-08-19 11:25:38 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_freed ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
return ;
2019-08-19 11:25:36 +03:00
}
2007-04-27 02:48:28 +04:00
2022-10-07 19:44:39 +03:00
/* Unshare the packet so that it can be modified for in-place
* decryption .
*/
if ( sp - > hdr . securityIndex ! = 0 ) {
struct sk_buff * nskb = skb_unshare ( skb , GFP_ATOMIC ) ;
if ( ! nskb ) {
rxrpc_eaten_skb ( skb , rxrpc_skb_unshared_nomem ) ;
return ;
}
if ( nskb ! = skb ) {
rxrpc_eaten_skb ( skb , rxrpc_skb_received ) ;
skb = nskb ;
rxrpc_new_skb ( skb , rxrpc_skb_unshared ) ;
sp = rxrpc_skb ( skb ) ;
}
}
2021-01-12 18:59:15 +03:00
if ( state = = RXRPC_CALL_SERVER_RECV_REQUEST ) {
2017-11-24 13:18:41 +03:00
unsigned long timo = READ_ONCE ( call - > next_req_timo ) ;
unsigned long now , expect_req_by ;
if ( timo ) {
now = jiffies ;
expect_req_by = now + timo ;
WRITE_ONCE ( call - > expect_req_by , expect_req_by ) ;
rxrpc_reduce_call_timer ( call , expect_req_by , now ,
rxrpc_timer_set_for_idle ) ;
}
}
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
spin_lock ( & call - > input_lock ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/* Received data implicitly ACKs all of the request packets we sent
* when we ' re acting as a client .
*/
2017-03-04 03:01:41 +03:00
if ( ( state = = RXRPC_CALL_CLIENT_SEND_REQUEST | |
state = = RXRPC_CALL_CLIENT_AWAIT_REPLY ) & &
2016-09-23 14:39:22 +03:00
! rxrpc_receiving_reply ( call ) )
2022-10-07 19:44:39 +03:00
goto out ;
2020-01-31 00:48:13 +03:00
2022-10-07 19:44:39 +03:00
if ( ! rxrpc_input_split_jumbo ( call , skb ) ) {
rxrpc_proto_abort ( " VLD " , call , sp - > hdr . seq ) ;
goto out ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2022-10-07 19:44:39 +03:00
skb = NULL ;
2007-04-27 02:48:28 +04:00
2022-10-07 19:44:39 +03:00
out :
2020-01-31 00:50:36 +03:00
trace_rxrpc_notify_socket ( call - > debug_id , serial ) ;
rxrpc_notify_socket ( call ) ;
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
spin_unlock ( & call - > input_lock ) ;
2019-08-19 11:25:38 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_freed ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_leave ( " [queued] " ) ;
2007-04-27 02:48:28 +04:00
}
2016-09-22 02:29:31 +03:00
/*
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
* See if there ' s a cached RTT probe to complete .
2016-09-22 02:29:31 +03:00
*/
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
static void rxrpc_complete_rtt_probe ( struct rxrpc_call * call ,
ktime_t resp_time ,
rxrpc_serial_t acked_serial ,
rxrpc_serial_t ack_serial ,
enum rxrpc_rtt_rx_trace type )
2016-09-22 02:29:31 +03:00
{
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
rxrpc_serial_t orig_serial ;
unsigned long avail ;
2016-09-22 02:29:31 +03:00
ktime_t sent_at ;
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
bool matched = false ;
int i ;
2016-09-22 02:29:31 +03:00
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
avail = READ_ONCE ( call - > rtt_avail ) ;
smp_rmb ( ) ; /* Read avail bits before accessing data. */
2016-09-22 02:29:31 +03:00
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
for ( i = 0 ; i < ARRAY_SIZE ( call - > rtt_serial ) ; i + + ) {
if ( ! test_bit ( i + RXRPC_CALL_RTT_PEND_SHIFT , & avail ) )
2016-09-22 02:29:31 +03:00
continue ;
2018-09-27 17:13:08 +03:00
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
sent_at = call - > rtt_sent_at [ i ] ;
orig_serial = call - > rtt_serial [ i ] ;
if ( orig_serial = = acked_serial ) {
clear_bit ( i + RXRPC_CALL_RTT_PEND_SHIFT , & call - > rtt_avail ) ;
smp_mb ( ) ; /* Read data before setting avail bit */
set_bit ( i , & call - > rtt_avail ) ;
if ( type ! = rxrpc_rtt_rx_cancel )
rxrpc_peer_add_rtt ( call , type , i , acked_serial , ack_serial ,
sent_at , resp_time ) ;
else
trace_rxrpc_rtt_rx ( call , rxrpc_rtt_rx_cancel , i ,
orig_serial , acked_serial , 0 , 0 ) ;
matched = true ;
}
/* If a later serial is being acked, then mark this slot as
* being available .
*/
if ( after ( acked_serial , orig_serial ) ) {
trace_rxrpc_rtt_rx ( call , rxrpc_rtt_rx_obsolete , i ,
orig_serial , acked_serial , 0 , 0 ) ;
clear_bit ( i + RXRPC_CALL_RTT_PEND_SHIFT , & call - > rtt_avail ) ;
smp_wmb ( ) ;
set_bit ( i , & call - > rtt_avail ) ;
}
}
2016-09-22 02:29:31 +03:00
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
if ( ! matched )
trace_rxrpc_rtt_rx ( call , rxrpc_rtt_rx_lost , 9 , 0 , acked_serial , 0 , 0 ) ;
2016-09-22 02:29:31 +03:00
}
2017-11-24 13:18:42 +03:00
/*
* Process the response to a ping that we sent to find out if we lost an ACK .
*
* If we got back a ping response that indicates a lower tx_top than what we
* had at the time of the ping transmission , we adjudge all the DATA packets
* sent between the response tx_top and the ping - time tx_top to have been lost .
*/
static void rxrpc_input_check_for_lost_ack ( struct rxrpc_call * call )
{
2022-05-07 12:06:13 +03:00
if ( after ( call - > acks_lost_top , call - > acks_prev_seq ) & &
! test_and_set_bit ( RXRPC_CALL_EV_RESEND , & call - > events ) )
2017-11-24 13:18:42 +03:00
rxrpc_queue_call ( call ) ;
}
2016-09-22 02:29:31 +03:00
/*
* Process a ping response .
*/
static void rxrpc_input_ping_response ( struct rxrpc_call * call ,
ktime_t resp_time ,
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
rxrpc_serial_t acked_serial ,
2016-09-22 02:29:31 +03:00
rxrpc_serial_t ack_serial )
{
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
if ( acked_serial = = call - > acks_lost_ping )
2017-11-24 13:18:42 +03:00
rxrpc_input_check_for_lost_ack ( call ) ;
2016-09-22 02:29:31 +03:00
}
2007-04-27 02:48:28 +04:00
/*
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
* Process the extra information that may be appended to an ACK packet
2007-04-27 02:48:28 +04:00
*/
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
static void rxrpc_input_ackinfo ( struct rxrpc_call * call , struct sk_buff * skb ,
struct rxrpc_ackinfo * ackinfo )
2007-04-27 02:48:28 +04:00
{
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
struct rxrpc_peer * peer ;
unsigned int mtu ;
2017-03-10 10:48:49 +03:00
bool wake = false ;
2016-09-13 12:23:01 +03:00
u32 rwind = ntohl ( ackinfo - > rwind ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_proto ( " Rx ACK %%%u Info { rx=%u max=%u rwin=%u jm=%u } " ,
sp - > hdr . serial ,
ntohl ( ackinfo - > rxMTU ) , ntohl ( ackinfo - > maxMTU ) ,
2016-09-13 12:23:01 +03:00
rwind , ntohl ( ackinfo - > jumbo_max ) ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
2022-04-01 01:55:08 +03:00
if ( rwind > RXRPC_TX_MAX_WINDOW )
rwind = RXRPC_TX_MAX_WINDOW ;
2017-03-10 10:48:49 +03:00
if ( call - > tx_winsize ! = rwind ) {
if ( rwind > call - > tx_winsize )
wake = true ;
2020-06-18 01:01:23 +03:00
trace_rxrpc_rx_rwind_change ( call , sp - > hdr . serial , rwind , wake ) ;
2017-03-10 10:48:49 +03:00
call - > tx_winsize = rwind ;
}
2016-09-30 11:33:27 +03:00
if ( call - > cong_ssthresh > rwind )
call - > cong_ssthresh = rwind ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
mtu = min ( ntohl ( ackinfo - > rxMTU ) , ntohl ( ackinfo - > maxMTU ) ) ;
peer = call - > peer ;
if ( mtu < peer - > maxdata ) {
spin_lock_bh ( & peer - > lock ) ;
peer - > maxdata = mtu ;
peer - > mtu = mtu + peer - > hdrsize ;
spin_unlock_bh ( & peer - > lock ) ;
_net ( " Net MTU %u (maxdata %u) " , peer - > mtu , peer - > maxdata ) ;
}
2017-03-10 10:48:49 +03:00
if ( wake )
wake_up ( & call - > waitq ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/*
* Process individual soft ACKs .
*
* Each ACK in the array corresponds to one packet and can be either an ACK or
* a NAK . If we get find an explicitly NAK ' d packet we resend immediately ;
* packets that lie beyond the end of the ACK list are scheduled for resend by
* the timer on the basis that the peer might just not have processed them at
* the time the ACK was sent .
*/
static void rxrpc_input_soft_acks ( struct rxrpc_call * call , u8 * acks ,
2016-09-24 20:05:26 +03:00
rxrpc_seq_t seq , int nr_acks ,
struct rxrpc_ack_summary * summary )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
{
2022-05-07 12:06:13 +03:00
unsigned int i ;
2022-04-01 01:55:08 +03:00
2022-05-07 12:06:13 +03:00
for ( i = 0 ; i < nr_acks ; i + + ) {
if ( acks [ i ] = = RXRPC_ACK_TYPE_ACK ) {
2016-09-24 20:05:26 +03:00
summary - > nr_acks + + ;
summary - > nr_new_acks + + ;
2022-05-07 12:06:13 +03:00
} else {
if ( ! summary - > saw_nacks & &
call - > acks_lowest_nak ! = seq + i ) {
call - > acks_lowest_nak = seq + i ;
2016-09-24 20:05:26 +03:00
summary - > new_low_nack = true ;
}
2022-05-07 12:06:13 +03:00
summary - > saw_nacks = true ;
2007-04-27 02:48:28 +04:00
}
}
}
rxrpc: Fix ack discard
The Rx protocol has a "previousPacket" field in it that is not handled in
the same way by all protocol implementations. Sometimes it contains the
serial number of the last DATA packet received, sometimes the sequence
number of the last DATA packet received and sometimes the highest sequence
number so far received.
AF_RXRPC is using this to weed out ACKs that are out of date (it's possible
for ACK packets to get reordered on the wire), but this does not work with
OpenAFS which will just stick the sequence number of the last packet seen
into previousPacket.
The issue being seen is that big AFS FS.StoreData RPC (eg. of ~256MiB) are
timing out when partly sent. A trace was captured, with an additional
tracepoint to show ACKs being discarded in rxrpc_input_ack(). Here's an
excerpt showing the problem.
52873.203230: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 0002449c q=00024499 fl=09
A DATA packet with sequence number 00024499 has been transmitted (the "q="
field).
...
52873.243296: rxrpc_rx_ack: c=000004ae 00012a2b DLY r=00024499 f=00024497 p=00024496 n=0
52873.243376: rxrpc_rx_ack: c=000004ae 00012a2c IDL r=0002449b f=00024499 p=00024498 n=0
52873.243383: rxrpc_rx_ack: c=000004ae 00012a2d OOS r=0002449d f=00024499 p=0002449a n=2
The Out-Of-Sequence ACK indicates that the server didn't see DATA sequence
number 00024499, but did see seq 0002449a (previousPacket, shown as "p=",
skipped the number, but firstPacket, "f=", which shows the bottom of the
window is set at that point).
52873.252663: rxrpc_retransmit: c=000004ae q=24499 a=02 xp=14581537
52873.252664: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244bc q=00024499 fl=0b *RETRANS*
The packet has been retransmitted. Retransmission recurs until the peer
says it got the packet.
52873.271013: rxrpc_rx_ack: c=000004ae 00012a31 OOS r=000244a1 f=00024499 p=0002449e n=6
More OOS ACKs indicate that the other packets that are already in the
transmission pipeline are being received. The specific-ACK list is up to 6
ACKs and NAKs.
...
52873.284792: rxrpc_rx_ack: c=000004ae 00012a49 OOS r=000244b9 f=00024499 p=000244b6 n=30
52873.284802: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=63505500
52873.284804: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c2 q=00024499 fl=0b *RETRANS*
52873.287468: rxrpc_rx_ack: c=000004ae 00012a4a OOS r=000244ba f=00024499 p=000244b7 n=31
52873.287478: rxrpc_rx_ack: c=000004ae 00012a4b OOS r=000244bb f=00024499 p=000244b8 n=32
At this point, the server's receive window is full (n=32) with presumably 1
NAK'd packet and 31 ACK'd packets. We can't transmit any more packets.
52873.287488: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=61327980
52873.287489: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c3 q=00024499 fl=0b *RETRANS*
52873.293850: rxrpc_rx_ack: c=000004ae 00012a4c DLY r=000244bc f=000244a0 p=00024499 n=25
And now we've received an ACK indicating that a DATA retransmission was
received. 7 packets have been processed (the occupied part of the window
moved, as indicated by f= and n=).
52873.293853: rxrpc_rx_discard_ack: c=000004ae r=00012a4c 000244a0<00024499 00024499<000244b8
However, the DLY ACK gets discarded because its previousPacket has gone
backwards (from p=000244b8, in the ACK at 52873.287478 to p=00024499 in the
ACK at 52873.293850).
We then end up in a continuous cycle of retransmit/discard. kafs fails to
update its window because it's discarding the ACKs and can't transmit an
extra packet that would clear the issue because the window is full.
OpenAFS doesn't change the previousPacket value in the ACKs because no new
DATA packets are received with a different previousPacket number.
Fix this by altering the discard check to only discard an ACK based on
previousPacket if there was no advance in the firstPacket. This allows us
to transmit a new packet which will cause previousPacket to advance in the
next ACK.
The check, however, needs to allow for the possibility that previousPacket
may actually have had the serial number placed in it instead - in which
case it will go outside the window and we should ignore it.
Fixes: 1a2391c30c0b ("rxrpc: Fix detection of out of order acks")
Reported-by: Dave Botsch <botsch@cnf.cornell.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-30 01:48:43 +03:00
/*
* Return true if the ACK is valid - ie . it doesn ' t appear to have regressed
* with respect to the ack state conveyed by preceding ACKs .
*/
static bool rxrpc_is_ack_valid ( struct rxrpc_call * call ,
rxrpc_seq_t first_pkt , rxrpc_seq_t prev_pkt )
{
2022-05-21 11:03:18 +03:00
rxrpc_seq_t base = READ_ONCE ( call - > acks_first_seq ) ;
rxrpc: Fix ack discard
The Rx protocol has a "previousPacket" field in it that is not handled in
the same way by all protocol implementations. Sometimes it contains the
serial number of the last DATA packet received, sometimes the sequence
number of the last DATA packet received and sometimes the highest sequence
number so far received.
AF_RXRPC is using this to weed out ACKs that are out of date (it's possible
for ACK packets to get reordered on the wire), but this does not work with
OpenAFS which will just stick the sequence number of the last packet seen
into previousPacket.
The issue being seen is that big AFS FS.StoreData RPC (eg. of ~256MiB) are
timing out when partly sent. A trace was captured, with an additional
tracepoint to show ACKs being discarded in rxrpc_input_ack(). Here's an
excerpt showing the problem.
52873.203230: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 0002449c q=00024499 fl=09
A DATA packet with sequence number 00024499 has been transmitted (the "q="
field).
...
52873.243296: rxrpc_rx_ack: c=000004ae 00012a2b DLY r=00024499 f=00024497 p=00024496 n=0
52873.243376: rxrpc_rx_ack: c=000004ae 00012a2c IDL r=0002449b f=00024499 p=00024498 n=0
52873.243383: rxrpc_rx_ack: c=000004ae 00012a2d OOS r=0002449d f=00024499 p=0002449a n=2
The Out-Of-Sequence ACK indicates that the server didn't see DATA sequence
number 00024499, but did see seq 0002449a (previousPacket, shown as "p=",
skipped the number, but firstPacket, "f=", which shows the bottom of the
window is set at that point).
52873.252663: rxrpc_retransmit: c=000004ae q=24499 a=02 xp=14581537
52873.252664: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244bc q=00024499 fl=0b *RETRANS*
The packet has been retransmitted. Retransmission recurs until the peer
says it got the packet.
52873.271013: rxrpc_rx_ack: c=000004ae 00012a31 OOS r=000244a1 f=00024499 p=0002449e n=6
More OOS ACKs indicate that the other packets that are already in the
transmission pipeline are being received. The specific-ACK list is up to 6
ACKs and NAKs.
...
52873.284792: rxrpc_rx_ack: c=000004ae 00012a49 OOS r=000244b9 f=00024499 p=000244b6 n=30
52873.284802: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=63505500
52873.284804: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c2 q=00024499 fl=0b *RETRANS*
52873.287468: rxrpc_rx_ack: c=000004ae 00012a4a OOS r=000244ba f=00024499 p=000244b7 n=31
52873.287478: rxrpc_rx_ack: c=000004ae 00012a4b OOS r=000244bb f=00024499 p=000244b8 n=32
At this point, the server's receive window is full (n=32) with presumably 1
NAK'd packet and 31 ACK'd packets. We can't transmit any more packets.
52873.287488: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=61327980
52873.287489: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c3 q=00024499 fl=0b *RETRANS*
52873.293850: rxrpc_rx_ack: c=000004ae 00012a4c DLY r=000244bc f=000244a0 p=00024499 n=25
And now we've received an ACK indicating that a DATA retransmission was
received. 7 packets have been processed (the occupied part of the window
moved, as indicated by f= and n=).
52873.293853: rxrpc_rx_discard_ack: c=000004ae r=00012a4c 000244a0<00024499 00024499<000244b8
However, the DLY ACK gets discarded because its previousPacket has gone
backwards (from p=000244b8, in the ACK at 52873.287478 to p=00024499 in the
ACK at 52873.293850).
We then end up in a continuous cycle of retransmit/discard. kafs fails to
update its window because it's discarding the ACKs and can't transmit an
extra packet that would clear the issue because the window is full.
OpenAFS doesn't change the previousPacket value in the ACKs because no new
DATA packets are received with a different previousPacket number.
Fix this by altering the discard check to only discard an ACK based on
previousPacket if there was no advance in the firstPacket. This allows us
to transmit a new packet which will cause previousPacket to advance in the
next ACK.
The check, however, needs to allow for the possibility that previousPacket
may actually have had the serial number placed in it instead - in which
case it will go outside the window and we should ignore it.
Fixes: 1a2391c30c0b ("rxrpc: Fix detection of out of order acks")
Reported-by: Dave Botsch <botsch@cnf.cornell.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-30 01:48:43 +03:00
if ( after ( first_pkt , base ) )
return true ; /* The window advanced */
if ( before ( first_pkt , base ) )
return false ; /* firstPacket regressed */
2022-05-21 11:03:18 +03:00
if ( after_eq ( prev_pkt , call - > acks_prev_seq ) )
rxrpc: Fix ack discard
The Rx protocol has a "previousPacket" field in it that is not handled in
the same way by all protocol implementations. Sometimes it contains the
serial number of the last DATA packet received, sometimes the sequence
number of the last DATA packet received and sometimes the highest sequence
number so far received.
AF_RXRPC is using this to weed out ACKs that are out of date (it's possible
for ACK packets to get reordered on the wire), but this does not work with
OpenAFS which will just stick the sequence number of the last packet seen
into previousPacket.
The issue being seen is that big AFS FS.StoreData RPC (eg. of ~256MiB) are
timing out when partly sent. A trace was captured, with an additional
tracepoint to show ACKs being discarded in rxrpc_input_ack(). Here's an
excerpt showing the problem.
52873.203230: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 0002449c q=00024499 fl=09
A DATA packet with sequence number 00024499 has been transmitted (the "q="
field).
...
52873.243296: rxrpc_rx_ack: c=000004ae 00012a2b DLY r=00024499 f=00024497 p=00024496 n=0
52873.243376: rxrpc_rx_ack: c=000004ae 00012a2c IDL r=0002449b f=00024499 p=00024498 n=0
52873.243383: rxrpc_rx_ack: c=000004ae 00012a2d OOS r=0002449d f=00024499 p=0002449a n=2
The Out-Of-Sequence ACK indicates that the server didn't see DATA sequence
number 00024499, but did see seq 0002449a (previousPacket, shown as "p=",
skipped the number, but firstPacket, "f=", which shows the bottom of the
window is set at that point).
52873.252663: rxrpc_retransmit: c=000004ae q=24499 a=02 xp=14581537
52873.252664: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244bc q=00024499 fl=0b *RETRANS*
The packet has been retransmitted. Retransmission recurs until the peer
says it got the packet.
52873.271013: rxrpc_rx_ack: c=000004ae 00012a31 OOS r=000244a1 f=00024499 p=0002449e n=6
More OOS ACKs indicate that the other packets that are already in the
transmission pipeline are being received. The specific-ACK list is up to 6
ACKs and NAKs.
...
52873.284792: rxrpc_rx_ack: c=000004ae 00012a49 OOS r=000244b9 f=00024499 p=000244b6 n=30
52873.284802: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=63505500
52873.284804: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c2 q=00024499 fl=0b *RETRANS*
52873.287468: rxrpc_rx_ack: c=000004ae 00012a4a OOS r=000244ba f=00024499 p=000244b7 n=31
52873.287478: rxrpc_rx_ack: c=000004ae 00012a4b OOS r=000244bb f=00024499 p=000244b8 n=32
At this point, the server's receive window is full (n=32) with presumably 1
NAK'd packet and 31 ACK'd packets. We can't transmit any more packets.
52873.287488: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=61327980
52873.287489: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c3 q=00024499 fl=0b *RETRANS*
52873.293850: rxrpc_rx_ack: c=000004ae 00012a4c DLY r=000244bc f=000244a0 p=00024499 n=25
And now we've received an ACK indicating that a DATA retransmission was
received. 7 packets have been processed (the occupied part of the window
moved, as indicated by f= and n=).
52873.293853: rxrpc_rx_discard_ack: c=000004ae r=00012a4c 000244a0<00024499 00024499<000244b8
However, the DLY ACK gets discarded because its previousPacket has gone
backwards (from p=000244b8, in the ACK at 52873.287478 to p=00024499 in the
ACK at 52873.293850).
We then end up in a continuous cycle of retransmit/discard. kafs fails to
update its window because it's discarding the ACKs and can't transmit an
extra packet that would clear the issue because the window is full.
OpenAFS doesn't change the previousPacket value in the ACKs because no new
DATA packets are received with a different previousPacket number.
Fix this by altering the discard check to only discard an ACK based on
previousPacket if there was no advance in the firstPacket. This allows us
to transmit a new packet which will cause previousPacket to advance in the
next ACK.
The check, however, needs to allow for the possibility that previousPacket
may actually have had the serial number placed in it instead - in which
case it will go outside the window and we should ignore it.
Fixes: 1a2391c30c0b ("rxrpc: Fix detection of out of order acks")
Reported-by: Dave Botsch <botsch@cnf.cornell.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-30 01:48:43 +03:00
return true ; /* previousPacket hasn't regressed. */
/* Some rx implementations put a serial number in previousPacket. */
if ( after_eq ( prev_pkt , base + call - > tx_winsize ) )
return false ;
return true ;
}
2007-04-27 02:48:28 +04:00
/*
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
* Process an ACK packet .
*
* ack . firstPacket is the sequence number of the first soft - ACK ' d / NAK ' d packet
* in the ACK array . Anything before that is hard - ACK ' d and may be discarded .
*
* A hard - ACK means that a packet has been processed and may be discarded ; a
* soft - ACK means that the packet may be discarded and retransmission
* requested . A phase is complete when all packets are hard - ACK ' d .
2007-04-27 02:48:28 +04:00
*/
2019-08-09 17:20:41 +03:00
static void rxrpc_input_ack ( struct rxrpc_call * call , struct sk_buff * skb )
2007-04-27 02:48:28 +04:00
{
2016-09-24 20:05:26 +03:00
struct rxrpc_ack_summary summary = { 0 } ;
2022-05-07 12:06:13 +03:00
struct rxrpc_ackpacket ack ;
2007-04-27 02:48:28 +04:00
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
2022-05-07 12:06:13 +03:00
struct rxrpc_ackinfo info ;
struct sk_buff * skb_old = NULL , * skb_put = skb ;
2020-08-20 16:12:33 +03:00
rxrpc_serial_t ack_serial , acked_serial ;
2019-04-12 18:34:16 +03:00
rxrpc_seq_t first_soft_ack , hard_ack , prev_pkt ;
2016-09-30 15:26:03 +03:00
int nr_acks , offset , ioffset ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_enter ( " " ) ;
2016-09-30 15:26:03 +03:00
offset = sizeof ( struct rxrpc_wire_header ) ;
2022-05-07 12:06:13 +03:00
if ( skb_copy_bits ( skb , offset , & ack , sizeof ( ack ) ) < 0 ) {
rxrpc_proto_abort ( " XAK " , call , 0 ) ;
goto out_not_locked ;
2007-04-27 02:48:28 +04:00
}
2022-05-07 12:06:13 +03:00
offset + = sizeof ( ack ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
2020-08-20 16:12:33 +03:00
ack_serial = sp - > hdr . serial ;
2022-05-07 12:06:13 +03:00
acked_serial = ntohl ( ack . serial ) ;
first_soft_ack = ntohl ( ack . firstPacket ) ;
prev_pkt = ntohl ( ack . previousPacket ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
hard_ack = first_soft_ack - 1 ;
2022-05-07 12:06:13 +03:00
nr_acks = ack . nAcks ;
summary . ack_reason = ( ack . reason < RXRPC_ACK__INVALID ?
ack . reason : RXRPC_ACK__INVALID ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
2020-08-20 16:12:33 +03:00
trace_rxrpc_rx_ack ( call , ack_serial , acked_serial ,
2019-04-12 18:34:16 +03:00
first_soft_ack , prev_pkt ,
2017-01-05 13:38:34 +03:00
summary . ack_reason , nr_acks ) ;
2022-05-07 12:06:13 +03:00
rxrpc_inc_stat ( call - > rxnet , stat_rx_acks [ ack . reason ] ) ;
2016-09-17 12:49:13 +03:00
2022-05-07 12:06:13 +03:00
switch ( ack . reason ) {
rxrpc: Fix loss of RTT samples due to interposed ACK
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
2020-08-20 01:29:16 +03:00
case RXRPC_ACK_PING_RESPONSE :
rxrpc_complete_rtt_probe ( call , skb - > tstamp , acked_serial , ack_serial ,
rxrpc_rtt_rx_ping_response ) ;
break ;
case RXRPC_ACK_REQUESTED :
rxrpc_complete_rtt_probe ( call , skb - > tstamp , acked_serial , ack_serial ,
rxrpc_rtt_rx_requested_ack ) ;
break ;
default :
if ( acked_serial ! = 0 )
rxrpc_complete_rtt_probe ( call , skb - > tstamp , acked_serial , ack_serial ,
rxrpc_rtt_rx_cancel ) ;
break ;
}
2016-09-22 02:29:31 +03:00
2022-05-07 12:06:13 +03:00
if ( ack . reason = = RXRPC_ACK_PING ) {
2020-08-20 16:12:33 +03:00
_proto ( " Rx ACK %%%u PING Request " , ack_serial ) ;
2020-01-31 00:48:13 +03:00
rxrpc_send_ACK ( call , RXRPC_ACK_PING_RESPONSE , ack_serial ,
rxrpc_propose_ack_respond_to_ping ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
} else if ( sp - > hdr . flags & RXRPC_REQUEST_ACK ) {
2020-01-31 00:48:13 +03:00
rxrpc_send_ACK ( call , RXRPC_ACK_REQUESTED , ack_serial ,
rxrpc_propose_ack_respond_to_ack ) ;
2007-04-27 02:48:28 +04:00
}
afs: Adjust ACK interpretation to try and cope with NAT
If a client's address changes, say if it is NAT'd, this can disrupt an in
progress operation. For most operations, this is not much of a problem,
but StoreData can be different as some servers modify the target file as
the data comes in, so if a store request is disrupted, the file can get
corrupted on the server.
The problem is that the server doesn't recognise packets that come after
the change of address as belonging to the original client and will bounce
them, either by sending an OUT_OF_SEQUENCE ACK to the apparent new call if
the packet number falls within the initial sequence number window of a call
or by sending an EXCEEDS_WINDOW ACK if it falls outside and then aborting
it. In both cases, firstPacket will be 1 and previousPacket will be 0 in
the ACK information.
Fix this by the following means:
(1) If a client call receives an EXCEEDS_WINDOW ACK with firstPacket as 1
and previousPacket as 0, assume this indicates that the server saw the
incoming packets from a different peer and thus as a different call.
Fail the call with error -ENETRESET.
(2) Also fail the call if a similar OUT_OF_SEQUENCE ACK occurs if the
first packet has been hard-ACK'd. If it hasn't been hard-ACK'd, the
ACK packet will cause it to get retransmitted, so the call will just
be repeated.
(3) Make afs_select_fileserver() treat -ENETRESET as a straight fail of
the operation.
(4) Prioritise the error code over things like -ECONNRESET as the server
did actually respond.
(5) Make writeback treat -ENETRESET as a retryable error and make it
redirty all the pages involved in a write so that the VM will retry.
Note that there is still a circumstance that I can't easily deal with: if
the operation is fully received and processed by the server, but the reply
is lost due to address change. There's no way to know if the op happened.
We can examine the server, but a conflicting change could have been made by
a third party - and we can't tell the difference. In such a case, a
message like:
kAFS: vnode modified {100058:146266} b7->b8 YFS.StoreData64 (op=2646a)
will be logged to dmesg on the next op to touch the file and the client
will reset the inode state, including invalidating clean parts of the
pagecache.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-afs@lists.infradead.org
Link: http://lists.infradead.org/pipermail/linux-afs/2021-December/004811.html # v1
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-21 10:45:55 +03:00
/* If we get an EXCEEDS_WINDOW ACK from the server, it probably
* indicates that the client address changed due to NAT . The server
* lost the call because it switched to a different peer .
*/
2022-05-07 12:06:13 +03:00
if ( unlikely ( ack . reason = = RXRPC_ACK_EXCEEDS_WINDOW ) & &
afs: Adjust ACK interpretation to try and cope with NAT
If a client's address changes, say if it is NAT'd, this can disrupt an in
progress operation. For most operations, this is not much of a problem,
but StoreData can be different as some servers modify the target file as
the data comes in, so if a store request is disrupted, the file can get
corrupted on the server.
The problem is that the server doesn't recognise packets that come after
the change of address as belonging to the original client and will bounce
them, either by sending an OUT_OF_SEQUENCE ACK to the apparent new call if
the packet number falls within the initial sequence number window of a call
or by sending an EXCEEDS_WINDOW ACK if it falls outside and then aborting
it. In both cases, firstPacket will be 1 and previousPacket will be 0 in
the ACK information.
Fix this by the following means:
(1) If a client call receives an EXCEEDS_WINDOW ACK with firstPacket as 1
and previousPacket as 0, assume this indicates that the server saw the
incoming packets from a different peer and thus as a different call.
Fail the call with error -ENETRESET.
(2) Also fail the call if a similar OUT_OF_SEQUENCE ACK occurs if the
first packet has been hard-ACK'd. If it hasn't been hard-ACK'd, the
ACK packet will cause it to get retransmitted, so the call will just
be repeated.
(3) Make afs_select_fileserver() treat -ENETRESET as a straight fail of
the operation.
(4) Prioritise the error code over things like -ECONNRESET as the server
did actually respond.
(5) Make writeback treat -ENETRESET as a retryable error and make it
redirty all the pages involved in a write so that the VM will retry.
Note that there is still a circumstance that I can't easily deal with: if
the operation is fully received and processed by the server, but the reply
is lost due to address change. There's no way to know if the op happened.
We can examine the server, but a conflicting change could have been made by
a third party - and we can't tell the difference. In such a case, a
message like:
kAFS: vnode modified {100058:146266} b7->b8 YFS.StoreData64 (op=2646a)
will be logged to dmesg on the next op to touch the file and the client
will reset the inode state, including invalidating clean parts of the
pagecache.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-afs@lists.infradead.org
Link: http://lists.infradead.org/pipermail/linux-afs/2021-December/004811.html # v1
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-21 10:45:55 +03:00
first_soft_ack = = 1 & &
prev_pkt = = 0 & &
rxrpc_is_client_call ( call ) ) {
rxrpc_set_call_completion ( call , RXRPC_CALL_REMOTELY_ABORTED ,
0 , - ENETRESET ) ;
return ;
}
/* If we get an OUT_OF_SEQUENCE ACK from the server, that can also
* indicate a change of address . However , we can retransmit the call
* if we still have it buffered to the beginning .
*/
2022-05-07 12:06:13 +03:00
if ( unlikely ( ack . reason = = RXRPC_ACK_OUT_OF_SEQUENCE ) & &
afs: Adjust ACK interpretation to try and cope with NAT
If a client's address changes, say if it is NAT'd, this can disrupt an in
progress operation. For most operations, this is not much of a problem,
but StoreData can be different as some servers modify the target file as
the data comes in, so if a store request is disrupted, the file can get
corrupted on the server.
The problem is that the server doesn't recognise packets that come after
the change of address as belonging to the original client and will bounce
them, either by sending an OUT_OF_SEQUENCE ACK to the apparent new call if
the packet number falls within the initial sequence number window of a call
or by sending an EXCEEDS_WINDOW ACK if it falls outside and then aborting
it. In both cases, firstPacket will be 1 and previousPacket will be 0 in
the ACK information.
Fix this by the following means:
(1) If a client call receives an EXCEEDS_WINDOW ACK with firstPacket as 1
and previousPacket as 0, assume this indicates that the server saw the
incoming packets from a different peer and thus as a different call.
Fail the call with error -ENETRESET.
(2) Also fail the call if a similar OUT_OF_SEQUENCE ACK occurs if the
first packet has been hard-ACK'd. If it hasn't been hard-ACK'd, the
ACK packet will cause it to get retransmitted, so the call will just
be repeated.
(3) Make afs_select_fileserver() treat -ENETRESET as a straight fail of
the operation.
(4) Prioritise the error code over things like -ECONNRESET as the server
did actually respond.
(5) Make writeback treat -ENETRESET as a retryable error and make it
redirty all the pages involved in a write so that the VM will retry.
Note that there is still a circumstance that I can't easily deal with: if
the operation is fully received and processed by the server, but the reply
is lost due to address change. There's no way to know if the op happened.
We can examine the server, but a conflicting change could have been made by
a third party - and we can't tell the difference. In such a case, a
message like:
kAFS: vnode modified {100058:146266} b7->b8 YFS.StoreData64 (op=2646a)
will be logged to dmesg on the next op to touch the file and the client
will reset the inode state, including invalidating clean parts of the
pagecache.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-afs@lists.infradead.org
Link: http://lists.infradead.org/pipermail/linux-afs/2021-December/004811.html # v1
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-21 10:45:55 +03:00
first_soft_ack = = 1 & &
prev_pkt = = 0 & &
2022-04-01 01:55:08 +03:00
call - > acks_hard_ack = = 0 & &
afs: Adjust ACK interpretation to try and cope with NAT
If a client's address changes, say if it is NAT'd, this can disrupt an in
progress operation. For most operations, this is not much of a problem,
but StoreData can be different as some servers modify the target file as
the data comes in, so if a store request is disrupted, the file can get
corrupted on the server.
The problem is that the server doesn't recognise packets that come after
the change of address as belonging to the original client and will bounce
them, either by sending an OUT_OF_SEQUENCE ACK to the apparent new call if
the packet number falls within the initial sequence number window of a call
or by sending an EXCEEDS_WINDOW ACK if it falls outside and then aborting
it. In both cases, firstPacket will be 1 and previousPacket will be 0 in
the ACK information.
Fix this by the following means:
(1) If a client call receives an EXCEEDS_WINDOW ACK with firstPacket as 1
and previousPacket as 0, assume this indicates that the server saw the
incoming packets from a different peer and thus as a different call.
Fail the call with error -ENETRESET.
(2) Also fail the call if a similar OUT_OF_SEQUENCE ACK occurs if the
first packet has been hard-ACK'd. If it hasn't been hard-ACK'd, the
ACK packet will cause it to get retransmitted, so the call will just
be repeated.
(3) Make afs_select_fileserver() treat -ENETRESET as a straight fail of
the operation.
(4) Prioritise the error code over things like -ECONNRESET as the server
did actually respond.
(5) Make writeback treat -ENETRESET as a retryable error and make it
redirty all the pages involved in a write so that the VM will retry.
Note that there is still a circumstance that I can't easily deal with: if
the operation is fully received and processed by the server, but the reply
is lost due to address change. There's no way to know if the op happened.
We can examine the server, but a conflicting change could have been made by
a third party - and we can't tell the difference. In such a case, a
message like:
kAFS: vnode modified {100058:146266} b7->b8 YFS.StoreData64 (op=2646a)
will be logged to dmesg on the next op to touch the file and the client
will reset the inode state, including invalidating clean parts of the
pagecache.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-afs@lists.infradead.org
Link: http://lists.infradead.org/pipermail/linux-afs/2021-December/004811.html # v1
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-21 10:45:55 +03:00
rxrpc_is_client_call ( call ) ) {
rxrpc_set_call_completion ( call , RXRPC_CALL_REMOTELY_ABORTED ,
0 , - ENETRESET ) ;
return ;
}
2019-04-12 18:34:16 +03:00
/* Discard any out-of-order or duplicate ACKs (outside lock). */
rxrpc: Fix ack discard
The Rx protocol has a "previousPacket" field in it that is not handled in
the same way by all protocol implementations. Sometimes it contains the
serial number of the last DATA packet received, sometimes the sequence
number of the last DATA packet received and sometimes the highest sequence
number so far received.
AF_RXRPC is using this to weed out ACKs that are out of date (it's possible
for ACK packets to get reordered on the wire), but this does not work with
OpenAFS which will just stick the sequence number of the last packet seen
into previousPacket.
The issue being seen is that big AFS FS.StoreData RPC (eg. of ~256MiB) are
timing out when partly sent. A trace was captured, with an additional
tracepoint to show ACKs being discarded in rxrpc_input_ack(). Here's an
excerpt showing the problem.
52873.203230: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 0002449c q=00024499 fl=09
A DATA packet with sequence number 00024499 has been transmitted (the "q="
field).
...
52873.243296: rxrpc_rx_ack: c=000004ae 00012a2b DLY r=00024499 f=00024497 p=00024496 n=0
52873.243376: rxrpc_rx_ack: c=000004ae 00012a2c IDL r=0002449b f=00024499 p=00024498 n=0
52873.243383: rxrpc_rx_ack: c=000004ae 00012a2d OOS r=0002449d f=00024499 p=0002449a n=2
The Out-Of-Sequence ACK indicates that the server didn't see DATA sequence
number 00024499, but did see seq 0002449a (previousPacket, shown as "p=",
skipped the number, but firstPacket, "f=", which shows the bottom of the
window is set at that point).
52873.252663: rxrpc_retransmit: c=000004ae q=24499 a=02 xp=14581537
52873.252664: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244bc q=00024499 fl=0b *RETRANS*
The packet has been retransmitted. Retransmission recurs until the peer
says it got the packet.
52873.271013: rxrpc_rx_ack: c=000004ae 00012a31 OOS r=000244a1 f=00024499 p=0002449e n=6
More OOS ACKs indicate that the other packets that are already in the
transmission pipeline are being received. The specific-ACK list is up to 6
ACKs and NAKs.
...
52873.284792: rxrpc_rx_ack: c=000004ae 00012a49 OOS r=000244b9 f=00024499 p=000244b6 n=30
52873.284802: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=63505500
52873.284804: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c2 q=00024499 fl=0b *RETRANS*
52873.287468: rxrpc_rx_ack: c=000004ae 00012a4a OOS r=000244ba f=00024499 p=000244b7 n=31
52873.287478: rxrpc_rx_ack: c=000004ae 00012a4b OOS r=000244bb f=00024499 p=000244b8 n=32
At this point, the server's receive window is full (n=32) with presumably 1
NAK'd packet and 31 ACK'd packets. We can't transmit any more packets.
52873.287488: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=61327980
52873.287489: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c3 q=00024499 fl=0b *RETRANS*
52873.293850: rxrpc_rx_ack: c=000004ae 00012a4c DLY r=000244bc f=000244a0 p=00024499 n=25
And now we've received an ACK indicating that a DATA retransmission was
received. 7 packets have been processed (the occupied part of the window
moved, as indicated by f= and n=).
52873.293853: rxrpc_rx_discard_ack: c=000004ae r=00012a4c 000244a0<00024499 00024499<000244b8
However, the DLY ACK gets discarded because its previousPacket has gone
backwards (from p=000244b8, in the ACK at 52873.287478 to p=00024499 in the
ACK at 52873.293850).
We then end up in a continuous cycle of retransmit/discard. kafs fails to
update its window because it's discarding the ACKs and can't transmit an
extra packet that would clear the issue because the window is full.
OpenAFS doesn't change the previousPacket value in the ACKs because no new
DATA packets are received with a different previousPacket number.
Fix this by altering the discard check to only discard an ACK based on
previousPacket if there was no advance in the firstPacket. This allows us
to transmit a new packet which will cause previousPacket to advance in the
next ACK.
The check, however, needs to allow for the possibility that previousPacket
may actually have had the serial number placed in it instead - in which
case it will go outside the window and we should ignore it.
Fixes: 1a2391c30c0b ("rxrpc: Fix detection of out of order acks")
Reported-by: Dave Botsch <botsch@cnf.cornell.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-30 01:48:43 +03:00
if ( ! rxrpc_is_ack_valid ( call , first_soft_ack , prev_pkt ) ) {
2020-08-20 16:12:33 +03:00
trace_rxrpc_rx_discard_ack ( call - > debug_id , ack_serial ,
2022-05-21 11:03:18 +03:00
first_soft_ack , call - > acks_first_seq ,
prev_pkt , call - > acks_prev_seq ) ;
2022-05-07 12:06:13 +03:00
goto out_not_locked ;
2020-04-29 00:06:54 +03:00
}
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
2022-05-07 12:06:13 +03:00
info . rxMTU = 0 ;
2016-09-30 15:26:03 +03:00
ioffset = offset + nr_acks + 3 ;
2022-05-07 12:06:13 +03:00
if ( skb - > len > = ioffset + sizeof ( info ) & &
skb_copy_bits ( skb , ioffset , & info , sizeof ( info ) ) < 0 ) {
rxrpc_proto_abort ( " XAI " , call , 0 ) ;
goto out_not_locked ;
}
if ( nr_acks > 0 )
skb_condense ( skb ) ;
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
spin_lock ( & call - > input_lock ) ;
2019-04-12 18:34:16 +03:00
/* Discard any out-of-order or duplicate ACKs (inside lock). */
rxrpc: Fix ack discard
The Rx protocol has a "previousPacket" field in it that is not handled in
the same way by all protocol implementations. Sometimes it contains the
serial number of the last DATA packet received, sometimes the sequence
number of the last DATA packet received and sometimes the highest sequence
number so far received.
AF_RXRPC is using this to weed out ACKs that are out of date (it's possible
for ACK packets to get reordered on the wire), but this does not work with
OpenAFS which will just stick the sequence number of the last packet seen
into previousPacket.
The issue being seen is that big AFS FS.StoreData RPC (eg. of ~256MiB) are
timing out when partly sent. A trace was captured, with an additional
tracepoint to show ACKs being discarded in rxrpc_input_ack(). Here's an
excerpt showing the problem.
52873.203230: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 0002449c q=00024499 fl=09
A DATA packet with sequence number 00024499 has been transmitted (the "q="
field).
...
52873.243296: rxrpc_rx_ack: c=000004ae 00012a2b DLY r=00024499 f=00024497 p=00024496 n=0
52873.243376: rxrpc_rx_ack: c=000004ae 00012a2c IDL r=0002449b f=00024499 p=00024498 n=0
52873.243383: rxrpc_rx_ack: c=000004ae 00012a2d OOS r=0002449d f=00024499 p=0002449a n=2
The Out-Of-Sequence ACK indicates that the server didn't see DATA sequence
number 00024499, but did see seq 0002449a (previousPacket, shown as "p=",
skipped the number, but firstPacket, "f=", which shows the bottom of the
window is set at that point).
52873.252663: rxrpc_retransmit: c=000004ae q=24499 a=02 xp=14581537
52873.252664: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244bc q=00024499 fl=0b *RETRANS*
The packet has been retransmitted. Retransmission recurs until the peer
says it got the packet.
52873.271013: rxrpc_rx_ack: c=000004ae 00012a31 OOS r=000244a1 f=00024499 p=0002449e n=6
More OOS ACKs indicate that the other packets that are already in the
transmission pipeline are being received. The specific-ACK list is up to 6
ACKs and NAKs.
...
52873.284792: rxrpc_rx_ack: c=000004ae 00012a49 OOS r=000244b9 f=00024499 p=000244b6 n=30
52873.284802: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=63505500
52873.284804: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c2 q=00024499 fl=0b *RETRANS*
52873.287468: rxrpc_rx_ack: c=000004ae 00012a4a OOS r=000244ba f=00024499 p=000244b7 n=31
52873.287478: rxrpc_rx_ack: c=000004ae 00012a4b OOS r=000244bb f=00024499 p=000244b8 n=32
At this point, the server's receive window is full (n=32) with presumably 1
NAK'd packet and 31 ACK'd packets. We can't transmit any more packets.
52873.287488: rxrpc_retransmit: c=000004ae q=24499 a=0a xp=61327980
52873.287489: rxrpc_tx_data: c=000004ae DATA ed1a3584:00000002 000244c3 q=00024499 fl=0b *RETRANS*
52873.293850: rxrpc_rx_ack: c=000004ae 00012a4c DLY r=000244bc f=000244a0 p=00024499 n=25
And now we've received an ACK indicating that a DATA retransmission was
received. 7 packets have been processed (the occupied part of the window
moved, as indicated by f= and n=).
52873.293853: rxrpc_rx_discard_ack: c=000004ae r=00012a4c 000244a0<00024499 00024499<000244b8
However, the DLY ACK gets discarded because its previousPacket has gone
backwards (from p=000244b8, in the ACK at 52873.287478 to p=00024499 in the
ACK at 52873.293850).
We then end up in a continuous cycle of retransmit/discard. kafs fails to
update its window because it's discarding the ACKs and can't transmit an
extra packet that would clear the issue because the window is full.
OpenAFS doesn't change the previousPacket value in the ACKs because no new
DATA packets are received with a different previousPacket number.
Fix this by altering the discard check to only discard an ACK based on
previousPacket if there was no advance in the firstPacket. This allows us
to transmit a new packet which will cause previousPacket to advance in the
next ACK.
The check, however, needs to allow for the possibility that previousPacket
may actually have had the serial number placed in it instead - in which
case it will go outside the window and we should ignore it.
Fixes: 1a2391c30c0b ("rxrpc: Fix detection of out of order acks")
Reported-by: Dave Botsch <botsch@cnf.cornell.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-30 01:48:43 +03:00
if ( ! rxrpc_is_ack_valid ( call , first_soft_ack , prev_pkt ) ) {
2020-08-20 16:12:33 +03:00
trace_rxrpc_rx_discard_ack ( call - > debug_id , ack_serial ,
2022-05-21 11:03:18 +03:00
first_soft_ack , call - > acks_first_seq ,
prev_pkt , call - > acks_prev_seq ) ;
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
goto out ;
2020-04-29 00:06:54 +03:00
}
2018-10-08 17:46:11 +03:00
call - > acks_latest_ts = skb - > tstamp ;
2022-05-21 11:03:18 +03:00
call - > acks_first_seq = first_soft_ack ;
call - > acks_prev_seq = prev_pkt ;
2019-04-12 18:34:16 +03:00
2022-05-07 12:06:13 +03:00
switch ( ack . reason ) {
case RXRPC_ACK_PING :
break ;
case RXRPC_ACK_PING_RESPONSE :
rxrpc_input_ping_response ( call , skb - > tstamp , acked_serial ,
ack_serial ) ;
fallthrough ;
default :
if ( after ( acked_serial , call - > acks_highest_serial ) )
call - > acks_highest_serial = acked_serial ;
break ;
}
2022-04-28 10:30:47 +03:00
2018-10-08 17:46:11 +03:00
/* Parse rwind and mtu sizes if provided. */
2022-05-07 12:06:13 +03:00
if ( info . rxMTU )
rxrpc_input_ackinfo ( call , skb , & info ) ;
2007-04-27 02:48:28 +04:00
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
if ( first_soft_ack = = 0 ) {
rxrpc_proto_abort ( " AK0 " , call , 0 ) ;
goto out ;
}
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/* Ignore ACKs unless we are or have just been transmitting. */
2017-03-04 03:01:41 +03:00
switch ( READ_ONCE ( call - > state ) ) {
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_CALL_CLIENT_SEND_REQUEST :
case RXRPC_CALL_CLIENT_AWAIT_REPLY :
case RXRPC_CALL_SERVER_SEND_REPLY :
case RXRPC_CALL_SERVER_AWAIT_ACK :
break ;
2007-04-27 02:48:28 +04:00
default :
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
goto out ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2007-04-27 02:48:28 +04:00
2022-04-01 01:55:08 +03:00
if ( before ( hard_ack , call - > acks_hard_ack ) | |
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
after ( hard_ack , call - > tx_top ) ) {
rxrpc_proto_abort ( " AKW " , call , 0 ) ;
goto out ;
}
if ( nr_acks > call - > tx_top - hard_ack ) {
rxrpc_proto_abort ( " AKN " , call , 0 ) ;
goto out ;
}
2007-04-27 02:48:28 +04:00
2022-04-01 01:55:08 +03:00
if ( after ( hard_ack , call - > acks_hard_ack ) ) {
2018-10-08 17:46:01 +03:00
if ( rxrpc_rotate_tx_window ( call , hard_ack , & summary ) ) {
rxrpc_end_tx_phase ( call , false , " ETA " ) ;
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
goto out ;
2018-10-08 17:46:01 +03:00
}
}
2007-04-27 02:48:28 +04:00
2016-09-23 14:39:22 +03:00
if ( nr_acks > 0 ) {
2022-05-07 12:06:13 +03:00
if ( offset > ( int ) skb - > len - nr_acks ) {
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
rxrpc_proto_abort ( " XSA " , call , 0 ) ;
goto out ;
}
2022-05-07 12:06:13 +03:00
spin_lock ( & call - > acks_ack_lock ) ;
skb_old = call - > acks_soft_tbl ;
call - > acks_soft_tbl = skb ;
spin_unlock ( & call - > acks_ack_lock ) ;
rxrpc_input_soft_acks ( call , skb - > data + offset , first_soft_ack ,
nr_acks , & summary ) ;
skb_put = NULL ;
} else if ( call - > acks_soft_tbl ) {
spin_lock ( & call - > acks_ack_lock ) ;
skb_old = call - > acks_soft_tbl ;
call - > acks_soft_tbl = NULL ;
spin_unlock ( & call - > acks_ack_lock ) ;
2016-09-23 14:39:22 +03:00
}
2022-04-01 01:55:08 +03:00
if ( test_bit ( RXRPC_CALL_TX_LAST , & call - > flags ) & &
2016-10-06 10:11:49 +03:00
summary . nr_acks = = call - > tx_top - hard_ack & &
rxrpc_is_client_call ( call ) )
2020-01-31 00:48:13 +03:00
rxrpc_propose_ping ( call , ack_serial ,
rxrpc_propose_ack_ping_for_lost_reply ) ;
2016-09-24 20:05:27 +03:00
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
rxrpc_congestion_management ( call , skb , & summary , acked_serial ) ;
out :
spin_unlock ( & call - > input_lock ) ;
2022-05-07 12:06:13 +03:00
out_not_locked :
rxrpc_free_skb ( skb_put , rxrpc_skb_freed ) ;
rxrpc_free_skb ( skb_old , rxrpc_skb_freed ) ;
2007-04-27 02:48:28 +04:00
}
/*
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
* Process an ACKALL packet .
2007-04-27 02:48:28 +04:00
*/
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
static void rxrpc_input_ackall ( struct rxrpc_call * call , struct sk_buff * skb )
2007-04-27 02:48:28 +04:00
{
2016-09-24 20:05:26 +03:00
struct rxrpc_ack_summary summary = { 0 } ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_proto ( " Rx ACKALL %%%u " , sp - > hdr . serial ) ;
2007-04-27 02:48:28 +04:00
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
spin_lock ( & call - > input_lock ) ;
2018-10-08 17:46:01 +03:00
if ( rxrpc_rotate_tx_window ( call , call - > tx_top , & summary ) )
2016-09-23 14:39:22 +03:00
rxrpc_end_tx_phase ( call , false , " ETL " ) ;
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
spin_unlock ( & call - > input_lock ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/*
2017-04-06 12:12:00 +03:00
* Process an ABORT packet directed at a call .
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
*/
static void rxrpc_input_abort ( struct rxrpc_call * call , struct sk_buff * skb )
{
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
__be32 wtmp ;
u32 abort_code = RX_CALL_DEAD ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_enter ( " " ) ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
if ( skb - > len > = 4 & &
2016-09-30 15:26:03 +03:00
skb_copy_bits ( skb , sizeof ( struct rxrpc_wire_header ) ,
& wtmp , sizeof ( wtmp ) ) > = 0 )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
abort_code = ntohl ( wtmp ) ;
2007-04-27 02:48:28 +04:00
2017-04-06 12:12:00 +03:00
trace_rxrpc_rx_abort ( call , sp - > hdr . serial , abort_code ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_proto ( " Rx ABORT %%%u { %x } " , sp - > hdr . serial , abort_code ) ;
2007-04-27 02:48:28 +04:00
2020-06-04 00:21:16 +03:00
rxrpc_set_call_completion ( call , RXRPC_CALL_REMOTELY_ABORTED ,
abort_code , - ECONNABORTED ) ;
2007-04-27 02:48:28 +04:00
}
/*
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
* Process an incoming call packet .
2007-04-27 02:48:28 +04:00
*/
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
static void rxrpc_input_call_packet ( struct rxrpc_call * call ,
2019-08-09 17:20:41 +03:00
struct sk_buff * skb )
2007-04-27 02:48:28 +04:00
{
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
struct rxrpc_skb_priv * sp = rxrpc_skb ( skb ) ;
2017-11-24 13:18:41 +03:00
unsigned long timo ;
2007-04-27 02:48:28 +04:00
2014-03-04 03:04:45 +04:00
_enter ( " %p,%p " , call , skb ) ;
2007-04-27 02:48:28 +04:00
2017-11-24 13:18:41 +03:00
timo = READ_ONCE ( call - > next_rx_timo ) ;
if ( timo ) {
unsigned long now = jiffies , expect_rx_by ;
2018-05-11 01:26:00 +03:00
expect_rx_by = now + timo ;
2017-11-24 13:18:41 +03:00
WRITE_ONCE ( call - > expect_rx_by , expect_rx_by ) ;
rxrpc_reduce_call_timer ( call , expect_rx_by , now ,
rxrpc_timer_set_for_normal ) ;
}
2017-11-29 17:25:50 +03:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
switch ( sp - > hdr . type ) {
case RXRPC_PACKET_TYPE_DATA :
2019-08-09 17:20:41 +03:00
rxrpc_input_data ( call , skb ) ;
2019-08-19 11:25:36 +03:00
goto no_free ;
2016-08-30 11:49:28 +03:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_PACKET_TYPE_ACK :
2019-08-09 17:20:41 +03:00
rxrpc_input_ack ( call , skb ) ;
2022-05-07 12:06:13 +03:00
goto no_free ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_PACKET_TYPE_BUSY :
_proto ( " Rx BUSY %%%u " , sp - > hdr . serial ) ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/* Just ignore BUSY packets from the server; the retry and
* lifespan timers will take care of business . BUSY packets
* from the client don ' t make sense .
*/
break ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_PACKET_TYPE_ABORT :
rxrpc_input_abort ( call , skb ) ;
break ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_PACKET_TYPE_ACKALL :
rxrpc_input_ackall ( call , skb ) ;
break ;
2016-08-30 11:49:28 +03:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
default :
break ;
2007-04-27 02:48:28 +04:00
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
2019-08-19 11:25:38 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_freed ) ;
2019-08-19 11:25:36 +03:00
no_free :
2007-04-27 02:48:28 +04:00
_leave ( " " ) ;
}
2016-10-06 10:11:49 +03:00
/*
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
* Handle a new service call on a channel implicitly completing the preceding
* call on that channel . This does not apply to client conns .
2016-10-06 10:11:49 +03:00
*
* TODO : If callNumber > call_id + 1 , renegotiate security .
*/
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
static void rxrpc_input_implicit_end_call ( struct rxrpc_sock * rx ,
struct rxrpc_connection * conn ,
2016-10-06 10:11:49 +03:00
struct rxrpc_call * call )
{
2017-03-04 03:01:41 +03:00
switch ( READ_ONCE ( call - > state ) ) {
2016-10-06 10:11:49 +03:00
case RXRPC_CALL_SERVER_AWAIT_ACK :
rxrpc_call_completed ( call ) ;
2020-08-24 01:36:59 +03:00
fallthrough ;
2016-10-06 10:11:49 +03:00
case RXRPC_CALL_COMPLETE :
break ;
default :
2017-04-06 12:11:56 +03:00
if ( rxrpc_abort_call ( " IMP " , call , 0 , RX_CALL_DEAD , - ESHUTDOWN ) ) {
2016-10-06 10:11:49 +03:00
set_bit ( RXRPC_CALL_EV_ABORT , & call - > events ) ;
rxrpc_queue_call ( call ) ;
}
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
trace_rxrpc_improper_term ( call ) ;
2016-10-06 10:11:49 +03:00
break ;
}
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
spin_lock ( & rx - > incoming_lock ) ;
2016-10-06 10:11:49 +03:00
__rxrpc_disconnect_call ( conn , call ) ;
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
spin_unlock ( & rx - > incoming_lock ) ;
2016-10-06 10:11:49 +03:00
}
2007-04-27 02:48:28 +04:00
/*
* post connection - level events to the connection
2016-08-23 17:27:25 +03:00
* - this includes challenges , responses , some aborts and call terminal packet
* retransmission .
2007-04-27 02:48:28 +04:00
*/
2016-08-09 12:11:48 +03:00
static void rxrpc_post_packet_to_conn ( struct rxrpc_connection * conn ,
2007-04-27 02:48:28 +04:00
struct sk_buff * skb )
{
_enter ( " %p,%p " , conn , skb ) ;
skb_queue_tail ( & conn - > rx_queue , skb ) ;
2016-08-09 12:11:48 +03:00
rxrpc_queue_conn ( conn ) ;
2007-04-27 02:48:28 +04:00
}
2015-04-01 18:31:26 +03:00
/*
* post endpoint - level events to the local endpoint
* - this includes debug and version messages
*/
static void rxrpc_post_packet_to_local ( struct rxrpc_local * local ,
struct sk_buff * skb )
{
_enter ( " %p,%p " , local , skb ) ;
2019-08-09 17:20:41 +03:00
if ( rxrpc_get_local_maybe ( local ) ) {
skb_queue_tail ( & local - > event_queue , skb ) ;
rxrpc_queue_local ( local ) ;
} else {
2019-08-19 11:25:38 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_freed ) ;
2019-08-09 17:20:41 +03:00
}
2015-04-01 18:31:26 +03:00
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
/*
* put a packet up for transport - level abort
*/
static void rxrpc_reject_packet ( struct rxrpc_local * local , struct sk_buff * skb )
{
2019-08-09 17:20:41 +03:00
if ( rxrpc_get_local_maybe ( local ) ) {
skb_queue_tail ( & local - > reject_queue , skb ) ;
rxrpc_queue_local ( local ) ;
} else {
2019-08-19 11:25:38 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_freed ) ;
2019-08-09 17:20:41 +03:00
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2016-03-04 18:53:46 +03:00
/*
* Extract the wire header from a packet and translate the byte order .
*/
static noinline
int rxrpc_extract_header ( struct rxrpc_skb_priv * sp , struct sk_buff * skb )
{
struct rxrpc_wire_header whdr ;
/* dig out the RxRPC connection details */
2017-04-06 12:12:00 +03:00
if ( skb_copy_bits ( skb , 0 , & whdr , sizeof ( whdr ) ) < 0 ) {
trace_rxrpc_rx_eproto ( NULL , sp - > hdr . serial ,
tracepoint_string ( " bad_hdr " ) ) ;
2016-03-04 18:53:46 +03:00
return - EBADMSG ;
2017-04-06 12:12:00 +03:00
}
2016-03-04 18:53:46 +03:00
memset ( sp , 0 , sizeof ( * sp ) ) ;
sp - > hdr . epoch = ntohl ( whdr . epoch ) ;
sp - > hdr . cid = ntohl ( whdr . cid ) ;
sp - > hdr . callNumber = ntohl ( whdr . callNumber ) ;
sp - > hdr . seq = ntohl ( whdr . seq ) ;
sp - > hdr . serial = ntohl ( whdr . serial ) ;
sp - > hdr . flags = whdr . flags ;
sp - > hdr . type = whdr . type ;
sp - > hdr . userStatus = whdr . userStatus ;
sp - > hdr . securityIndex = whdr . securityIndex ;
sp - > hdr . _rsvd = ntohs ( whdr . _rsvd ) ;
sp - > hdr . serviceId = ntohs ( whdr . serviceId ) ;
return 0 ;
}
2007-04-27 02:48:28 +04:00
/*
* handle data received on the local endpoint
* - may be called in interrupt context
2016-04-04 16:00:35 +03:00
*
2019-04-24 19:44:11 +03:00
* [ ! ] Note that as this is called from the encap_rcv hook , the socket is not
* held locked by the caller and nothing prevents sk_user_data on the UDP from
* being cleared in the middle of processing this function .
2018-10-08 17:45:56 +03:00
*
* Called with the RCU read lock held from the IP layer via UDP .
2007-04-27 02:48:28 +04:00
*/
2018-10-04 13:10:51 +03:00
int rxrpc_input_packet ( struct sock * udp_sk , struct sk_buff * skb )
2007-04-27 02:48:28 +04:00
{
2019-04-24 19:44:11 +03:00
struct rxrpc_local * local = rcu_dereference_sk_user_data ( udp_sk ) ;
2016-07-01 09:51:50 +03:00
struct rxrpc_connection * conn ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
struct rxrpc_channel * chan ;
2018-09-27 17:13:08 +03:00
struct rxrpc_call * call = NULL ;
2007-04-27 02:48:28 +04:00
struct rxrpc_skb_priv * sp ;
2018-09-27 17:13:09 +03:00
struct rxrpc_peer * peer = NULL ;
struct rxrpc_sock * rx = NULL ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
unsigned int channel ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
_enter ( " %p " , udp_sk ) ;
2007-04-27 02:48:28 +04:00
2019-04-24 19:44:11 +03:00
if ( unlikely ( ! local ) ) {
kfree_skb ( skb ) ;
return 0 ;
}
2018-09-27 17:13:08 +03:00
if ( skb - > tstamp = = 0 )
skb - > tstamp = ktime_get_real ( ) ;
2019-08-19 11:25:38 +03:00
rxrpc_new_skb ( skb , rxrpc_skb_received ) ;
2007-04-27 02:48:28 +04:00
2018-10-04 13:10:51 +03:00
skb_pull ( skb , sizeof ( struct udphdr ) ) ;
2007-12-11 22:30:32 +03:00
2016-11-04 13:28:59 +03:00
/* The UDP protocol already released all skb resources;
* we are free to add our own data there .
2016-03-04 18:53:46 +03:00
*/
2007-04-27 02:48:28 +04:00
sp = rxrpc_skb ( skb ) ;
2016-09-23 14:39:22 +03:00
/* dig out the RxRPC connection details */
if ( rxrpc_extract_header ( sp , skb ) < 0 )
goto bad_message ;
2016-09-17 12:49:15 +03:00
if ( IS_ENABLED ( CONFIG_AF_RXRPC_INJECT_LOSS ) ) {
static int lose ;
if ( ( lose + + & 7 ) = = 7 ) {
2016-09-23 14:39:22 +03:00
trace_rxrpc_rx_lose ( sp ) ;
2019-08-19 11:25:38 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_lost ) ;
2018-10-04 13:10:51 +03:00
return 0 ;
2016-09-17 12:49:15 +03:00
}
}
2018-10-05 16:05:35 +03:00
if ( skb - > tstamp = = 0 )
skb - > tstamp = ktime_get_real ( ) ;
2016-09-08 13:10:12 +03:00
trace_rxrpc_rx_packet ( sp ) ;
2007-04-27 02:48:28 +04:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
switch ( sp - > hdr . type ) {
case RXRPC_PACKET_TYPE_VERSION :
2018-09-27 17:13:08 +03:00
if ( rxrpc_to_client ( sp ) )
2018-03-30 23:04:43 +03:00
goto discard ;
2015-04-01 18:31:26 +03:00
rxrpc_post_packet_to_local ( local , skb ) ;
goto out ;
2016-06-11 00:30:27 +03:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_PACKET_TYPE_BUSY :
2018-09-27 17:13:08 +03:00
if ( rxrpc_to_server ( sp ) )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
goto discard ;
2020-08-24 01:36:59 +03:00
fallthrough ;
2018-09-27 17:13:08 +03:00
case RXRPC_PACKET_TYPE_ACK :
case RXRPC_PACKET_TYPE_ACKALL :
if ( sp - > hdr . callNumber = = 0 )
goto bad_message ;
2020-08-24 01:36:59 +03:00
fallthrough ;
2018-09-27 17:13:08 +03:00
case RXRPC_PACKET_TYPE_ABORT :
break ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
case RXRPC_PACKET_TYPE_DATA :
2018-09-27 17:13:08 +03:00
if ( sp - > hdr . callNumber = = 0 | |
sp - > hdr . seq = = 0 )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
goto bad_message ;
2019-08-27 12:13:46 +03:00
/* Unshare the packet so that it can be modified for in-place
* decryption .
*/
if ( sp - > hdr . securityIndex ! = 0 ) {
struct sk_buff * nskb = skb_unshare ( skb , GFP_ATOMIC ) ;
if ( ! nskb ) {
rxrpc_eaten_skb ( skb , rxrpc_skb_unshared_nomem ) ;
goto out ;
}
if ( nskb ! = skb ) {
rxrpc_eaten_skb ( skb , rxrpc_skb_received ) ;
skb = nskb ;
2019-09-02 13:34:08 +03:00
rxrpc_new_skb ( skb , rxrpc_skb_unshared ) ;
2019-08-27 12:13:46 +03:00
sp = rxrpc_skb ( skb ) ;
}
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
break ;
2018-04-03 01:51:39 +03:00
2018-09-27 17:13:08 +03:00
case RXRPC_PACKET_TYPE_CHALLENGE :
if ( rxrpc_to_server ( sp ) )
goto discard ;
break ;
case RXRPC_PACKET_TYPE_RESPONSE :
if ( rxrpc_to_client ( sp ) )
goto discard ;
break ;
2018-04-03 01:51:39 +03:00
/* Packet types 9-11 should just be ignored. */
case RXRPC_PACKET_TYPE_PARAMS :
case RXRPC_PACKET_TYPE_10 :
case RXRPC_PACKET_TYPE_11 :
goto discard ;
2018-09-27 17:13:08 +03:00
default :
_proto ( " Rx Bad Packet Type %u " , sp - > hdr . type ) ;
goto bad_message ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2007-04-27 02:48:28 +04:00
2018-09-27 17:13:08 +03:00
if ( sp - > hdr . serviceId = = 0 )
goto bad_message ;
if ( rxrpc_to_server ( sp ) ) {
/* Weed out packets to services we're not offering. Packets
* that would begin a call are explicitly rejected and the rest
* are just discarded .
*/
rx = rcu_dereference ( local - > service ) ;
if ( ! rx | | ( sp - > hdr . serviceId ! = rx - > srx . srx_service & &
sp - > hdr . serviceId ! = rx - > second_service ) ) {
if ( sp - > hdr . type = = RXRPC_PACKET_TYPE_DATA & &
sp - > hdr . seq = = 1 )
goto unsupported_service ;
2018-10-08 17:45:56 +03:00
goto discard ;
2018-09-27 17:13:08 +03:00
}
}
2018-09-27 17:13:09 +03:00
conn = rxrpc_find_connection_rcu ( local , skb , & peer ) ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
if ( conn ) {
if ( sp - > hdr . securityIndex ! = conn - > security_ix )
goto wrong_security ;
2016-08-23 17:27:25 +03:00
2017-06-05 16:30:49 +03:00
if ( sp - > hdr . serviceId ! = conn - > service_id ) {
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
int old_id ;
if ( ! test_bit ( RXRPC_CONN_PROBING_FOR_UPGRADE , & conn - > flags ) )
goto reupgrade ;
old_id = cmpxchg ( & conn - > service_id , conn - > params . service_id ,
sp - > hdr . serviceId ) ;
if ( old_id ! = conn - > params . service_id & &
old_id ! = sp - > hdr . serviceId )
2017-06-05 16:30:49 +03:00
goto reupgrade ;
}
2017-11-29 17:25:50 +03:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
if ( sp - > hdr . callNumber = = 0 ) {
/* Connection-level packet */
_debug ( " CONN %p {%d} " , conn , conn - > debug_id ) ;
rxrpc_post_packet_to_conn ( conn , skb ) ;
2018-10-08 17:45:56 +03:00
goto out ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2019-08-09 17:20:41 +03:00
if ( ( int ) sp - > hdr . serial - ( int ) conn - > hi_serial > 0 )
conn - > hi_serial = sp - > hdr . serial ;
2007-04-27 02:48:28 +04:00
2016-07-01 09:51:50 +03:00
/* Call-bound packets are routed by connection channel. */
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
channel = sp - > hdr . cid & RXRPC_CHANNELMASK ;
chan = & conn - > channels [ channel ] ;
2016-08-23 17:27:25 +03:00
/* Ignore really old calls */
if ( sp - > hdr . callNumber < chan - > last_call )
2018-10-08 17:45:56 +03:00
goto discard ;
2016-08-23 17:27:25 +03:00
if ( sp - > hdr . callNumber = = chan - > last_call ) {
2018-03-30 23:04:44 +03:00
if ( chan - > call | |
sp - > hdr . type = = RXRPC_PACKET_TYPE_ABORT )
2018-10-08 17:45:56 +03:00
goto discard ;
2018-03-30 23:04:44 +03:00
/* For the previous service call, if completed
* successfully , we discard all further packets .
2016-08-23 17:27:25 +03:00
*/
2016-08-24 15:06:14 +03:00
if ( rxrpc_conn_is_service ( conn ) & &
2018-03-30 23:04:44 +03:00
chan - > last_type = = RXRPC_PACKET_TYPE_ACK )
2018-10-08 17:45:56 +03:00
goto discard ;
2016-08-23 17:27:25 +03:00
2018-03-30 23:04:44 +03:00
/* But otherwise we need to retransmit the final packet
* from data cached in the connection record .
2016-08-23 17:27:25 +03:00
*/
2018-07-23 19:18:37 +03:00
if ( sp - > hdr . type = = RXRPC_PACKET_TYPE_DATA )
trace_rxrpc_rx_data ( chan - > call_debug_id ,
sp - > hdr . seq ,
sp - > hdr . serial ,
2022-10-07 19:44:39 +03:00
sp - > hdr . flags ) ;
2016-08-23 17:27:25 +03:00
rxrpc_post_packet_to_conn ( conn , skb ) ;
2018-10-08 17:45:56 +03:00
goto out ;
2016-08-23 17:27:25 +03:00
}
2016-03-04 18:53:46 +03:00
2016-08-23 17:27:25 +03:00
call = rcu_dereference ( chan - > call ) ;
2016-10-06 10:11:49 +03:00
if ( sp - > hdr . callNumber > chan - > call_id ) {
2018-10-08 17:45:56 +03:00
if ( rxrpc_to_client ( sp ) )
2016-10-06 10:11:49 +03:00
goto reject_packet ;
if ( call )
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
rxrpc_input_implicit_end_call ( rx , conn , call ) ;
2016-10-06 10:11:49 +03:00
call = NULL ;
}
2017-06-05 16:30:49 +03:00
rxrpc: Fix handling of call quietly cancelled out on server
Sometimes an in-progress call will stop responding on the fileserver when
the fileserver quietly cancels the call with an internally marked abort
(RX_CALL_DEAD), without sending an ABORT to the client.
This causes the client's call to eventually expire from lack of incoming
packets directed its way, which currently leads to it being cancelled
locally with ETIME. Note that it's not currently clear as to why this
happens as it's really hard to reproduce.
The rotation policy implement by kAFS, however, doesn't differentiate
between ETIME meaning we didn't get any response from the server and ETIME
meaning the call got cancelled mid-flow. The latter leads to an oops when
fetching data as the rotation partially resets the afs_read descriptor,
which can result in a cleared page pointer being dereferenced because that
page has already been filled.
Handle this by the following means:
(1) Set a flag on a call when we receive a packet for it.
(2) Store the highest packet serial number so far received for a call
(bearing in mind this may wrap).
(3) If, when the "not received anything recently" timeout expires on a
call, we've received at least one packet for a call and the connection
as a whole has received packets more recently than that call, then
cancel the call locally with ECONNRESET rather than ETIME.
This indicates that the call was definitely in progress on the server.
(4) In kAFS, if the rotation algorithm sees ECONNRESET rather than ETIME,
don't try the next server, but rather abort the call.
This avoids the oops as we don't try to reuse the afs_read struct.
Rather, as-yet ungotten pages will be reread at a later data.
Also:
(5) Add an rxrpc tracepoint to log detection of the call being reset.
Without this, I occasionally see an oops like the following:
general protection fault: 0000 [#1] SMP PTI
...
RIP: 0010:_copy_to_iter+0x204/0x310
RSP: 0018:ffff8800cae0f828 EFLAGS: 00010206
RAX: 0000000000000560 RBX: 0000000000000560 RCX: 0000000000000560
RDX: ffff8800cae0f968 RSI: ffff8800d58b3312 RDI: 0005080000000000
RBP: ffff8800cae0f968 R08: 0000000000000560 R09: ffff8800ca00f400
R10: ffff8800c36f28d4 R11: 00000000000008c4 R12: ffff8800cae0f958
R13: 0000000000000560 R14: ffff8800d58b3312 R15: 0000000000000560
FS: 00007fdaef108080(0000) GS:ffff8800ca680000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb28a8fa000 CR3: 00000000d2a76002 CR4: 00000000001606e0
Call Trace:
skb_copy_datagram_iter+0x14e/0x289
rxrpc_recvmsg_data.isra.0+0x6f3/0xf68
? trace_buffer_unlock_commit_regs+0x4f/0x89
rxrpc_kernel_recv_data+0x149/0x421
afs_extract_data+0x1e0/0x798
? afs_wait_for_call_to_complete+0xc9/0x52e
afs_deliver_fs_fetch_data+0x33a/0x5ab
afs_deliver_to_call+0x1ee/0x5e0
? afs_wait_for_call_to_complete+0xc9/0x52e
afs_wait_for_call_to_complete+0x12b/0x52e
? wake_up_q+0x54/0x54
afs_make_call+0x287/0x462
? afs_fs_fetch_data+0x3e6/0x3ed
? rcu_read_lock_sched_held+0x5d/0x63
afs_fs_fetch_data+0x3e6/0x3ed
afs_fetch_data+0xbb/0x14a
afs_readpages+0x317/0x40d
__do_page_cache_readahead+0x203/0x2ba
? ondemand_readahead+0x3a7/0x3c1
ondemand_readahead+0x3a7/0x3c1
generic_file_buffered_read+0x18b/0x62f
__vfs_read+0xdb/0xfe
vfs_read+0xb2/0x137
ksys_read+0x50/0x8c
do_syscall_64+0x7d/0x1a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Note the weird value in RDI which is a result of trying to kmap() a NULL
page pointer.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-03 04:17:39 +03:00
if ( call ) {
if ( sp - > hdr . serviceId ! = call - > service_id )
call - > service_id = sp - > hdr . serviceId ;
if ( ( int ) sp - > hdr . serial - ( int ) call - > rx_serial > 0 )
call - > rx_serial = sp - > hdr . serial ;
if ( ! test_bit ( RXRPC_CALL_RX_HEARD , & call - > flags ) )
set_bit ( RXRPC_CALL_RX_HEARD , & call - > flags ) ;
}
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
}
2016-07-01 09:51:50 +03:00
2022-05-21 10:45:22 +03:00
if ( ! call | | refcount_read ( & call - > ref ) = = 0 ) {
2018-09-27 17:13:08 +03:00
if ( rxrpc_to_client ( sp ) | |
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
sp - > hdr . type ! = RXRPC_PACKET_TYPE_DATA )
2018-10-08 17:45:56 +03:00
goto bad_message ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
if ( sp - > hdr . seq ! = 1 )
2018-10-08 17:45:56 +03:00
goto discard ;
rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant. This means that
certain locking could be dispensed with.
This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously. Each of those
cpus can be in the rxrpc_input_packet() function at the same time.
Fix by adding or changing some structure members:
(1) Add peer->rtt_input_lock to serialise access to the RTT buffer.
(2) Make conn->service_id into a 32-bit variable so that it can be
cmpxchg'd on all arches.
(3) Add call->input_lock to serialise access to the Rx/Tx state. Note
that although the Rx and Tx states are (almost) entirely separate,
there's no point completing the separation and having separate locks
since it's a bi-phasal RPC protocol rather than a bi-direction
streaming protocol. Data transmission and data reception do not take
place simultaneously on any particular call.
and making the following functional changes:
(1) In rxrpc_input_data(), hold call->input_lock around the core to
prevent simultaneous producing of packets into the Rx ring and
updating of tracking state for a particular call.
(2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
The bit test and bit clear can then be combined. No further locking
is needed here.
(3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
the ACK packet. The superseded ACK check is then done both before and
after the lock is taken.
The handing of ackinfo data is split, parsing before the lock is taken
and processing with it held. This is keyed on rxMTU being non-zero.
Congestion management is also done within the locked section.
(4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
rotation. The ACKALL packet carries no information and is only really
useful after all packets have been transmitted since it's imprecise.
(5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
prevent calls being simultaneously implicitly ended on two cpus and
also to prevent any races with incoming call setup.
(6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
on a connection. It is only permitted to happen once for a
connection.
(7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
rx->incoming_lock to see if someone else set up the call, connection
or peer whilst we were getting there. We can't trust the values from
the earlier routing check unless we pin refs on them - which we want
to avoid.
Further, we need to allow for an incoming call to have its state
changed on another CPU between us making it live and us adjusting it
because the conn is now in the RXRPC_CONN_SERVICE state.
(8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
to the RTT buffer. Don't need to lock around setting peer->rtt.
For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:
> rxrpc_input_packet()
* PACKET CHECKING
* ROUTING
> rxrpc_post_packet_to_local()
> rxrpc_find_connection_rcu() - uses RCU
> rxrpc_lookup_peer_rcu() - uses RCU
> rxrpc_find_service_conn_rcu() - uses RCU
> idr_find() - uses RCU
* CONNECTION-LEVEL PROCESSING
- Service upgrade
- Can only happen once per conn
! Changed to use cmpxchg
> rxrpc_post_packet_to_conn()
- Setting conn->hi_serial
- Probably safe not using locks
- Maybe use cmpxchg
* CALL-LEVEL PROCESSING
> Old-call checking
> rxrpc_input_implicit_end_call()
> rxrpc_call_completed()
> rxrpc_queue_call()
! Need to take rx->incoming_lock
> __rxrpc_disconnect_call()
> rxrpc_notify_socket()
> rxrpc_new_incoming_call()
- Uses rx->incoming_lock for the entire process
- Might be able to drop this earlier in favour of the call lock
> rxrpc_incoming_call()
! Conflicts with rxrpc_input_implicit_end_call()
> rxrpc_send_ping()
- Don't need locks to check rtt state
> rxrpc_propose_ACK
* PACKET DISTRIBUTION
> rxrpc_input_call_packet()
> rxrpc_input_data()
* QUEUE DATA PACKET ON CALL
> rxrpc_reduce_call_timer()
- Uses timer_reduce()
! Needs call->input_lock()
> rxrpc_receiving_reply()
! Needs locking around ack state
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_proto_abort()
> rxrpc_input_dup_data()
- Fills the Rx buffer
- rxrpc_propose_ACK()
- rxrpc_notify_socket()
> rxrpc_input_ack()
* APPLY ACK PACKET TO CALL AND DISCARD PACKET
> rxrpc_input_ping_response()
- Probably doesn't need any extra locking
! Need READ_ONCE() on call->ping_serial
> rxrpc_input_check_for_lost_ack()
- Takes call->lock to consult Tx buffer
> rxrpc_peer_add_rtt()
! Needs to take a lock (peer->rtt_input_lock)
! Could perhaps manage with cmpxchg() and xadd() instead
> rxrpc_input_requested_ack
- Consults Tx buffer
! Probably needs a lock
> rxrpc_peer_add_rtt()
> rxrpc_propose_ack()
> rxrpc_input_ackinfo()
- Changes call->tx_winsize
! Use cmpxchg to handle change
! Should perhaps track serial number
- Uses peer->lock to record MTU specification changes
> rxrpc_proto_abort()
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_input_soft_acks()
- Consults the Tx buffer
> rxrpc_congestion_management()
- Modifies the Tx annotations
! Needs call->input_lock()
> rxrpc_queue_call()
> rxrpc_input_abort()
* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
> rxrpc_set_call_completion()
> rxrpc_notify_socket()
> rxrpc_input_ackall()
* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
! Need to take call->input_lock
> rxrpc_rotate_tx_window()
> rxrpc_end_tx_phase()
> rxrpc_reject_packet()
There are some functions used by the above that queue the packet, after
which the procedure is terminated:
- rxrpc_post_packet_to_local()
- local->event_queue is an sk_buff_head
- local->processor is a work_struct
- rxrpc_post_packet_to_conn()
- conn->rx_queue is an sk_buff_head
- conn->processor is a work_struct
- rxrpc_reject_packet()
- local->reject_queue is an sk_buff_head
- local->processor is a work_struct
And some that offload processing to process context:
- rxrpc_notify_socket()
- Uses RCU lock
- Uses call->notify_lock to call call->notify_rx
- Uses call->recvmsg_lock to queue recvmsg side
- rxrpc_queue_call()
- call->processor is a work_struct
- rxrpc_propose_ACK()
- Uses call->lock to wrap __rxrpc_propose_ACK()
And a bunch that complete a call, all of which use call->state_lock to
protect the call state:
- rxrpc_call_completed()
- rxrpc_set_call_completion()
- rxrpc_abort_call()
- rxrpc_proto_abort()
- Also uses rxrpc_queue_call()
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 17:46:25 +03:00
call = rxrpc_new_incoming_call ( local , rx , skb ) ;
2018-10-08 17:45:56 +03:00
if ( ! call )
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
goto reject_packet ;
2014-03-04 03:04:45 +04:00
}
2015-04-01 18:31:26 +03:00
2019-08-19 11:25:36 +03:00
/* Process a call packet; this either discards or passes on the ref
* elsewhere .
*/
2019-08-09 17:20:41 +03:00
rxrpc_input_call_packet ( call , skb ) ;
2019-08-19 11:25:36 +03:00
goto out ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
discard :
2019-08-19 11:25:38 +03:00
rxrpc_free_skb ( skb , rxrpc_skb_freed ) ;
2015-04-01 18:31:26 +03:00
out :
2016-09-08 13:10:12 +03:00
trace_rxrpc_rx_done ( 0 , 0 ) ;
2018-10-04 13:10:51 +03:00
return 0 ;
2016-07-01 09:51:50 +03:00
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
wrong_security :
2018-03-28 01:03:00 +03:00
trace_rxrpc_abort ( 0 , " SEC " , sp - > hdr . cid , sp - > hdr . callNumber , sp - > hdr . seq ,
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
RXKADINCONSISTENCY , EBADMSG ) ;
skb - > priority = RXKADINCONSISTENCY ;
goto post_abort ;
2007-04-27 02:48:28 +04:00
2018-09-27 17:13:08 +03:00
unsupported_service :
trace_rxrpc_abort ( 0 , " INV " , sp - > hdr . cid , sp - > hdr . callNumber , sp - > hdr . seq ,
RX_INVALID_OPERATION , EOPNOTSUPP ) ;
skb - > priority = RX_INVALID_OPERATION ;
goto post_abort ;
2017-06-05 16:30:49 +03:00
reupgrade :
2018-03-28 01:03:00 +03:00
trace_rxrpc_abort ( 0 , " UPG " , sp - > hdr . cid , sp - > hdr . callNumber , sp - > hdr . seq ,
2017-06-05 16:30:49 +03:00
RX_PROTOCOL_ERROR , EBADMSG ) ;
goto protocol_error ;
2007-04-27 02:48:28 +04:00
bad_message :
2018-03-28 01:03:00 +03:00
trace_rxrpc_abort ( 0 , " BAD " , sp - > hdr . cid , sp - > hdr . callNumber , sp - > hdr . seq ,
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
RX_PROTOCOL_ERROR , EBADMSG ) ;
2017-06-05 16:30:49 +03:00
protocol_error :
2007-04-27 02:48:28 +04:00
skb - > priority = RX_PROTOCOL_ERROR ;
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 13:10:12 +03:00
post_abort :
rxrpc: Emit BUSY packets when supposed to rather than ABORTs
In the input path, a received sk_buff can be marked for rejection by
setting RXRPC_SKB_MARK_* in skb->mark and, if needed, some auxiliary data
(such as an abort code) in skb->priority. The rejection is handled by
queueing the sk_buff up for dealing with in process context. The output
code reads the mark and priority and, theoretically, generates an
appropriate response packet.
However, if RXRPC_SKB_MARK_BUSY is set, this isn't noticed and an ABORT
message with a random abort code is generated (since skb->priority wasn't
set to anything).
Fix this by outputting the appropriate sort of packet.
Also, whilst we're at it, most of the marks are no longer used, so remove
them and rename the remaining two to something more obvious.
Fixes: 248f219cb8bc ("rxrpc: Rewrite the data and ack handling code")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-09-27 17:13:08 +03:00
skb - > mark = RXRPC_SKB_MARK_REJECT_ABORT ;
2016-09-08 13:10:12 +03:00
reject_packet :
trace_rxrpc_rx_done ( skb - > mark , skb - > priority ) ;
2007-04-27 02:48:28 +04:00
rxrpc_reject_packet ( local , skb ) ;
_leave ( " [badmsg] " ) ;
2018-10-04 13:10:51 +03:00
return 0 ;
2007-04-27 02:48:28 +04:00
}