2005-11-09 08:37:07 +03:00
/*
2008-04-18 04:41:10 +04:00
em28xx - video . c - driver for Empia EM2800 / EM2820 / 2840 USB
video capture devices
2005-11-09 08:37:07 +03:00
2005-11-09 08:38:25 +03:00
Copyright ( C ) 2005 Ludovico Cavedon < cavedon @ sssup . it >
Markus Rechberger < mrechberger @ gmail . com >
2006-04-03 14:53:40 +04:00
Mauro Carvalho Chehab < mchehab @ infradead . org >
2005-11-09 08:38:25 +03:00
Sascha Sommer < saschasommer @ freenet . de >
2012-11-08 21:11:45 +04:00
Copyright ( C ) 2012 Frank Schäfer < fschaefer . oss @ googlemail . com >
2005-11-09 08:37:07 +03:00
2006-01-23 22:10:54 +03:00
Some parts based on SN9C10x PC Camera Controllers GPL driver made
by Luca Risolia < luca . risolia @ studio . unibo . it >
2005-11-09 08:37:07 +03:00
This program is free software ; you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation ; either version 2 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program ; if not , write to the Free Software
Foundation , Inc . , 675 Mass Ave , Cambridge , MA 0213 9 , USA .
*/
# include <linux/init.h>
# include <linux/list.h>
# include <linux/module.h>
# include <linux/kernel.h>
2006-01-23 22:11:08 +03:00
# include <linux/bitmap.h>
2005-11-09 08:37:07 +03:00
# include <linux/usb.h>
# include <linux/i2c.h>
2007-11-01 07:16:09 +03:00
# include <linux/mm.h>
2006-01-15 12:52:23 +03:00
# include <linux/mutex.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
# include <linux/slab.h>
2005-11-09 08:37:07 +03:00
2005-11-09 08:38:25 +03:00
# include "em28xx.h"
2006-01-09 20:25:14 +03:00
# include <media/v4l2-common.h>
2008-07-20 15:12:02 +04:00
# include <media/v4l2-ioctl.h>
2012-09-07 13:10:12 +04:00
# include <media/v4l2-event.h>
2008-12-23 02:58:41 +03:00
# include <media/v4l2-chip-ident.h>
2006-03-19 18:35:57 +03:00
# include <media/msp3400.h>
V4L/DVB (7060): em28xx: remove has_tuner
has_tuner flag doesn't make much sense, since tuner_type=TUNER_ABSENT
means the same thing.
Having two ways to say that a tuner is not present is
not nice, since it may lead to bad setups. In fact, with the previous
code, if a device were using has_tuner=0, but the user forces a tuner,
with modprobe option tuner=type, the modprobe option won't work.
Also, tveeprom returns TUNER_ABSENT, when tuner is unknown or absent.
So, with the previous logic, in this case, the driver should set
has_tuner=0, or has_tuner=1 otherwise.
Instead of adding several additional tests and setups, better just to
remove .has_tuner.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-01-24 12:59:20 +03:00
# include <media/tuner.h>
2005-11-09 08:37:07 +03:00
2005-11-09 08:38:25 +03:00
# define DRIVER_AUTHOR "Ludovico Cavedon <cavedon@sssup.it>, " \
" Markus Rechberger <mrechberger@gmail.com>, " \
2006-04-03 14:53:40 +04:00
" Mauro Carvalho Chehab <mchehab@infradead.org>, " \
2005-11-09 08:38:25 +03:00
" Sascha Sommer <saschasommer@freenet.de> "
2005-11-09 08:37:07 +03:00
2005-11-09 08:38:25 +03:00
# define DRIVER_DESC "Empia em28xx based USB video device driver"
[media] Stop using linux/version.h on most video drivers
All the modified drivers didn't have any version increment since
Jan, 1 2011. Several of them didn't have any version increment
for a long time, even having new features and important bug fixes
happening.
As we're now filling the QUERYCAP version with the current Kernel
Release, we don't need to maintain a per-driver version control
anymore. So, let's just use the default.
In order to preserve the Kernel module version history, a
KERNEL_VERSION() macro were added to all modified drivers, and
the extraver number were incremented.
I opted to preserve the per-driver version control to a few
pwc, pvrusb2, s2255, s5p-fimc and sh_vou.
A few drivers are still using the legacy way to handle ioctl's.
So, we can't do such change on them, otherwise, they'll break.
Those are: uvc, et61x251 and sn9c102.
The rationale is that the per-driver version control seems to be
actively maintained on those.
Yet, I think that the better for them would be to just use the
default version numbering, instead of doing that by themselves.
While here, removed a few uneeded include linux/version.h
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-06-24 21:45:49 +04:00
2013-02-11 21:07:55 +04:00
# define EM28XX_VERSION "0.2.0"
2005-11-09 08:37:07 +03:00
2005-11-09 08:38:27 +03:00
# define em28xx_videodbg(fmt, arg...) do {\
2005-11-09 08:37:43 +03:00
if ( video_debug ) \
printk ( KERN_INFO " %s %s : " fmt , \
2008-04-09 06:20:00 +04:00
dev - > name , __func__ , # # arg ) ; } while ( 0 )
2005-11-09 08:37:07 +03:00
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
static unsigned int isoc_debug ;
2008-04-13 21:41:23 +04:00
module_param ( isoc_debug , int , 0644 ) ;
MODULE_PARM_DESC ( isoc_debug , " enable debug messages [isoc transfers] " ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2008-04-18 04:41:10 +04:00
# define em28xx_isocdbg(fmt, arg...) \
do { \
if ( isoc_debug ) { \
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
printk ( KERN_INFO " %s %s : " fmt , \
2008-04-18 04:41:10 +04:00
dev - > name , __func__ , # # arg ) ; \
} \
} while ( 0 )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2005-11-09 08:37:07 +03:00
MODULE_AUTHOR ( DRIVER_AUTHOR ) ;
MODULE_DESCRIPTION ( DRIVER_DESC ) ;
MODULE_LICENSE ( " GPL " ) ;
[media] Stop using linux/version.h on most video drivers
All the modified drivers didn't have any version increment since
Jan, 1 2011. Several of them didn't have any version increment
for a long time, even having new features and important bug fixes
happening.
As we're now filling the QUERYCAP version with the current Kernel
Release, we don't need to maintain a per-driver version control
anymore. So, let's just use the default.
In order to preserve the Kernel module version history, a
KERNEL_VERSION() macro were added to all modified drivers, and
the extraver number were incremented.
I opted to preserve the per-driver version control to a few
pwc, pvrusb2, s2255, s5p-fimc and sh_vou.
A few drivers are still using the legacy way to handle ioctl's.
So, we can't do such change on them, otherwise, they'll break.
Those are: uvc, et61x251 and sn9c102.
The rationale is that the per-driver version control seems to be
actively maintained on those.
Yet, I think that the better for them would be to just use the
default version numbering, instead of doing that by themselves.
While here, removed a few uneeded include linux/version.h
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-06-24 21:45:49 +04:00
MODULE_VERSION ( EM28XX_VERSION ) ;
2005-11-09 08:37:07 +03:00
2013-01-04 23:16:24 +04:00
static unsigned int video_nr [ ] = { [ 0 . . . ( EM28XX_MAXBOARDS - 1 ) ] = - 1U } ;
static unsigned int vbi_nr [ ] = { [ 0 . . . ( EM28XX_MAXBOARDS - 1 ) ] = - 1U } ;
static unsigned int radio_nr [ ] = { [ 0 . . . ( EM28XX_MAXBOARDS - 1 ) ] = - 1U } ;
2008-01-05 23:22:01 +03:00
2006-01-23 22:11:08 +03:00
module_param_array ( video_nr , int , NULL , 0444 ) ;
module_param_array ( vbi_nr , int , NULL , 0444 ) ;
2008-01-05 23:22:01 +03:00
module_param_array ( radio_nr , int , NULL , 0444 ) ;
MODULE_PARM_DESC ( video_nr , " video device numbers " ) ;
MODULE_PARM_DESC ( vbi_nr , " vbi device numbers " ) ;
MODULE_PARM_DESC ( radio_nr , " radio device numbers " ) ;
2005-11-09 08:37:24 +03:00
2008-04-22 21:41:48 +04:00
static unsigned int video_debug ;
2008-04-18 04:41:10 +04:00
module_param ( video_debug , int , 0644 ) ;
MODULE_PARM_DESC ( video_debug , " enable debug messages [video] " ) ;
2005-11-09 08:37:07 +03:00
2008-12-20 15:06:37 +03:00
/* supported video standards */
static struct em28xx_fmt format [ ] = {
{
2009-07-03 09:54:18 +04:00
. name = " 16 bpp YUY2, 4:2:2, packed " ,
2008-12-20 15:06:37 +03:00
. fourcc = V4L2_PIX_FMT_YUYV ,
. depth = 16 ,
2008-12-30 05:34:37 +03:00
. reg = EM28XX_OUTFMT_YUV422_Y0UY1V ,
2009-06-30 15:36:17 +04:00
} , {
2009-07-03 09:54:18 +04:00
. name = " 16 bpp RGB 565, LE " ,
2009-06-30 15:36:17 +04:00
. fourcc = V4L2_PIX_FMT_RGB565 ,
. depth = 16 ,
2009-07-03 09:54:18 +04:00
. reg = EM28XX_OUTFMT_RGB_16_656 ,
} , {
. name = " 8 bpp Bayer BGBG..GRGR " ,
. fourcc = V4L2_PIX_FMT_SBGGR8 ,
. depth = 8 ,
. reg = EM28XX_OUTFMT_RGB_8_BGBG ,
} , {
. name = " 8 bpp Bayer GRGR..BGBG " ,
. fourcc = V4L2_PIX_FMT_SGRBG8 ,
. depth = 8 ,
. reg = EM28XX_OUTFMT_RGB_8_GRGR ,
} , {
. name = " 8 bpp Bayer GBGB..RGRG " ,
. fourcc = V4L2_PIX_FMT_SGBRG8 ,
. depth = 8 ,
. reg = EM28XX_OUTFMT_RGB_8_GBGB ,
} , {
. name = " 12 bpp YUV411 " ,
. fourcc = V4L2_PIX_FMT_YUV411P ,
. depth = 12 ,
. reg = EM28XX_OUTFMT_YUV411 ,
2008-12-20 15:06:37 +03:00
} ,
} ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
/* ------------------------------------------------------------------
DMA and thread functions
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*
2012-12-08 18:31:25 +04:00
* Finish the current buffer
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
*/
2012-12-08 18:31:25 +04:00
static inline void finish_buffer ( struct em28xx * dev ,
struct em28xx_buffer * buf )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
2013-01-04 23:16:24 +04:00
em28xx_isocdbg ( " [%p/%d] wakeup \n " , buf , buf - > top_field ) ;
buf - > vb . v4l2_buf . sequence = dev - > field_count + + ;
buf - > vb . v4l2_buf . field = V4L2_FIELD_INTERLACED ;
v4l2_get_timestamp ( & buf - > vb . v4l2_buf . timestamp ) ;
vb2_buffer_done ( & buf - > vb , VB2_BUF_STATE_DONE ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
}
/*
2012-12-08 18:31:32 +04:00
* Copy picture data from USB buffer to videobuf buffer
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
*/
static void em28xx_copy_video ( struct em28xx * dev ,
struct em28xx_buffer * buf ,
2012-12-08 18:31:32 +04:00
unsigned char * usb_buf ,
2012-12-08 18:31:29 +04:00
unsigned long len )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
void * fieldstart , * startwrite , * startread ;
2008-04-13 21:41:23 +04:00
int linesdone , currlinedone , offset , lencopy , remain ;
2008-04-13 22:11:08 +04:00
int bytesperline = dev - > width < < 1 ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
if ( buf - > pos + len > buf - > length )
len = buf - > length - buf - > pos ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2012-12-08 18:31:32 +04:00
startread = usb_buf ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
remain = len ;
2012-11-08 21:11:33 +04:00
if ( dev - > progressive | | buf - > top_field )
2012-12-08 18:31:32 +04:00
fieldstart = buf - > vb_buf ;
2012-11-08 21:11:33 +04:00
else /* interlaced mode, even nr. of lines */
2012-12-08 18:31:32 +04:00
fieldstart = buf - > vb_buf + bytesperline ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2012-12-08 18:31:27 +04:00
linesdone = buf - > pos / bytesperline ;
currlinedone = buf - > pos % bytesperline ;
2009-08-08 10:14:55 +04:00
if ( dev - > progressive )
offset = linesdone * bytesperline + currlinedone ;
else
offset = linesdone * bytesperline * 2 + currlinedone ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
startwrite = fieldstart + offset ;
2008-04-13 22:11:08 +04:00
lencopy = bytesperline - currlinedone ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
lencopy = lencopy > remain ? remain : lencopy ;
2013-01-04 23:16:24 +04:00
if ( ( char * ) startwrite + lencopy > ( char * ) buf - > vb_buf + buf - > length ) {
2008-04-13 21:39:29 +04:00
em28xx_isocdbg ( " Overflow of %zi bytes past buffer end (1) \n " ,
2012-12-08 18:31:32 +04:00
( ( char * ) startwrite + lencopy ) -
2013-01-04 23:16:24 +04:00
( ( char * ) buf - > vb_buf + buf - > length ) ) ;
remain = ( char * ) buf - > vb_buf + buf - > length -
2012-12-08 18:31:32 +04:00
( char * ) startwrite ;
2009-02-11 05:28:24 +03:00
lencopy = remain ;
2008-04-13 21:38:47 +04:00
}
2008-04-13 21:56:02 +04:00
if ( lencopy < = 0 )
return ;
2008-04-13 21:38:47 +04:00
memcpy ( startwrite , startread , lencopy ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
remain - = lencopy ;
while ( remain > 0 ) {
2012-11-08 21:11:33 +04:00
if ( dev - > progressive )
startwrite + = lencopy ;
else
startwrite + = lencopy + bytesperline ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
startread + = lencopy ;
2008-04-13 22:11:08 +04:00
if ( bytesperline > remain )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
lencopy = remain ;
else
2008-04-13 22:11:08 +04:00
lencopy = bytesperline ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2012-12-08 18:31:32 +04:00
if ( ( char * ) startwrite + lencopy > ( char * ) buf - > vb_buf +
2013-01-04 23:16:24 +04:00
buf - > length ) {
2009-09-15 07:18:06 +04:00
em28xx_isocdbg ( " Overflow of %zi bytes past buffer end "
" (2) \n " ,
2008-04-13 21:41:23 +04:00
( ( char * ) startwrite + lencopy ) -
2013-01-04 23:16:24 +04:00
( ( char * ) buf - > vb_buf + buf - > length ) ) ;
lencopy = remain = ( char * ) buf - > vb_buf + buf - > length -
( char * ) startwrite ;
2008-04-13 21:38:47 +04:00
}
2008-04-13 21:41:23 +04:00
if ( lencopy < = 0 )
break ;
2008-04-13 21:38:47 +04:00
memcpy ( startwrite , startread , lencopy ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
remain - = lencopy ;
}
2012-12-08 18:31:27 +04:00
buf - > pos + = len ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
}
2012-12-08 18:31:32 +04:00
/*
* Copy VBI data from USB buffer to videobuf buffer
*/
2009-09-01 08:54:54 +04:00
static void em28xx_copy_vbi ( struct em28xx * dev ,
2012-12-08 18:31:27 +04:00
struct em28xx_buffer * buf ,
2012-12-08 18:31:32 +04:00
unsigned char * usb_buf ,
2012-12-08 18:31:29 +04:00
unsigned long len )
2009-09-01 08:54:54 +04:00
{
2012-12-08 18:31:32 +04:00
unsigned int offset ;
2009-09-01 08:54:54 +04:00
2013-01-04 23:16:24 +04:00
if ( buf - > pos + len > buf - > length )
len = buf - > length - buf - > pos ;
2009-09-01 08:54:54 +04:00
2012-12-08 18:31:27 +04:00
offset = buf - > pos ;
2009-09-01 08:54:54 +04:00
/* Make sure the bottom field populates the second half of the frame */
2012-12-08 18:31:32 +04:00
if ( buf - > top_field = = 0 )
offset + = dev - > vbi_width * dev - > vbi_height ;
2009-09-01 08:54:54 +04:00
2012-12-08 18:31:32 +04:00
memcpy ( buf - > vb_buf + offset , usb_buf , len ) ;
2012-12-08 18:31:27 +04:00
buf - > pos + = len ;
2009-09-01 08:54:54 +04:00
}
2008-04-13 21:41:23 +04:00
static inline void print_err_status ( struct em28xx * dev ,
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
int packet , int status )
{
char * errmsg = " Unknown " ;
2008-04-13 21:41:23 +04:00
switch ( status ) {
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
case - ENOENT :
errmsg = " unlinked synchronuously " ;
break ;
case - ECONNRESET :
errmsg = " unlinked asynchronuously " ;
break ;
case - ENOSR :
errmsg = " Buffer error (overrun) " ;
break ;
case - EPIPE :
errmsg = " Stalled (device not responding) " ;
break ;
case - EOVERFLOW :
errmsg = " Babble (bad cable?) " ;
break ;
case - EPROTO :
errmsg = " Bit-stuff error (bad cable?) " ;
break ;
case - EILSEQ :
errmsg = " CRC/Timeout (could be anything) " ;
break ;
case - ETIME :
errmsg = " Device does not respond " ;
break ;
}
2008-04-13 21:41:23 +04:00
if ( packet < 0 ) {
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
em28xx_isocdbg ( " URB status %d [%s]. \n " , status , errmsg ) ;
} else {
em28xx_isocdbg ( " URB packet %d, status %d [%s]. \n " ,
packet , status , errmsg ) ;
}
}
/*
2012-12-08 18:31:24 +04:00
* get the next available buffer from dma queue
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
*/
2012-12-08 18:31:24 +04:00
static inline struct em28xx_buffer * get_next_buf ( struct em28xx * dev ,
struct em28xx_dmaqueue * dma_q )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
2012-12-08 18:31:24 +04:00
struct em28xx_buffer * buf ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2008-04-13 22:08:55 +04:00
if ( list_empty ( & dma_q - > active ) ) {
em28xx_isocdbg ( " No active queue to serve \n " ) ;
2012-12-08 18:31:24 +04:00
return NULL ;
2009-09-01 08:54:54 +04:00
}
/* Get the next buffer */
2013-01-04 23:16:24 +04:00
buf = list_entry ( dma_q - > active . next , struct em28xx_buffer , list ) ;
2011-03-31 05:57:33 +04:00
/* Cleans up buffer - Useful for testing for frame/URB loss */
2013-01-04 23:16:24 +04:00
list_del ( & buf - > list ) ;
2012-12-08 18:31:27 +04:00
buf - > pos = 0 ;
2013-01-04 23:16:24 +04:00
buf - > vb_buf = buf - > mem ;
2008-04-13 22:06:52 +04:00
2012-12-08 18:31:24 +04:00
return buf ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
}
2012-12-08 18:31:30 +04:00
/*
* Finish the current buffer if completed and prepare for the next field
*/
static struct em28xx_buffer *
finish_field_prepare_next ( struct em28xx * dev ,
struct em28xx_buffer * buf ,
struct em28xx_dmaqueue * dma_q )
{
if ( dev - > progressive | | dev - > top_field ) { /* Brand new frame */
if ( buf ! = NULL )
finish_buffer ( dev , buf ) ;
buf = get_next_buf ( dev , dma_q ) ;
}
if ( buf ! = NULL ) {
buf - > top_field = dev - > top_field ;
buf - > pos = 0 ;
}
return buf ;
}
2012-12-08 18:31:31 +04:00
/*
* Process data packet according to the em2710 / em2750 / em28xx frame data format
*/
static inline void process_frame_data_em28xx ( struct em28xx * dev ,
unsigned char * data_pkt ,
unsigned int data_len )
2009-09-01 08:19:46 +04:00
{
2012-12-08 18:31:31 +04:00
struct em28xx_buffer * buf = dev - > usb_ctl . vid_buf ;
struct em28xx_buffer * vbi_buf = dev - > usb_ctl . vbi_buf ;
2009-09-01 08:19:46 +04:00
struct em28xx_dmaqueue * dma_q = & dev - > vidq ;
2009-09-01 08:54:54 +04:00
struct em28xx_dmaqueue * vbi_dma_q = & dev - > vbiq ;
2012-12-08 18:31:31 +04:00
/* capture type 0 = vbi start
capture type 1 = vbi in progress
capture type 2 = video start
capture type 3 = video in progress */
if ( data_len > = 4 ) {
/* NOTE: Headers are always 4 bytes and
* never split across packets */
if ( data_pkt [ 0 ] = = 0x88 & & data_pkt [ 1 ] = = 0x88 & &
data_pkt [ 2 ] = = 0x88 & & data_pkt [ 3 ] = = 0x88 ) {
/* Continuation */
data_pkt + = 4 ;
data_len - = 4 ;
} else if ( data_pkt [ 0 ] = = 0x33 & & data_pkt [ 1 ] = = 0x95 ) {
/* Field start (VBI mode) */
dev - > capture_type = 0 ;
dev - > vbi_read = 0 ;
em28xx_isocdbg ( " VBI START HEADER !!! \n " ) ;
dev - > top_field = ! ( data_pkt [ 2 ] & 1 ) ;
data_pkt + = 4 ;
data_len - = 4 ;
} else if ( data_pkt [ 0 ] = = 0x22 & & data_pkt [ 1 ] = = 0x5a ) {
/* Field start (VBI disabled) */
dev - > capture_type = 2 ;
em28xx_isocdbg ( " VIDEO START HEADER !!! \n " ) ;
dev - > top_field = ! ( data_pkt [ 2 ] & 1 ) ;
data_pkt + = 4 ;
data_len - = 4 ;
}
}
/* NOTE: With bulk transfers, intermediate data packets
* have no continuation header */
if ( dev - > capture_type = = 0 ) {
vbi_buf = finish_field_prepare_next ( dev , vbi_buf , vbi_dma_q ) ;
dev - > usb_ctl . vbi_buf = vbi_buf ;
dev - > capture_type = 1 ;
}
if ( dev - > capture_type = = 1 ) {
int vbi_size = dev - > vbi_width * dev - > vbi_height ;
int vbi_data_len = ( ( dev - > vbi_read + data_len ) > vbi_size ) ?
( vbi_size - dev - > vbi_read ) : data_len ;
/* Copy VBI data */
if ( vbi_buf ! = NULL )
em28xx_copy_vbi ( dev , vbi_buf , data_pkt , vbi_data_len ) ;
dev - > vbi_read + = vbi_data_len ;
if ( vbi_data_len < data_len ) {
/* Continue with copying video data */
dev - > capture_type = 2 ;
data_pkt + = vbi_data_len ;
data_len - = vbi_data_len ;
}
}
if ( dev - > capture_type = = 2 ) {
buf = finish_field_prepare_next ( dev , buf , dma_q ) ;
dev - > usb_ctl . vid_buf = buf ;
dev - > capture_type = 3 ;
}
if ( dev - > capture_type = = 3 & & buf ! = NULL & & data_len > 0 )
em28xx_copy_video ( dev , buf , data_pkt , data_len ) ;
}
/* Processes and copies the URB data content (video and VBI data) */
static inline int em28xx_urb_data_copy ( struct em28xx * dev , struct urb * urb )
{
int xfer_bulk , num_packets , i ;
unsigned char * usb_data_pkt ;
unsigned int usb_data_len ;
2009-09-01 08:19:46 +04:00
if ( ! dev )
return 0 ;
2012-12-28 02:02:43 +04:00
if ( dev - > disconnected )
2009-09-01 08:19:46 +04:00
return 0 ;
2012-11-08 21:11:44 +04:00
if ( urb - > status < 0 )
2009-09-01 08:19:46 +04:00
print_err_status ( dev , - 1 , urb - > status ) ;
2012-11-08 21:11:46 +04:00
xfer_bulk = usb_pipebulk ( urb - > pipe ) ;
if ( xfer_bulk ) /* bulk */
num_packets = 1 ;
else /* isoc */
num_packets = urb - > number_of_packets ;
2009-09-01 08:19:46 +04:00
2012-11-08 21:11:46 +04:00
for ( i = 0 ; i < num_packets ; i + + ) {
if ( xfer_bulk ) { /* bulk */
2012-12-08 18:31:31 +04:00
usb_data_len = urb - > actual_length ;
2012-11-08 21:11:46 +04:00
2012-12-08 18:31:31 +04:00
usb_data_pkt = urb - > transfer_buffer ;
2012-11-08 21:11:46 +04:00
} else { /* isoc */
if ( urb - > iso_frame_desc [ i ] . status < 0 ) {
print_err_status ( dev , i ,
urb - > iso_frame_desc [ i ] . status ) ;
if ( urb - > iso_frame_desc [ i ] . status ! = - EPROTO )
continue ;
}
2012-12-08 18:31:31 +04:00
usb_data_len = urb - > iso_frame_desc [ i ] . actual_length ;
if ( usb_data_len > dev - > max_pkt_size ) {
2012-11-08 21:11:46 +04:00
em28xx_isocdbg ( " packet bigger than packet size " ) ;
2009-09-01 08:19:46 +04:00
continue ;
2012-11-08 21:11:46 +04:00
}
2009-09-01 08:19:46 +04:00
2012-12-08 18:31:31 +04:00
usb_data_pkt = urb - > transfer_buffer +
urb - > iso_frame_desc [ i ] . offset ;
2009-09-01 08:19:46 +04:00
}
2012-11-08 21:11:46 +04:00
2012-12-08 18:31:31 +04:00
if ( usb_data_len = = 0 ) {
2012-11-08 21:11:46 +04:00
/* NOTE: happens very often with isoc transfers */
/* em28xx_usbdbg("packet %d is empty",i); - spammy */
2009-09-01 08:19:46 +04:00
continue ;
}
2012-12-08 18:31:31 +04:00
process_frame_data_em28xx ( dev , usb_data_pkt , usb_data_len ) ;
2009-09-01 08:19:46 +04:00
}
2012-12-08 18:31:31 +04:00
return 1 ;
2009-09-01 08:19:46 +04:00
}
2013-01-04 23:16:24 +04:00
static int get_ressource ( enum v4l2_buf_type f_type )
{
switch ( f_type ) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE :
return EM28XX_RESOURCE_VIDEO ;
case V4L2_BUF_TYPE_VBI_CAPTURE :
return EM28XX_RESOURCE_VBI ;
default :
BUG ( ) ;
return 0 ;
}
}
/* Usage lock check functions */
static int res_get ( struct em28xx * dev , enum v4l2_buf_type f_type )
{
int res_type = get_ressource ( f_type ) ;
/* is it free? */
if ( dev - > resources & res_type ) {
/* no, someone else uses it */
return - EBUSY ;
}
/* it's free, grab it */
dev - > resources | = res_type ;
em28xx_videodbg ( " res: get %d \n " , res_type ) ;
return 0 ;
}
static void res_free ( struct em28xx * dev , enum v4l2_buf_type f_type )
{
int res_type = get_ressource ( f_type ) ;
dev - > resources & = ~ res_type ;
em28xx_videodbg ( " res: put %d \n " , res_type ) ;
}
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
/* ------------------------------------------------------------------
2013-01-04 23:16:24 +04:00
Videobuf2 operations
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
2013-01-04 23:16:24 +04:00
static int queue_setup ( struct vb2_queue * vq , const struct v4l2_format * fmt ,
unsigned int * nbuffers , unsigned int * nplanes ,
unsigned int sizes [ ] , void * alloc_ctxs [ ] )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
2013-01-04 23:16:24 +04:00
struct em28xx * dev = vb2_get_drv_priv ( vq ) ;
unsigned long size ;
2008-12-20 15:06:37 +03:00
2013-01-04 23:16:24 +04:00
if ( fmt )
size = fmt - > fmt . pix . sizeimage ;
else
size = ( dev - > width * dev - > height * dev - > format - > depth + 7 ) > > 3 ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
if ( size = = 0 )
return - EINVAL ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
if ( 0 = = * nbuffers )
* nbuffers = 32 ;
2008-04-18 04:38:53 +04:00
2013-01-04 23:16:24 +04:00
* nplanes = 1 ;
sizes [ 0 ] = size ;
2008-04-18 04:38:53 +04:00
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
return 0 ;
}
2013-01-04 23:16:24 +04:00
static int
buffer_prepare ( struct vb2_buffer * vb )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
2013-01-04 23:16:24 +04:00
struct em28xx * dev = vb2_get_drv_priv ( vb - > vb2_queue ) ;
struct em28xx_buffer * buf = container_of ( vb , struct em28xx_buffer , vb ) ;
unsigned long size ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
em28xx_videodbg ( " %s, field=%d \n " , __func__ , vb - > v4l2_buf . field ) ;
2008-04-13 22:09:36 +04:00
2013-01-04 23:16:24 +04:00
size = ( dev - > width * dev - > height * dev - > format - > depth + 7 ) > > 3 ;
2008-04-13 22:09:36 +04:00
2013-01-04 23:16:24 +04:00
if ( vb2_plane_size ( vb , 0 ) < size ) {
em28xx_videodbg ( " %s data will not fit into plane (%lu < %lu) \n " ,
__func__ , vb2_plane_size ( vb , 0 ) , size ) ;
return - EINVAL ;
}
vb2_set_plane_payload ( & buf - > vb , 0 , size ) ;
return 0 ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
}
2013-01-04 23:16:24 +04:00
int em28xx_start_analog_streaming ( struct vb2_queue * vq , unsigned int count )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
2013-01-04 23:16:24 +04:00
struct em28xx * dev = vb2_get_drv_priv ( vq ) ;
struct v4l2_frequency f ;
int rc = 0 ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
em28xx_videodbg ( " %s \n " , __func__ ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
/* Make sure streaming is not already in progress for this type
of filehandle ( e . g . video , vbi ) */
rc = res_get ( dev , vq - > type ) ;
if ( rc )
return rc ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
if ( dev - > streaming_users + + = = 0 ) {
/* First active streaming user, so allocate all the URBs */
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
/* Allocate the USB bandwidth */
em28xx_set_alternate ( dev ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
/* Needed, since GPIO might have disabled power of
some i2c device
*/
em28xx_wake_i2c ( dev ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2012-11-25 13:37:34 +04:00
dev - > capture_type = - 1 ;
2012-11-25 13:37:37 +04:00
rc = em28xx_init_usb_xfer ( dev , EM28XX_ANALOG_MODE ,
dev - > analog_xfer_bulk ,
EM28XX_NUM_BUFS ,
dev - > max_pkt_size ,
dev - > packet_multiplier ,
em28xx_urb_data_copy ) ;
2008-04-13 21:41:23 +04:00
if ( rc < 0 )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
goto fail ;
2013-01-04 23:16:24 +04:00
/*
* djh : it ' s not clear whether this code is still needed . I ' m
* leaving it in here for now entirely out of concern for
* backward compatibility ( the old code did it )
*/
/* Ask tuner to go to analog or radio mode */
memset ( & f , 0 , sizeof ( f ) ) ;
f . frequency = dev - > ctl_freq ;
if ( vq - > owner & & vq - > owner - > vdev - > vfl_type = = VFL_TYPE_RADIO )
f . type = V4L2_TUNER_RADIO ;
else
f . type = V4L2_TUNER_ANALOG_TV ;
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , s_frequency , & f ) ;
}
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
fail :
return rc ;
}
2013-01-05 07:27:21 +04:00
static int em28xx_stop_streaming ( struct vb2_queue * vq )
2013-01-04 23:16:24 +04:00
{
struct em28xx * dev = vb2_get_drv_priv ( vq ) ;
struct em28xx_dmaqueue * vidq = & dev - > vidq ;
unsigned long flags = 0 ;
em28xx_videodbg ( " %s \n " , __func__ ) ;
res_free ( dev , vq - > type ) ;
if ( dev - > streaming_users - - = = 1 ) {
/* Last active user, so shutdown all the URBS */
em28xx_uninit_usb_xfer ( dev , EM28XX_ANALOG_MODE ) ;
}
spin_lock_irqsave ( & dev - > slock , flags ) ;
while ( ! list_empty ( & vidq - > active ) ) {
struct em28xx_buffer * buf ;
buf = list_entry ( vidq - > active . next , struct em28xx_buffer , list ) ;
list_del ( & buf - > list ) ;
vb2_buffer_done ( & buf - > vb , VB2_BUF_STATE_ERROR ) ;
}
dev - > usb_ctl . vid_buf = NULL ;
spin_unlock_irqrestore ( & dev - > slock , flags ) ;
return 0 ;
}
int em28xx_stop_vbi_streaming ( struct vb2_queue * vq )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
2013-01-04 23:16:24 +04:00
struct em28xx * dev = vb2_get_drv_priv ( vq ) ;
struct em28xx_dmaqueue * vbiq = & dev - > vbiq ;
unsigned long flags = 0 ;
em28xx_videodbg ( " %s \n " , __func__ ) ;
res_free ( dev , vq - > type ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
if ( dev - > streaming_users - - = = 1 ) {
/* Last active user, so shutdown all the URBS */
em28xx_uninit_usb_xfer ( dev , EM28XX_ANALOG_MODE ) ;
}
spin_lock_irqsave ( & dev - > slock , flags ) ;
while ( ! list_empty ( & vbiq - > active ) ) {
struct em28xx_buffer * buf ;
buf = list_entry ( vbiq - > active . next , struct em28xx_buffer , list ) ;
list_del ( & buf - > list ) ;
vb2_buffer_done ( & buf - > vb , VB2_BUF_STATE_ERROR ) ;
}
dev - > usb_ctl . vbi_buf = NULL ;
spin_unlock_irqrestore ( & dev - > slock , flags ) ;
2008-04-13 21:38:47 +04:00
2013-01-04 23:16:24 +04:00
return 0 ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
}
2013-01-04 23:16:24 +04:00
static void
buffer_queue ( struct vb2_buffer * vb )
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
{
2013-01-04 23:16:24 +04:00
struct em28xx * dev = vb2_get_drv_priv ( vb - > vb2_queue ) ;
struct em28xx_buffer * buf = container_of ( vb , struct em28xx_buffer , vb ) ;
struct em28xx_dmaqueue * vidq = & dev - > vidq ;
unsigned long flags = 0 ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
em28xx_videodbg ( " %s \n " , __func__ ) ;
buf - > mem = vb2_plane_vaddr ( vb , 0 ) ;
buf - > length = vb2_plane_size ( vb , 0 ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
2013-01-04 23:16:24 +04:00
spin_lock_irqsave ( & dev - > slock , flags ) ;
list_add_tail ( & buf - > list , & vidq - > active ) ;
spin_unlock_irqrestore ( & dev - > slock , flags ) ;
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
}
2013-01-04 23:16:24 +04:00
static struct vb2_ops em28xx_video_qops = {
. queue_setup = queue_setup ,
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
. buf_prepare = buffer_prepare ,
. buf_queue = buffer_queue ,
2013-01-04 23:16:24 +04:00
. start_streaming = em28xx_start_analog_streaming ,
. stop_streaming = em28xx_stop_streaming ,
. wait_prepare = vb2_ops_wait_prepare ,
. wait_finish = vb2_ops_wait_finish ,
V4L/DVB (7540): em28xx: convert to use videobuf-vmalloc
The usage of videobuf-vmalloc allows to cleanup em28xx logic.
Also, it reduced its size by about 5.42% on i386 arch (and about 7.5% on x86_64):
39113 4876 40 44029 abfd old/em28xx.ko
36731 4868 40 41639 a2a7 /home/v4l/master/v4l/em28xx.ko
Also, the preliminary tests, made on a single core 1.5 MHz Centrino showed
that CPU usage reduced from 42%-75% to 28%-33% (reports from "top") command.
A test with time command presented an even better result:
This is the performance tests I did, running code_example to get 1,000 frames
@29.995 Hz (about 35 seconds of stream), tested on a i386 machine, running at
1,5GHz:
The old driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:34.21: 8.22s User time, 25.16s Kernel time, 97% CPU used
The videobuf-based driver:
$ time -f "%E: %Us User time, %Ss Kernel time, %P CPU used" ./capture_example
0:35.36: 0.01s User time, 0.05s Kernel time, 0% CPU used
Conclusion:
The time consumption to receive the stream where reduced from about 33.38
seconds to 0.05 seconds.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-13 21:37:52 +04:00
} ;
2005-11-09 08:37:07 +03:00
2013-01-04 23:16:24 +04:00
int em28xx_vb2_setup ( struct em28xx * dev )
{
int rc ;
struct vb2_queue * q ;
/* Setup Videobuf2 for Video capture */
q = & dev - > vb_vidq ;
q - > type = V4L2_BUF_TYPE_VIDEO_CAPTURE ;
2013-01-06 06:34:22 +04:00
q - > io_modes = VB2_READ | VB2_MMAP | VB2_USERPTR | VB2_DMABUF ;
2013-03-09 13:53:01 +04:00
q - > timestamp_type = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC ;
2013-01-04 23:16:24 +04:00
q - > drv_priv = dev ;
q - > buf_struct_size = sizeof ( struct em28xx_buffer ) ;
q - > ops = & em28xx_video_qops ;
q - > mem_ops = & vb2_vmalloc_memops ;
rc = vb2_queue_init ( q ) ;
if ( rc < 0 )
return rc ;
/* Setup Videobuf2 for VBI capture */
q = & dev - > vb_vbiq ;
q - > type = V4L2_BUF_TYPE_VBI_CAPTURE ;
q - > io_modes = VB2_READ | VB2_MMAP | VB2_USERPTR ;
2013-03-09 13:53:01 +04:00
q - > timestamp_type = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC ;
2013-01-04 23:16:24 +04:00
q - > drv_priv = dev ;
q - > buf_struct_size = sizeof ( struct em28xx_buffer ) ;
q - > ops = & em28xx_vbi_qops ;
q - > mem_ops = & vb2_vmalloc_memops ;
rc = vb2_queue_init ( q ) ;
if ( rc < 0 )
return rc ;
return 0 ;
}
2008-04-18 04:41:10 +04:00
/********************* v4l2 interface **************************************/
2005-11-09 08:37:07 +03:00
2005-11-09 08:38:43 +03:00
static void video_mux ( struct em28xx * dev , int index )
{
dev - > ctl_input = index ;
dev - > ctl_ainput = INPUT ( index ) - > amux ;
2008-11-20 18:40:51 +03:00
dev - > ctl_aoutput = INPUT ( index ) - > aout ;
2005-11-09 08:38:43 +03:00
2008-11-20 19:39:39 +03:00
if ( ! dev - > ctl_aoutput )
dev - > ctl_aoutput = EM28XX_AOUT_MASTER ;
2009-04-02 18:26:22 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , video , s_routing ,
INPUT ( index ) - > vmux , 0 , 0 ) ;
2005-11-09 08:38:43 +03:00
2008-11-25 15:39:50 +03:00
if ( dev - > board . has_msp34xx ) {
2008-04-18 04:41:10 +04:00
if ( dev - > i2s_speed ) {
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , audio ,
s_i2s_clock_freq , dev - > i2s_speed ) ;
2008-04-18 04:41:10 +04:00
}
2006-03-19 18:35:57 +03:00
/* Note: this is msp3400 specific */
2009-04-02 18:26:22 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , audio , s_routing ,
dev - > ctl_ainput , MSP_OUTPUT ( MSP_SC_IN_DSP_SCART1 ) , 0 ) ;
2005-11-09 08:38:43 +03:00
}
2008-01-05 15:53:54 +03:00
2009-03-04 14:27:52 +03:00
if ( dev - > board . adecoder ! = EM28XX_NOADECODER ) {
2009-04-02 18:26:22 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , audio , s_routing ,
dev - > ctl_ainput , dev - > ctl_aoutput , 0 ) ;
2009-03-04 14:27:52 +03:00
}
2008-02-07 00:34:13 +03:00
em28xx_audio_analog_set ( dev ) ;
2005-11-09 08:38:43 +03:00
}
2012-09-07 12:43:59 +04:00
void em28xx_ctrl_notify ( struct v4l2_ctrl * ctrl , void * priv )
2009-07-19 17:45:49 +04:00
{
2012-09-07 12:43:59 +04:00
struct em28xx * dev = priv ;
2009-07-19 17:45:49 +04:00
2012-09-07 12:43:59 +04:00
/*
* In the case of non - AC97 volume controls , we still need
* to do some setups at em28xx , in order to mute / unmute
* and to adjust audio volume . However , the value ranges
* should be checked by the corresponding V4L subdriver .
*/
2007-11-11 19:17:17 +03:00
switch ( ctrl - > id ) {
case V4L2_CID_AUDIO_MUTE :
2012-09-07 12:43:59 +04:00
dev - > mute = ctrl - > val ;
em28xx_audio_analog_set ( dev ) ;
break ;
2007-11-11 19:17:17 +03:00
case V4L2_CID_AUDIO_VOLUME :
2012-09-07 12:43:59 +04:00
dev - > volume = ctrl - > val ;
em28xx_audio_analog_set ( dev ) ;
break ;
2005-11-09 08:37:07 +03:00
}
2007-11-11 19:17:17 +03:00
}
2005-11-09 08:37:07 +03:00
2012-09-07 12:43:59 +04:00
static int em28xx_s_ctrl ( struct v4l2_ctrl * ctrl )
2007-11-11 19:17:17 +03:00
{
2012-09-07 12:43:59 +04:00
struct em28xx * dev = container_of ( ctrl - > handler , struct em28xx , ctrl_handler ) ;
2013-02-15 21:38:32 +04:00
int ret = - EINVAL ;
2009-07-19 17:45:49 +04:00
2007-11-11 19:17:17 +03:00
switch ( ctrl - > id ) {
case V4L2_CID_AUDIO_MUTE :
2012-09-07 12:43:59 +04:00
dev - > mute = ctrl - > val ;
2013-02-15 21:38:32 +04:00
ret = em28xx_audio_analog_set ( dev ) ;
2009-07-19 17:45:49 +04:00
break ;
2007-11-11 19:17:17 +03:00
case V4L2_CID_AUDIO_VOLUME :
2012-09-07 12:43:59 +04:00
dev - > volume = ctrl - > val ;
2013-02-15 21:38:32 +04:00
ret = em28xx_audio_analog_set ( dev ) ;
break ;
case V4L2_CID_CONTRAST :
ret = em28xx_write_reg ( dev , EM28XX_R20_YGAIN , ctrl - > val ) ;
break ;
case V4L2_CID_BRIGHTNESS :
ret = em28xx_write_reg ( dev , EM28XX_R21_YOFFSET , ctrl - > val ) ;
break ;
case V4L2_CID_SATURATION :
ret = em28xx_write_reg ( dev , EM28XX_R22_UVGAIN , ctrl - > val ) ;
break ;
case V4L2_CID_BLUE_BALANCE :
ret = em28xx_write_reg ( dev , EM28XX_R23_UOFFSET , ctrl - > val ) ;
break ;
case V4L2_CID_RED_BALANCE :
ret = em28xx_write_reg ( dev , EM28XX_R24_VOFFSET , ctrl - > val ) ;
break ;
case V4L2_CID_SHARPNESS :
ret = em28xx_write_reg ( dev , EM28XX_R25_SHARPNESS , ctrl - > val ) ;
2009-07-19 17:45:49 +04:00
break ;
2007-11-11 19:17:17 +03:00
}
2009-07-19 17:45:49 +04:00
2013-02-15 21:38:32 +04:00
return ( ret < 0 ) ? ret : 0 ;
2007-11-11 19:17:17 +03:00
}
2005-11-09 08:37:07 +03:00
2012-09-07 12:43:59 +04:00
const struct v4l2_ctrl_ops em28xx_ctrl_ops = {
. s_ctrl = em28xx_s_ctrl ,
} ;
2013-02-10 23:05:12 +04:00
static void size_to_scale ( struct em28xx * dev ,
2007-11-11 19:17:17 +03:00
unsigned int width , unsigned int height ,
unsigned int * hscale , unsigned int * vscale )
{
2009-07-14 03:15:02 +04:00
unsigned int maxw = norm_maxw ( dev ) ;
unsigned int maxh = norm_maxh ( dev ) ;
2007-11-11 19:17:17 +03:00
* hscale = ( ( ( unsigned long ) maxw ) < < 12 ) / width - 4096L ;
2013-02-10 23:05:11 +04:00
if ( * hscale > EM28XX_HVSCALE_MAX )
* hscale = EM28XX_HVSCALE_MAX ;
2007-11-11 19:17:17 +03:00
* vscale = ( ( ( unsigned long ) maxh ) < < 12 ) / height - 4096L ;
2013-02-10 23:05:11 +04:00
if ( * vscale > EM28XX_HVSCALE_MAX )
* vscale = EM28XX_HVSCALE_MAX ;
2005-11-09 08:37:07 +03:00
}
2013-02-10 23:05:13 +04:00
static void scale_to_size ( struct em28xx * dev ,
unsigned int hscale , unsigned int vscale ,
unsigned int * width , unsigned int * height )
{
unsigned int maxw = norm_maxw ( dev ) ;
unsigned int maxh = norm_maxh ( dev ) ;
* width = ( ( ( unsigned long ) maxw ) < < 12 ) / ( hscale + 4096L ) ;
* height = ( ( ( unsigned long ) maxh ) < < 12 ) / ( vscale + 4096L ) ;
}
2007-11-11 19:17:17 +03:00
/* ------------------------------------------------------------------
IOCTL vidioc handling
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
2008-05-28 19:16:41 +04:00
static int vidioc_g_fmt_vid_cap ( struct file * file , void * priv ,
2007-11-11 19:17:17 +03:00
struct v4l2_format * f )
2005-11-09 08:37:07 +03:00
{
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
f - > fmt . pix . width = dev - > width ;
f - > fmt . pix . height = dev - > height ;
2008-12-20 15:06:37 +03:00
f - > fmt . pix . pixelformat = dev - > format - > fourcc ;
f - > fmt . pix . bytesperline = ( dev - > width * dev - > format - > depth + 7 ) > > 3 ;
2008-04-13 22:11:08 +04:00
f - > fmt . pix . sizeimage = f - > fmt . pix . bytesperline * dev - > height ;
2007-11-11 19:17:17 +03:00
f - > fmt . pix . colorspace = V4L2_COLORSPACE_SMPTE170M ;
2006-01-23 22:11:08 +03:00
2007-11-11 19:17:17 +03:00
/* FIXME: TOP? NONE? BOTTOM? ALTENATE? */
2009-08-08 10:14:55 +04:00
if ( dev - > progressive )
f - > fmt . pix . field = V4L2_FIELD_NONE ;
else
f - > fmt . pix . field = dev - > interlaced ?
2007-11-11 19:17:17 +03:00
V4L2_FIELD_INTERLACED : V4L2_FIELD_TOP ;
return 0 ;
2005-11-09 08:37:07 +03:00
}
2008-12-20 15:06:37 +03:00
static struct em28xx_fmt * format_by_fourcc ( unsigned int fourcc )
{
unsigned int i ;
for ( i = 0 ; i < ARRAY_SIZE ( format ) ; i + + )
if ( format [ i ] . fourcc = = fourcc )
return & format [ i ] ;
return NULL ;
}
2008-05-28 19:16:41 +04:00
static int vidioc_try_fmt_vid_cap ( struct file * file , void * priv ,
2007-11-11 19:17:17 +03:00
struct v4l2_format * f )
2005-11-09 08:37:07 +03:00
{
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2009-05-31 04:45:46 +04:00
unsigned int width = f - > fmt . pix . width ;
unsigned int height = f - > fmt . pix . height ;
2007-11-11 19:17:17 +03:00
unsigned int maxw = norm_maxw ( dev ) ;
unsigned int maxh = norm_maxh ( dev ) ;
unsigned int hscale , vscale ;
2008-12-20 15:06:37 +03:00
struct em28xx_fmt * fmt ;
fmt = format_by_fourcc ( f - > fmt . pix . pixelformat ) ;
if ( ! fmt ) {
em28xx_videodbg ( " Fourcc format (%08x) invalid. \n " ,
f - > fmt . pix . pixelformat ) ;
return - EINVAL ;
}
2007-11-11 19:17:17 +03:00
2009-07-14 03:15:02 +04:00
if ( dev - > board . is_em2800 ) {
2007-11-11 19:17:17 +03:00
/* the em2800 can only scale down to 50% */
2009-05-31 04:45:46 +04:00
height = height > ( 3 * maxh / 4 ) ? maxh : maxh / 2 ;
width = width > ( 3 * maxw / 4 ) ? maxw : maxw / 2 ;
2013-01-04 23:16:24 +04:00
/*
* MaxPacketSize for em2800 is too small to capture at full
* resolution use half of maxw as the scaler can only scale
* to 50 %
*/
2012-01-08 23:54:28 +04:00
if ( width = = maxw & & height = = maxh )
width / = 2 ;
2009-05-31 04:45:46 +04:00
} else {
/* width must even because of the YUYV format
height must be even because of interlacing */
2009-09-15 07:18:06 +04:00
v4l_bound_align_image ( & width , 48 , maxw , 1 , & height , 32 , maxh ,
1 , 0 ) ;
2007-11-11 19:17:17 +03:00
}
2007-11-11 07:08:26 +03:00
2013-02-10 23:05:12 +04:00
size_to_scale ( dev , width , height , & hscale , & vscale ) ;
2013-02-10 23:05:13 +04:00
scale_to_size ( dev , hscale , hscale , & width , & height ) ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
f - > fmt . pix . width = width ;
f - > fmt . pix . height = height ;
2008-12-20 15:06:37 +03:00
f - > fmt . pix . pixelformat = fmt - > fourcc ;
2013-02-06 15:14:47 +04:00
f - > fmt . pix . bytesperline = ( width * fmt - > depth + 7 ) > > 3 ;
2008-12-20 15:06:37 +03:00
f - > fmt . pix . sizeimage = f - > fmt . pix . bytesperline * height ;
2007-11-11 19:17:17 +03:00
f - > fmt . pix . colorspace = V4L2_COLORSPACE_SMPTE170M ;
2009-08-08 10:14:55 +04:00
if ( dev - > progressive )
f - > fmt . pix . field = V4L2_FIELD_NONE ;
else
f - > fmt . pix . field = dev - > interlaced ?
V4L2_FIELD_INTERLACED : V4L2_FIELD_TOP ;
2005-11-09 08:37:07 +03:00
return 0 ;
}
2009-07-03 00:34:04 +04:00
static int em28xx_set_video_format ( struct em28xx * dev , unsigned int fourcc ,
unsigned width , unsigned height )
{
struct em28xx_fmt * fmt ;
fmt = format_by_fourcc ( fourcc ) ;
if ( ! fmt )
return - EINVAL ;
dev - > format = fmt ;
dev - > width = width ;
dev - > height = height ;
/* set new image size */
2013-02-10 23:05:12 +04:00
size_to_scale ( dev , dev - > width , dev - > height , & dev - > hscale , & dev - > vscale ) ;
2009-07-03 00:34:04 +04:00
em28xx_resolution_set ( dev ) ;
return 0 ;
}
2008-05-28 19:16:41 +04:00
static int vidioc_s_fmt_vid_cap ( struct file * file , void * priv ,
2007-11-11 19:17:17 +03:00
struct v4l2_format * f )
2005-11-09 08:37:07 +03:00
{
2013-01-04 23:16:24 +04:00
struct em28xx * dev = video_drvdata ( file ) ;
2005-11-09 08:37:07 +03:00
2013-01-04 23:16:24 +04:00
if ( dev - > streaming_users > 0 )
return - EBUSY ;
2007-11-11 07:08:26 +03:00
2008-12-17 04:04:56 +03:00
vidioc_try_fmt_vid_cap ( file , priv , f ) ;
2010-09-26 14:34:45 +04:00
return em28xx_set_video_format ( dev , f - > fmt . pix . pixelformat ,
2009-07-03 00:34:04 +04:00
f - > fmt . pix . width , f - > fmt . pix . height ) ;
2007-11-11 19:17:17 +03:00
}
2009-09-11 07:40:18 +04:00
static int vidioc_g_std ( struct file * file , void * priv , v4l2_std_id * norm )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
* norm = dev - > norm ;
return 0 ;
}
2011-10-04 16:53:00 +04:00
static int vidioc_querystd ( struct file * file , void * priv , v4l2_std_id * norm )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , video , querystd , norm ) ;
return 0 ;
}
2009-02-11 05:28:24 +03:00
static int vidioc_s_std ( struct file * file , void * priv , v4l2_std_id * norm )
2007-11-11 19:17:17 +03:00
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
struct v4l2_format f ;
2012-09-07 14:31:54 +04:00
if ( * norm = = dev - > norm )
return 0 ;
2007-11-11 19:17:17 +03:00
2013-01-04 23:16:24 +04:00
if ( dev - > streaming_users > 0 )
2012-09-07 14:31:54 +04:00
return - EBUSY ;
2007-11-11 20:15:34 +03:00
dev - > norm = * norm ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
/* Adjusts width/height, if needed */
2012-09-07 14:31:54 +04:00
f . fmt . pix . width = 720 ;
f . fmt . pix . height = ( * norm & V4L2_STD_525_60 ) ? 480 : 576 ;
2008-05-28 19:16:41 +04:00
vidioc_try_fmt_vid_cap ( file , priv , & f ) ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
/* set new image size */
dev - > width = f . fmt . pix . width ;
dev - > height = f . fmt . pix . height ;
2013-02-10 23:05:12 +04:00
size_to_scale ( dev , dev - > width , dev - > height , & dev - > hscale , & dev - > vscale ) ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
em28xx_resolution_set ( dev ) ;
2009-04-01 10:52:39 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , s_std , dev - > norm ) ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
return 0 ;
}
2007-11-11 07:13:49 +03:00
2009-08-07 04:53:59 +04:00
static int vidioc_g_parm ( struct file * file , void * priv ,
struct v4l2_streamparm * p )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
int rc = 0 ;
2012-09-07 13:16:03 +04:00
p - > parm . capture . readbuffers = EM28XX_MIN_BUF ;
2009-08-07 04:53:59 +04:00
if ( dev - > board . is_webcam )
rc = v4l2_device_call_until_err ( & dev - > v4l2_dev , 0 ,
video , g_parm , p ) ;
else
v4l2_video_std_frame_period ( dev - > norm ,
& p - > parm . capture . timeperframe ) ;
return rc ;
}
static int vidioc_s_parm ( struct file * file , void * priv ,
struct v4l2_streamparm * p )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2012-09-07 13:16:03 +04:00
p - > parm . capture . readbuffers = EM28XX_MIN_BUF ;
2009-08-07 04:53:59 +04:00
return v4l2_device_call_until_err ( & dev - > v4l2_dev , 0 , video , s_parm , p ) ;
}
2007-11-11 19:17:17 +03:00
static const char * iname [ ] = {
[ EM28XX_VMUX_COMPOSITE1 ] = " Composite1 " ,
[ EM28XX_VMUX_COMPOSITE2 ] = " Composite2 " ,
[ EM28XX_VMUX_COMPOSITE3 ] = " Composite3 " ,
[ EM28XX_VMUX_COMPOSITE4 ] = " Composite4 " ,
[ EM28XX_VMUX_SVIDEO ] = " S-Video " ,
[ EM28XX_VMUX_TELEVISION ] = " Television " ,
[ EM28XX_VMUX_CABLE ] = " Cable TV " ,
[ EM28XX_VMUX_DVB ] = " DVB " ,
[ EM28XX_VMUX_DEBUG ] = " for debug only " ,
} ;
2007-11-11 07:13:49 +03:00
2007-11-11 19:17:17 +03:00
static int vidioc_enum_input ( struct file * file , void * priv ,
struct v4l2_input * i )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
unsigned int n ;
2007-11-11 07:13:49 +03:00
2007-11-11 19:17:17 +03:00
n = i - > index ;
if ( n > = MAX_EM28XX_INPUT )
return - EINVAL ;
if ( 0 = = INPUT ( n ) - > type )
return - EINVAL ;
2007-11-11 07:13:49 +03:00
2007-11-11 19:17:17 +03:00
i - > index = n ;
i - > type = V4L2_INPUT_TYPE_CAMERA ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
strcpy ( i - > name , iname [ INPUT ( n ) - > type ] ) ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
if ( ( EM28XX_VMUX_TELEVISION = = INPUT ( n ) - > type ) | |
( EM28XX_VMUX_CABLE = = INPUT ( n ) - > type ) )
i - > type = V4L2_INPUT_TYPE_TUNER ;
2007-11-11 20:15:34 +03:00
i - > std = dev - > vdev - > tvnorms ;
2012-09-07 14:31:54 +04:00
/* webcams do not have the STD API */
if ( dev - > board . is_webcam )
i - > capabilities = 0 ;
2007-11-11 19:17:17 +03:00
return 0 ;
2005-11-09 08:37:07 +03:00
}
2007-11-11 19:17:17 +03:00
static int vidioc_g_input ( struct file * file , void * priv , unsigned int * i )
2005-11-09 08:37:07 +03:00
{
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
* i = dev - > ctl_input ;
return 0 ;
}
static int vidioc_s_input ( struct file * file , void * priv , unsigned int i )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
if ( i > = MAX_EM28XX_INPUT )
return - EINVAL ;
if ( 0 = = INPUT ( i ) - > type )
return - EINVAL ;
2007-11-11 07:08:26 +03:00
2012-03-24 01:09:34 +04:00
video_mux ( dev , i ) ;
2007-11-11 19:17:17 +03:00
return 0 ;
}
static int vidioc_g_audio ( struct file * file , void * priv , struct v4l2_audio * a )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2008-11-20 18:40:51 +03:00
switch ( a - > index ) {
case EM28XX_AMUX_VIDEO :
2007-11-11 19:17:17 +03:00
strcpy ( a - > name , " Television " ) ;
2008-11-20 18:40:51 +03:00
break ;
case EM28XX_AMUX_LINE_IN :
2007-11-11 19:17:17 +03:00
strcpy ( a - > name , " Line In " ) ;
2008-11-20 18:40:51 +03:00
break ;
case EM28XX_AMUX_VIDEO2 :
strcpy ( a - > name , " Television alt " ) ;
break ;
case EM28XX_AMUX_PHONE :
strcpy ( a - > name , " Phone " ) ;
break ;
case EM28XX_AMUX_MIC :
strcpy ( a - > name , " Mic " ) ;
break ;
case EM28XX_AMUX_CD :
strcpy ( a - > name , " CD " ) ;
break ;
case EM28XX_AMUX_AUX :
strcpy ( a - > name , " Aux " ) ;
break ;
case EM28XX_AMUX_PCM_OUT :
strcpy ( a - > name , " PCM " ) ;
break ;
default :
return - EINVAL ;
}
2008-04-18 04:41:10 +04:00
2008-11-20 18:40:51 +03:00
a - > index = dev - > ctl_ainput ;
2007-11-11 19:17:17 +03:00
a - > capability = V4L2_AUDCAP_STEREO ;
return 0 ;
}
2012-09-04 18:59:31 +04:00
static int vidioc_s_audio ( struct file * file , void * priv , const struct v4l2_audio * a )
2007-11-11 19:17:17 +03:00
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2009-01-08 04:49:25 +03:00
if ( a - > index > = MAX_EM28XX_INPUT )
return - EINVAL ;
if ( 0 = = INPUT ( a - > index ) - > type )
return - EINVAL ;
2008-11-20 18:40:51 +03:00
dev - > ctl_ainput = INPUT ( a - > index ) - > amux ;
dev - > ctl_aoutput = INPUT ( a - > index ) - > aout ;
2008-11-20 19:39:39 +03:00
if ( ! dev - > ctl_aoutput )
dev - > ctl_aoutput = EM28XX_AOUT_MASTER ;
2008-12-17 04:04:56 +03:00
2007-11-11 19:17:17 +03:00
return 0 ;
}
static int vidioc_g_tuner ( struct file * file , void * priv ,
struct v4l2_tuner * t )
2005-11-09 08:37:07 +03:00
{
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
if ( 0 ! = t - > index )
return - EINVAL ;
strcpy ( t - > name , " Tuner " ) ;
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , g_tuner , t ) ;
2007-11-11 19:17:17 +03:00
return 0 ;
2005-11-09 08:37:07 +03:00
}
2007-11-11 19:17:17 +03:00
static int vidioc_s_tuner ( struct file * file , void * priv ,
struct v4l2_tuner * t )
2005-11-09 08:37:07 +03:00
{
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
if ( 0 ! = t - > index )
return - EINVAL ;
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , s_tuner , t ) ;
2007-11-11 19:17:17 +03:00
return 0 ;
2005-11-09 08:37:07 +03:00
}
2007-11-11 19:17:17 +03:00
static int vidioc_g_frequency ( struct file * file , void * priv ,
struct v4l2_frequency * f )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2005-11-09 08:37:07 +03:00
2012-09-06 17:07:25 +04:00
if ( 0 ! = f - > tuner )
return - EINVAL ;
2007-11-11 19:17:17 +03:00
f - > frequency = dev - > ctl_freq ;
return 0 ;
}
static int vidioc_s_frequency ( struct file * file , void * priv ,
struct v4l2_frequency * f )
2005-11-09 08:37:07 +03:00
{
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
if ( 0 ! = f - > tuner )
return - EINVAL ;
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , s_frequency , f ) ;
2012-09-06 17:07:25 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , g_frequency , f ) ;
dev - > ctl_freq = f - > frequency ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
return 0 ;
}
2005-11-09 08:37:07 +03:00
2008-12-23 02:58:41 +03:00
static int vidioc_g_chip_ident ( struct file * file , void * priv ,
2008-12-30 13:14:19 +03:00
struct v4l2_dbg_chip_ident * chip )
2008-12-23 02:58:41 +03:00
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
chip - > ident = V4L2_IDENT_NONE ;
chip - > revision = 0 ;
2012-09-06 16:53:08 +04:00
if ( chip - > match . type = = V4L2_CHIP_MATCH_HOST ) {
if ( v4l2_chip_match_host ( & chip - > match ) )
chip - > ident = V4L2_IDENT_NONE ;
return 0 ;
}
if ( chip - > match . type ! = V4L2_CHIP_MATCH_I2C_DRIVER & &
chip - > match . type ! = V4L2_CHIP_MATCH_I2C_ADDR )
return - EINVAL ;
2008-12-23 02:58:41 +03:00
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , g_chip_ident , chip ) ;
2008-12-23 02:58:41 +03:00
return 0 ;
}
2013-02-07 20:39:19 +04:00
# ifdef CONFIG_VIDEO_ADV_DEBUG
static int em28xx_reg_len ( int reg )
{
switch ( reg ) {
case EM28XX_R40_AC97LSB :
case EM28XX_R30_HSCALELOW :
case EM28XX_R32_VSCALELOW :
return 2 ;
default :
return 1 ;
}
}
2008-12-23 02:58:41 +03:00
2008-02-06 15:00:41 +03:00
static int vidioc_g_register ( struct file * file , void * priv ,
2008-12-30 13:14:19 +03:00
struct v4l2_dbg_register * reg )
2008-02-06 15:00:41 +03:00
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
int ret ;
2008-12-30 13:14:19 +03:00
switch ( reg - > match . type ) {
2008-12-23 02:58:41 +03:00
case V4L2_CHIP_MATCH_AC97 :
2008-12-22 19:18:27 +03:00
ret = em28xx_read_ac97 ( dev , reg - > reg ) ;
if ( ret < 0 )
return ret ;
reg - > val = ret ;
2008-12-30 13:14:19 +03:00
reg - > size = 1 ;
2008-12-22 19:18:27 +03:00
return 0 ;
2008-12-23 02:58:41 +03:00
case V4L2_CHIP_MATCH_I2C_DRIVER :
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , g_register , reg ) ;
2008-12-23 02:58:41 +03:00
return 0 ;
case V4L2_CHIP_MATCH_I2C_ADDR :
2009-08-10 02:39:23 +04:00
/* TODO: is this correct? */
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , g_register , reg ) ;
return 0 ;
2008-12-23 02:58:41 +03:00
default :
2008-12-30 13:14:19 +03:00
if ( ! v4l2_chip_match_host ( & reg - > match ) )
2008-12-23 02:58:41 +03:00
return - EINVAL ;
}
2008-02-06 15:00:41 +03:00
2008-12-23 02:58:41 +03:00
/* Match host */
2008-12-30 13:14:19 +03:00
reg - > size = em28xx_reg_len ( reg - > reg ) ;
if ( reg - > size = = 1 ) {
2008-02-06 15:00:41 +03:00
ret = em28xx_read_reg ( dev , reg - > reg ) ;
2008-12-17 04:04:56 +03:00
2008-02-06 15:00:41 +03:00
if ( ret < 0 )
return ret ;
reg - > val = ret ;
} else {
2008-12-30 13:14:19 +03:00
__le16 val = 0 ;
2008-02-06 15:00:41 +03:00
ret = em28xx_read_reg_req_len ( dev , USB_REQ_GET_STATUS ,
reg - > reg , ( char * ) & val , 2 ) ;
if ( ret < 0 )
return ret ;
2008-12-30 13:14:19 +03:00
reg - > val = le16_to_cpu ( val ) ;
2008-02-06 15:00:41 +03:00
}
return 0 ;
}
static int vidioc_s_register ( struct file * file , void * priv ,
2008-12-30 13:14:19 +03:00
struct v4l2_dbg_register * reg )
2008-02-06 15:00:41 +03:00
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
2008-12-30 13:14:19 +03:00
__le16 buf ;
2008-02-06 15:00:41 +03:00
2008-12-30 13:14:19 +03:00
switch ( reg - > match . type ) {
2008-12-23 02:58:41 +03:00
case V4L2_CHIP_MATCH_AC97 :
2010-09-26 14:34:45 +04:00
return em28xx_write_ac97 ( dev , reg - > reg , reg - > val ) ;
2008-12-23 02:58:41 +03:00
case V4L2_CHIP_MATCH_I2C_DRIVER :
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , s_register , reg ) ;
2008-12-23 02:58:41 +03:00
return 0 ;
case V4L2_CHIP_MATCH_I2C_ADDR :
2009-08-10 02:39:23 +04:00
/* TODO: is this correct? */
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , s_register , reg ) ;
return 0 ;
2008-12-23 02:58:41 +03:00
default :
2008-12-30 13:14:19 +03:00
if ( ! v4l2_chip_match_host ( & reg - > match ) )
2008-12-23 02:58:41 +03:00
return - EINVAL ;
2008-12-22 19:18:27 +03:00
}
2008-12-23 02:58:41 +03:00
/* Match host */
2008-12-30 13:14:19 +03:00
buf = cpu_to_le16 ( reg - > val ) ;
2008-02-06 15:00:41 +03:00
2010-09-26 14:34:45 +04:00
return em28xx_write_regs ( dev , reg - > reg , ( char * ) & buf ,
2008-12-17 04:04:56 +03:00
em28xx_reg_len ( reg - > reg ) ) ;
2008-02-06 15:00:41 +03:00
}
# endif
2007-11-11 19:17:17 +03:00
static int vidioc_querycap ( struct file * file , void * priv ,
struct v4l2_capability * cap )
2005-11-09 08:37:07 +03:00
{
2012-09-06 14:31:04 +04:00
struct video_device * vdev = video_devdata ( file ) ;
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
strlcpy ( cap - > driver , " em28xx " , sizeof ( cap - > driver ) ) ;
strlcpy ( cap - > card , em28xx_boards [ dev - > model ] . name , sizeof ( cap - > card ) ) ;
2009-01-21 00:01:33 +03:00
usb_make_path ( dev - > udev , cap - > bus_info , sizeof ( cap - > bus_info ) ) ;
2007-11-11 19:17:17 +03:00
2012-09-06 14:31:04 +04:00
if ( vdev - > vfl_type = = VFL_TYPE_GRABBER )
cap - > device_caps = V4L2_CAP_READWRITE |
V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING ;
else if ( vdev - > vfl_type = = VFL_TYPE_RADIO )
cap - > device_caps = V4L2_CAP_RADIO ;
else
2012-09-07 15:45:10 +04:00
cap - > device_caps = V4L2_CAP_READWRITE | V4L2_CAP_VBI_CAPTURE ;
2009-09-11 07:08:44 +04:00
2009-08-05 02:52:37 +04:00
if ( dev - > audio_mode . has_audio )
2012-09-06 14:31:04 +04:00
cap - > device_caps | = V4L2_CAP_AUDIO ;
2009-08-05 02:52:37 +04:00
V4L/DVB (7060): em28xx: remove has_tuner
has_tuner flag doesn't make much sense, since tuner_type=TUNER_ABSENT
means the same thing.
Having two ways to say that a tuner is not present is
not nice, since it may lead to bad setups. In fact, with the previous
code, if a device were using has_tuner=0, but the user forces a tuner,
with modprobe option tuner=type, the modprobe option won't work.
Also, tveeprom returns TUNER_ABSENT, when tuner is unknown or absent.
So, with the previous logic, in this case, the driver should set
has_tuner=0, or has_tuner=1 otherwise.
Instead of adding several additional tests and setups, better just to
remove .has_tuner.
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-01-24 12:59:20 +03:00
if ( dev - > tuner_type ! = TUNER_ABSENT )
2012-09-06 14:31:04 +04:00
cap - > device_caps | = V4L2_CAP_TUNER ;
2007-11-11 19:17:17 +03:00
2012-09-06 14:31:04 +04:00
cap - > capabilities = cap - > device_caps | V4L2_CAP_DEVICE_CAPS |
V4L2_CAP_READWRITE | V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING ;
if ( dev - > vbi_dev )
2012-09-07 15:45:10 +04:00
cap - > capabilities | = V4L2_CAP_VBI_CAPTURE ;
2012-09-06 14:31:04 +04:00
if ( dev - > radio_dev )
cap - > capabilities | = V4L2_CAP_RADIO ;
2007-11-11 19:17:17 +03:00
return 0 ;
2006-01-09 20:25:14 +03:00
}
2008-05-28 19:16:41 +04:00
static int vidioc_enum_fmt_vid_cap ( struct file * file , void * priv ,
2008-12-20 15:06:37 +03:00
struct v4l2_fmtdesc * f )
2005-11-09 08:37:07 +03:00
{
2008-12-20 15:06:37 +03:00
if ( unlikely ( f - > index > = ARRAY_SIZE ( format ) ) )
2006-01-09 20:25:14 +03:00
return - EINVAL ;
2007-11-11 19:17:17 +03:00
2008-12-20 15:06:37 +03:00
strlcpy ( f - > description , format [ f - > index ] . name , sizeof ( f - > description ) ) ;
f - > pixelformat = format [ f - > index ] . fourcc ;
2007-11-11 19:17:17 +03:00
return 0 ;
2006-01-09 20:25:14 +03:00
}
2011-10-16 19:52:43 +04:00
static int vidioc_enum_framesizes ( struct file * file , void * priv ,
struct v4l2_frmsizeenum * fsize )
{
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
struct em28xx_fmt * fmt ;
unsigned int maxw = norm_maxw ( dev ) ;
unsigned int maxh = norm_maxh ( dev ) ;
fmt = format_by_fourcc ( fsize - > pixel_format ) ;
if ( ! fmt ) {
em28xx_videodbg ( " Fourcc format (%08x) invalid. \n " ,
fsize - > pixel_format ) ;
return - EINVAL ;
}
if ( dev - > board . is_em2800 ) {
if ( fsize - > index > 1 )
return - EINVAL ;
fsize - > type = V4L2_FRMSIZE_TYPE_DISCRETE ;
fsize - > discrete . width = maxw / ( 1 + fsize - > index ) ;
fsize - > discrete . height = maxh / ( 1 + fsize - > index ) ;
return 0 ;
}
if ( fsize - > index ! = 0 )
return - EINVAL ;
/* Report a continuous range */
fsize - > type = V4L2_FRMSIZE_TYPE_STEPWISE ;
2013-02-10 23:05:14 +04:00
scale_to_size ( dev , EM28XX_HVSCALE_MAX , EM28XX_HVSCALE_MAX ,
& fsize - > stepwise . min_width , & fsize - > stepwise . min_height ) ;
if ( fsize - > stepwise . min_width < 48 )
fsize - > stepwise . min_width = 48 ;
if ( fsize - > stepwise . min_height < 38 )
fsize - > stepwise . min_height = 38 ;
2011-10-16 19:52:43 +04:00
fsize - > stepwise . max_width = maxw ;
fsize - > stepwise . max_height = maxh ;
fsize - > stepwise . step_width = 1 ;
fsize - > stepwise . step_height = 1 ;
return 0 ;
}
2009-09-01 08:54:54 +04:00
/* RAW VBI ioctls */
static int vidioc_g_fmt_vbi_cap ( struct file * file , void * priv ,
struct v4l2_format * format )
{
2009-11-25 05:17:25 +03:00
struct em28xx_fh * fh = priv ;
struct em28xx * dev = fh - > dev ;
format - > fmt . vbi . samples_per_line = dev - > vbi_width ;
2009-09-01 08:54:54 +04:00
format - > fmt . vbi . sample_format = V4L2_PIX_FMT_GREY ;
format - > fmt . vbi . offset = 0 ;
format - > fmt . vbi . flags = 0 ;
2009-11-25 05:17:25 +03:00
format - > fmt . vbi . sampling_rate = 6750000 * 4 / 2 ;
format - > fmt . vbi . count [ 0 ] = dev - > vbi_height ;
format - > fmt . vbi . count [ 1 ] = dev - > vbi_height ;
2012-09-07 15:51:32 +04:00
memset ( format - > fmt . vbi . reserved , 0 , sizeof ( format - > fmt . vbi . reserved ) ) ;
2009-09-01 08:54:54 +04:00
/* Varies by video standard (NTSC, PAL, etc.) */
2009-11-25 05:17:25 +03:00
if ( dev - > norm & V4L2_STD_525_60 ) {
/* NTSC */
format - > fmt . vbi . start [ 0 ] = 10 ;
format - > fmt . vbi . start [ 1 ] = 273 ;
} else if ( dev - > norm & V4L2_STD_625_50 ) {
/* PAL */
format - > fmt . vbi . start [ 0 ] = 6 ;
format - > fmt . vbi . start [ 1 ] = 318 ;
}
2009-09-01 08:54:54 +04:00
return 0 ;
}
2008-01-05 23:22:01 +03:00
/* ----------------------------------------------------------- */
/* RADIO ESPECIFIC IOCTLS */
/* ----------------------------------------------------------- */
static int radio_g_tuner ( struct file * file , void * priv ,
struct v4l2_tuner * t )
{
struct em28xx * dev = ( ( struct em28xx_fh * ) priv ) - > dev ;
if ( unlikely ( t - > index > 0 ) )
return - EINVAL ;
strcpy ( t - > name , " Radio " ) ;
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , g_tuner , t ) ;
2008-12-17 04:04:56 +03:00
2008-01-05 23:22:01 +03:00
return 0 ;
}
static int radio_s_tuner ( struct file * file , void * priv ,
struct v4l2_tuner * t )
{
struct em28xx * dev = ( ( struct em28xx_fh * ) priv ) - > dev ;
if ( 0 ! = t - > index )
return - EINVAL ;
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , s_tuner , t ) ;
2008-01-05 23:22:01 +03:00
return 0 ;
}
2007-11-11 19:17:17 +03:00
/*
* em28xx_v4l2_open ( )
* inits the device and starts isoc transfer
*/
2008-12-30 12:58:20 +03:00
static int em28xx_v4l2_open ( struct file * filp )
2007-11-11 19:17:17 +03:00
{
2009-12-10 16:44:04 +03:00
struct video_device * vdev = video_devdata ( filp ) ;
struct em28xx * dev = video_drvdata ( filp ) ;
enum v4l2_buf_type fh_type = 0 ;
2007-11-11 19:17:17 +03:00
struct em28xx_fh * fh ;
2006-01-23 22:11:08 +03:00
2009-12-10 16:44:04 +03:00
switch ( vdev - > vfl_type ) {
case VFL_TYPE_GRABBER :
fh_type = V4L2_BUF_TYPE_VIDEO_CAPTURE ;
break ;
case VFL_TYPE_VBI :
fh_type = V4L2_BUF_TYPE_VBI_CAPTURE ;
break ;
}
2008-11-20 16:30:26 +03:00
2009-12-10 16:47:13 +03:00
em28xx_videodbg ( " open dev=%s type=%s users=%d \n " ,
video_device_node_name ( vdev ) , v4l2_type_names [ fh_type ] ,
dev - > users ) ;
2006-01-23 22:11:08 +03:00
2006-01-23 22:11:09 +03:00
2012-06-23 15:12:47 +04:00
if ( mutex_lock_interruptible ( & dev - > lock ) )
return - ERESTARTSYS ;
2008-04-18 04:48:00 +04:00
fh = kzalloc ( sizeof ( struct em28xx_fh ) , GFP_KERNEL ) ;
2007-11-11 19:17:17 +03:00
if ( ! fh ) {
em28xx_errdev ( " em28xx-video.c: Out of memory?! \n " ) ;
2012-06-23 15:12:47 +04:00
mutex_unlock ( & dev - > lock ) ;
2007-11-11 19:17:17 +03:00
return - ENOMEM ;
}
2012-09-07 12:52:40 +04:00
v4l2_fh_init ( & fh - > fh , vdev ) ;
2007-11-11 19:17:17 +03:00
fh - > dev = dev ;
2008-04-13 21:38:47 +04:00
fh - > type = fh_type ;
2007-11-11 19:17:17 +03:00
filp - > private_data = fh ;
2006-01-23 22:11:09 +03:00
2008-04-13 21:38:47 +04:00
if ( fh - > type = = V4L2_BUF_TYPE_VIDEO_CAPTURE & & dev - > users = = 0 ) {
2008-04-18 04:48:00 +04:00
em28xx_set_mode ( dev , EM28XX_ANALOG_MODE ) ;
2007-11-11 19:17:17 +03:00
em28xx_resolution_set ( dev ) ;
2006-01-23 22:11:08 +03:00
2008-04-18 04:48:00 +04:00
/* Needed, since GPIO might have disabled power of
some i2c device
*/
2008-12-29 04:18:14 +03:00
em28xx_wake_i2c ( dev ) ;
2008-04-18 04:48:00 +04:00
2006-01-23 22:11:08 +03:00
}
2013-01-04 23:16:24 +04:00
if ( vdev - > vfl_type = = VFL_TYPE_RADIO ) {
2008-01-05 23:22:01 +03:00
em28xx_videodbg ( " video_open: setting radio device \n " ) ;
2009-04-01 00:10:58 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , tuner , s_radio ) ;
2008-01-05 23:22:01 +03:00
}
2006-01-23 22:11:08 +03:00
2007-11-11 19:17:17 +03:00
dev - > users + + ;
2006-01-23 22:11:08 +03:00
2012-06-23 15:12:47 +04:00
mutex_unlock ( & dev - > lock ) ;
2012-09-07 12:52:40 +04:00
v4l2_fh_add ( & fh - > fh ) ;
2008-04-18 04:48:00 +04:00
2013-01-04 23:16:24 +04:00
return 0 ;
2006-01-23 22:11:08 +03:00
}
2006-01-23 22:11:08 +03:00
2005-11-09 08:37:07 +03:00
/*
2007-11-11 19:17:17 +03:00
* em28xx_realease_resources ( )
* unregisters the v4l2 , i2c and usb devices
* called when the device gets disconected or at module unload
*/
2008-12-29 04:18:14 +03:00
void em28xx_release_analog_resources ( struct em28xx * dev )
2005-11-09 08:37:07 +03:00
{
2007-11-11 19:17:17 +03:00
/*FIXME: I2C IR should be disconnected */
2005-11-09 08:37:07 +03:00
2008-01-05 23:22:01 +03:00
if ( dev - > radio_dev ) {
2009-11-27 19:57:30 +03:00
if ( video_is_registered ( dev - > radio_dev ) )
2008-01-05 23:22:01 +03:00
video_unregister_device ( dev - > radio_dev ) ;
else
video_device_release ( dev - > radio_dev ) ;
dev - > radio_dev = NULL ;
}
if ( dev - > vbi_dev ) {
2009-11-27 19:57:15 +03:00
em28xx_info ( " V4L2 device %s deregistered \n " ,
video_device_node_name ( dev - > vbi_dev ) ) ;
2009-11-27 19:57:30 +03:00
if ( video_is_registered ( dev - > vbi_dev ) )
2008-01-05 23:22:01 +03:00
video_unregister_device ( dev - > vbi_dev ) ;
else
video_device_release ( dev - > vbi_dev ) ;
dev - > vbi_dev = NULL ;
}
if ( dev - > vdev ) {
2009-11-27 19:57:15 +03:00
em28xx_info ( " V4L2 device %s deregistered \n " ,
video_device_node_name ( dev - > vdev ) ) ;
2009-11-27 19:57:30 +03:00
if ( video_is_registered ( dev - > vdev ) )
2008-01-05 23:22:01 +03:00
video_unregister_device ( dev - > vdev ) ;
else
video_device_release ( dev - > vdev ) ;
dev - > vdev = NULL ;
}
2007-11-11 19:17:17 +03:00
}
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
/*
* em28xx_v4l2_close ( )
2008-04-18 04:41:10 +04:00
* stops streaming and deallocates all resources allocated by the v4l2
* calls and ioctls
2007-11-11 19:17:17 +03:00
*/
2008-12-30 12:58:20 +03:00
static int em28xx_v4l2_close ( struct file * filp )
2007-11-11 19:17:17 +03:00
{
struct em28xx_fh * fh = filp - > private_data ;
struct em28xx * dev = fh - > dev ;
int errCode ;
2005-11-09 08:37:07 +03:00
2007-11-11 19:17:17 +03:00
em28xx_videodbg ( " users=%d \n " , dev - > users ) ;
2005-11-09 08:37:07 +03:00
2012-06-23 15:12:47 +04:00
mutex_lock ( & dev - > lock ) ;
2013-01-04 23:16:24 +04:00
vb2_fop_release ( filp ) ;
2009-09-03 07:23:27 +04:00
2009-09-15 07:18:06 +04:00
if ( dev - > users = = 1 ) {
2007-11-11 19:17:17 +03:00
/* the device is already disconnect,
free the remaining resources */
2012-12-28 02:02:43 +04:00
if ( dev - > disconnected ) {
2007-11-11 19:17:17 +03:00
em28xx_release_resources ( dev ) ;
2012-11-08 21:11:49 +04:00
kfree ( dev - > alt_max_pkt_size_isoc ) ;
2012-08-14 09:58:15 +04:00
mutex_unlock ( & dev - > lock ) ;
2007-11-11 19:17:17 +03:00
kfree ( dev ) ;
return 0 ;
}
2005-11-09 08:37:07 +03:00
2008-12-05 16:39:12 +03:00
/* Save some power by putting tuner to sleep */
2009-10-05 17:48:17 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , s_power , 0 ) ;
2008-12-05 16:39:12 +03:00
2008-04-13 21:38:47 +04:00
/* do this before setting alternate! */
2008-11-27 15:10:40 +03:00
em28xx_set_mode ( dev , EM28XX_SUSPEND ) ;
2008-04-13 21:38:47 +04:00
2007-11-11 19:17:17 +03:00
/* set alternate 0 */
dev - > alt = 0 ;
em28xx_videodbg ( " setting alternate 0 \n " ) ;
errCode = usb_set_interface ( dev - > udev , 0 , 0 ) ;
if ( errCode < 0 ) {
em28xx_errdev ( " cannot change alternate number to "
" 0 (error=%i) \n " , errCode ) ;
}
2006-01-23 22:11:09 +03:00
}
2009-09-01 08:54:54 +04:00
2007-11-11 19:17:17 +03:00
dev - > users - - ;
2012-06-23 15:12:47 +04:00
mutex_unlock ( & dev - > lock ) ;
2007-11-11 19:17:17 +03:00
return 0 ;
}
2005-11-09 08:37:07 +03:00
2008-12-30 12:58:20 +03:00
static const struct v4l2_file_operations em28xx_v4l_fops = {
2007-11-11 19:17:17 +03:00
. owner = THIS_MODULE ,
. open = em28xx_v4l2_open ,
. release = em28xx_v4l2_close ,
2013-01-04 23:16:24 +04:00
. read = vb2_fop_read ,
. poll = vb2_fop_poll ,
. mmap = vb2_fop_mmap ,
2010-09-26 14:34:45 +04:00
. unlocked_ioctl = video_ioctl2 ,
2007-11-11 19:17:17 +03:00
} ;
2006-01-09 20:24:58 +03:00
2008-07-21 09:57:38 +04:00
static const struct v4l2_ioctl_ops video_ioctl_ops = {
2007-11-11 19:17:17 +03:00
. vidioc_querycap = vidioc_querycap ,
2008-05-28 19:16:41 +04:00
. vidioc_enum_fmt_vid_cap = vidioc_enum_fmt_vid_cap ,
. vidioc_g_fmt_vid_cap = vidioc_g_fmt_vid_cap ,
. vidioc_try_fmt_vid_cap = vidioc_try_fmt_vid_cap ,
. vidioc_s_fmt_vid_cap = vidioc_s_fmt_vid_cap ,
2009-09-01 08:54:54 +04:00
. vidioc_g_fmt_vbi_cap = vidioc_g_fmt_vbi_cap ,
2012-09-07 15:51:32 +04:00
. vidioc_try_fmt_vbi_cap = vidioc_g_fmt_vbi_cap ,
2013-02-07 20:39:16 +04:00
. vidioc_s_fmt_vbi_cap = vidioc_g_fmt_vbi_cap ,
2011-10-16 19:52:43 +04:00
. vidioc_enum_framesizes = vidioc_enum_framesizes ,
2007-11-11 19:17:17 +03:00
. vidioc_g_audio = vidioc_g_audio ,
. vidioc_s_audio = vidioc_s_audio ,
2013-01-04 23:16:24 +04:00
. vidioc_reqbufs = vb2_ioctl_reqbufs ,
. vidioc_create_bufs = vb2_ioctl_create_bufs ,
. vidioc_prepare_buf = vb2_ioctl_prepare_buf ,
. vidioc_querybuf = vb2_ioctl_querybuf ,
. vidioc_qbuf = vb2_ioctl_qbuf ,
. vidioc_dqbuf = vb2_ioctl_dqbuf ,
2009-09-11 07:40:18 +04:00
. vidioc_g_std = vidioc_g_std ,
2011-10-04 16:53:00 +04:00
. vidioc_querystd = vidioc_querystd ,
2007-11-11 19:17:17 +03:00
. vidioc_s_std = vidioc_s_std ,
2009-08-07 04:53:59 +04:00
. vidioc_g_parm = vidioc_g_parm ,
. vidioc_s_parm = vidioc_s_parm ,
2007-11-11 19:17:17 +03:00
. vidioc_enum_input = vidioc_enum_input ,
. vidioc_g_input = vidioc_g_input ,
. vidioc_s_input = vidioc_s_input ,
2013-01-04 23:16:24 +04:00
. vidioc_streamon = vb2_ioctl_streamon ,
. vidioc_streamoff = vb2_ioctl_streamoff ,
2007-11-11 19:17:17 +03:00
. vidioc_g_tuner = vidioc_g_tuner ,
. vidioc_s_tuner = vidioc_s_tuner ,
. vidioc_g_frequency = vidioc_g_frequency ,
. vidioc_s_frequency = vidioc_s_frequency ,
2012-09-07 13:10:12 +04:00
. vidioc_subscribe_event = v4l2_ctrl_subscribe_event ,
. vidioc_unsubscribe_event = v4l2_event_unsubscribe ,
2013-02-07 20:39:19 +04:00
. vidioc_g_chip_ident = vidioc_g_chip_ident ,
2008-02-06 15:00:41 +03:00
# ifdef CONFIG_VIDEO_ADV_DEBUG
. vidioc_g_register = vidioc_g_register ,
. vidioc_s_register = vidioc_s_register ,
# endif
2008-07-21 09:57:38 +04:00
} ;
static const struct video_device em28xx_video_template = {
. fops = & em28xx_v4l_fops ,
2013-01-04 23:16:24 +04:00
. release = video_device_release_empty ,
2008-07-21 09:57:38 +04:00
. ioctl_ops = & video_ioctl_ops ,
2007-11-11 19:17:17 +03:00
. tvnorms = V4L2_STD_ALL ,
2005-11-09 08:37:07 +03:00
} ;
2008-12-30 12:58:20 +03:00
static const struct v4l2_file_operations radio_fops = {
2008-07-21 09:57:38 +04:00
. owner = THIS_MODULE ,
. open = em28xx_v4l2_open ,
. release = em28xx_v4l2_close ,
2010-12-18 15:59:51 +03:00
. unlocked_ioctl = video_ioctl2 ,
2008-07-21 09:57:38 +04:00
} ;
static const struct v4l2_ioctl_ops radio_ioctl_ops = {
2012-09-06 14:31:04 +04:00
. vidioc_querycap = vidioc_querycap ,
2008-01-05 23:22:01 +03:00
. vidioc_g_tuner = radio_g_tuner ,
. vidioc_s_tuner = radio_s_tuner ,
. vidioc_g_frequency = vidioc_g_frequency ,
. vidioc_s_frequency = vidioc_s_frequency ,
2012-09-07 13:10:12 +04:00
. vidioc_subscribe_event = v4l2_ctrl_subscribe_event ,
. vidioc_unsubscribe_event = v4l2_event_unsubscribe ,
2013-02-07 20:39:20 +04:00
. vidioc_g_chip_ident = vidioc_g_chip_ident ,
2008-02-06 15:00:41 +03:00
# ifdef CONFIG_VIDEO_ADV_DEBUG
. vidioc_g_register = vidioc_g_register ,
. vidioc_s_register = vidioc_s_register ,
# endif
2008-01-05 23:22:01 +03:00
} ;
2008-07-21 09:57:38 +04:00
static struct video_device em28xx_radio_template = {
. name = " em28xx-radio " ,
. fops = & radio_fops ,
. ioctl_ops = & radio_ioctl_ops ,
} ;
2008-04-18 04:41:10 +04:00
/******************************** usb interface ******************************/
2005-11-09 08:37:07 +03:00
2008-01-05 15:57:31 +03:00
2008-01-29 04:10:48 +03:00
static struct video_device * em28xx_vdev_init ( struct em28xx * dev ,
2009-02-11 05:28:24 +03:00
const struct video_device * template ,
const char * type_name )
2008-01-05 23:22:01 +03:00
{
struct video_device * vfd ;
vfd = video_device_alloc ( ) ;
if ( NULL = = vfd )
return NULL ;
2009-04-01 00:10:58 +04:00
* vfd = * template ;
vfd - > v4l2_dev = & dev - > v4l2_dev ;
vfd - > debug = video_debug ;
2010-09-26 14:34:45 +04:00
vfd - > lock = & dev - > lock ;
2012-09-07 12:52:40 +04:00
set_bit ( V4L2_FL_USE_FH_PRIO , & vfd - > flags ) ;
2012-09-07 14:31:54 +04:00
if ( dev - > board . is_webcam )
vfd - > tvnorms = 0 ;
2008-01-05 23:22:01 +03:00
snprintf ( vfd - > name , sizeof ( vfd - > name ) , " %s %s " ,
dev - > name , type_name ) ;
2009-12-10 16:44:04 +03:00
video_set_drvdata ( vfd , dev ) ;
2008-01-05 23:22:01 +03:00
return vfd ;
}
2008-12-29 04:26:36 +03:00
int em28xx_register_analog_devices ( struct em28xx * dev )
2008-12-29 04:18:14 +03:00
{
2012-09-07 12:43:59 +04:00
u8 val ;
2008-12-29 04:26:36 +03:00
int ret ;
2012-01-08 23:54:28 +04:00
unsigned int maxw ;
2008-12-29 04:26:36 +03:00
[media] Stop using linux/version.h on most video drivers
All the modified drivers didn't have any version increment since
Jan, 1 2011. Several of them didn't have any version increment
for a long time, even having new features and important bug fixes
happening.
As we're now filling the QUERYCAP version with the current Kernel
Release, we don't need to maintain a per-driver version control
anymore. So, let's just use the default.
In order to preserve the Kernel module version history, a
KERNEL_VERSION() macro were added to all modified drivers, and
the extraver number were incremented.
I opted to preserve the per-driver version control to a few
pwc, pvrusb2, s2255, s5p-fimc and sh_vou.
A few drivers are still using the legacy way to handle ioctl's.
So, we can't do such change on them, otherwise, they'll break.
Those are: uvc, et61x251 and sn9c102.
The rationale is that the per-driver version control seems to be
actively maintained on those.
Yet, I think that the better for them would be to just use the
default version numbering, instead of doing that by themselves.
While here, removed a few uneeded include linux/version.h
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-06-24 21:45:49 +04:00
printk ( KERN_INFO " %s: v4l2 driver version %s \n " ,
dev - > name , EM28XX_VERSION ) ;
2008-12-29 04:18:14 +03:00
2009-01-08 04:49:25 +03:00
/* set default norm */
2012-09-07 14:31:54 +04:00
dev - > norm = V4L2_STD_PAL ;
2010-09-26 14:45:15 +04:00
v4l2_device_call_all ( & dev - > v4l2_dev , 0 , core , s_std , dev - > norm ) ;
2009-01-08 04:49:25 +03:00
dev - > interlaced = EM28XX_INTERLACED_DEFAULT ;
2008-12-29 04:18:14 +03:00
/* Analog specific initialization */
dev - > format = & format [ 0 ] ;
2012-01-08 23:54:28 +04:00
maxw = norm_maxw ( dev ) ;
2013-01-04 23:16:24 +04:00
/* MaxPacketSize for em2800 is too small to capture at full resolution
* use half of maxw as the scaler can only scale to 50 % */
if ( dev - > board . is_em2800 )
maxw / = 2 ;
2012-01-08 23:54:28 +04:00
2009-07-03 00:34:04 +04:00
em28xx_set_video_format ( dev , format [ 0 ] . fourcc ,
2012-01-08 23:54:28 +04:00
maxw , norm_maxh ( dev ) ) ;
2009-07-03 00:34:04 +04:00
2012-03-24 01:09:34 +04:00
video_mux ( dev , 0 ) ;
2009-01-08 04:49:25 +03:00
/* Audio defaults */
dev - > mute = 1 ;
dev - > volume = 0x1f ;
2008-12-29 04:18:14 +03:00
/* em28xx_write_reg(dev, EM28XX_R0E_AUDIOSRC, 0xc0); audio register */
2009-02-11 05:28:24 +03:00
val = ( u8 ) em28xx_read_reg ( dev , EM28XX_R0F_XCLK ) ;
em28xx_write_reg ( dev , EM28XX_R0F_XCLK ,
( EM28XX_XCLK_AUDIO_UNMUTE | val ) ) ;
2008-12-29 04:18:14 +03:00
em28xx_set_outfmt ( dev ) ;
em28xx_compression_disable ( dev ) ;
2013-02-15 21:38:32 +04:00
/* Add image controls */
/* NOTE: at this point, the subdevices are already registered, so bridge
* controls are only added / enabled when no subdevice provides them */
if ( NULL = = v4l2_ctrl_find ( & dev - > ctrl_handler , V4L2_CID_CONTRAST ) )
v4l2_ctrl_new_std ( & dev - > ctrl_handler , & em28xx_ctrl_ops ,
V4L2_CID_CONTRAST ,
0 , 0x1f , 1 , CONTRAST_DEFAULT ) ;
if ( NULL = = v4l2_ctrl_find ( & dev - > ctrl_handler , V4L2_CID_BRIGHTNESS ) )
v4l2_ctrl_new_std ( & dev - > ctrl_handler , & em28xx_ctrl_ops ,
V4L2_CID_BRIGHTNESS ,
- 0x80 , 0x7f , 1 , BRIGHTNESS_DEFAULT ) ;
if ( NULL = = v4l2_ctrl_find ( & dev - > ctrl_handler , V4L2_CID_SATURATION ) )
v4l2_ctrl_new_std ( & dev - > ctrl_handler , & em28xx_ctrl_ops ,
V4L2_CID_SATURATION ,
0 , 0x1f , 1 , SATURATION_DEFAULT ) ;
if ( NULL = = v4l2_ctrl_find ( & dev - > ctrl_handler , V4L2_CID_BLUE_BALANCE ) )
v4l2_ctrl_new_std ( & dev - > ctrl_handler , & em28xx_ctrl_ops ,
V4L2_CID_BLUE_BALANCE ,
- 0x30 , 0x30 , 1 , BLUE_BALANCE_DEFAULT ) ;
if ( NULL = = v4l2_ctrl_find ( & dev - > ctrl_handler , V4L2_CID_RED_BALANCE ) )
v4l2_ctrl_new_std ( & dev - > ctrl_handler , & em28xx_ctrl_ops ,
V4L2_CID_RED_BALANCE ,
- 0x30 , 0x30 , 1 , RED_BALANCE_DEFAULT ) ;
if ( NULL = = v4l2_ctrl_find ( & dev - > ctrl_handler , V4L2_CID_SHARPNESS ) )
v4l2_ctrl_new_std ( & dev - > ctrl_handler , & em28xx_ctrl_ops ,
V4L2_CID_SHARPNESS ,
0 , 0x0f , 1 , SHARPNESS_DEFAULT ) ;
/* Reset image controls */
em28xx_colorlevels_set_default ( dev ) ;
v4l2_ctrl_handler_setup ( & dev - > ctrl_handler ) ;
if ( dev - > ctrl_handler . error )
return dev - > ctrl_handler . error ;
2008-11-20 16:30:26 +03:00
/* allocate and fill video video_device struct */
dev - > vdev = em28xx_vdev_init ( dev , & em28xx_video_template , " video " ) ;
if ( ! dev - > vdev ) {
em28xx_errdev ( " cannot allocate video_device. \n " ) ;
return - ENODEV ;
}
2013-01-04 23:16:24 +04:00
dev - > vdev - > queue = & dev - > vb_vidq ;
dev - > vdev - > queue - > lock = & dev - > vb_queue_lock ;
2008-11-20 16:30:26 +03:00
2013-02-07 20:39:09 +04:00
/* disable inapplicable ioctls */
if ( dev - > board . is_webcam ) {
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_QUERYSTD ) ;
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_G_STD ) ;
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_S_STD ) ;
2013-02-07 20:39:12 +04:00
} else {
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_S_PARM ) ;
2013-02-07 20:39:09 +04:00
}
2013-02-07 20:39:10 +04:00
if ( dev - > tuner_type = = TUNER_ABSENT ) {
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_G_TUNER ) ;
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_S_TUNER ) ;
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_G_FREQUENCY ) ;
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_S_FREQUENCY ) ;
}
2013-02-07 20:39:11 +04:00
if ( ! dev - > audio_mode . has_audio ) {
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_G_AUDIO ) ;
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_S_AUDIO ) ;
}
2013-02-07 20:39:09 +04:00
2008-11-20 16:30:26 +03:00
/* register v4l2 video video_device */
ret = video_register_device ( dev - > vdev , VFL_TYPE_GRABBER ,
video_nr [ dev - > devno ] ) ;
if ( ret ) {
em28xx_errdev ( " unable to register video device (error=%i). \n " ,
ret ) ;
return ret ;
}
/* Allocate and fill vbi video_device struct */
2009-09-11 07:01:06 +04:00
if ( em28xx_vbi_supported ( dev ) = = 1 ) {
dev - > vbi_dev = em28xx_vdev_init ( dev , & em28xx_video_template ,
" vbi " ) ;
2008-11-20 16:30:26 +03:00
2013-01-04 23:16:24 +04:00
dev - > vbi_dev - > queue = & dev - > vb_vbiq ;
dev - > vbi_dev - > queue - > lock = & dev - > vb_vbi_queue_lock ;
2013-02-07 20:39:10 +04:00
/* disable inapplicable ioctls */
2013-02-07 20:39:13 +04:00
v4l2_disable_ioctl ( dev - > vdev , VIDIOC_S_PARM ) ;
2013-02-07 20:39:10 +04:00
if ( dev - > tuner_type = = TUNER_ABSENT ) {
v4l2_disable_ioctl ( dev - > vbi_dev , VIDIOC_G_TUNER ) ;
v4l2_disable_ioctl ( dev - > vbi_dev , VIDIOC_S_TUNER ) ;
v4l2_disable_ioctl ( dev - > vbi_dev , VIDIOC_G_FREQUENCY ) ;
v4l2_disable_ioctl ( dev - > vbi_dev , VIDIOC_S_FREQUENCY ) ;
}
2013-02-07 20:39:11 +04:00
if ( ! dev - > audio_mode . has_audio ) {
v4l2_disable_ioctl ( dev - > vbi_dev , VIDIOC_G_AUDIO ) ;
v4l2_disable_ioctl ( dev - > vbi_dev , VIDIOC_S_AUDIO ) ;
}
2013-02-07 20:39:10 +04:00
2009-09-11 07:01:06 +04:00
/* register v4l2 vbi video_device */
ret = video_register_device ( dev - > vbi_dev , VFL_TYPE_VBI ,
vbi_nr [ dev - > devno ] ) ;
if ( ret < 0 ) {
em28xx_errdev ( " unable to register vbi device \n " ) ;
return ret ;
}
2008-11-20 16:30:26 +03:00
}
if ( em28xx_boards [ dev - > model ] . radio . type = = EM28XX_RADIO ) {
2009-02-11 05:28:24 +03:00
dev - > radio_dev = em28xx_vdev_init ( dev , & em28xx_radio_template ,
" radio " ) ;
2008-11-20 16:30:26 +03:00
if ( ! dev - > radio_dev ) {
em28xx_errdev ( " cannot allocate video_device. \n " ) ;
return - ENODEV ;
}
ret = video_register_device ( dev - > radio_dev , VFL_TYPE_RADIO ,
radio_nr [ dev - > devno ] ) ;
if ( ret < 0 ) {
em28xx_errdev ( " can't register radio device \n " ) ;
return ret ;
}
2009-11-27 19:57:15 +03:00
em28xx_info ( " Registered radio device as %s \n " ,
video_device_node_name ( dev - > radio_dev ) ) ;
2008-11-20 16:30:26 +03:00
}
2009-11-27 19:57:15 +03:00
em28xx_info ( " V4L2 video device registered as %s \n " ,
video_device_node_name ( dev - > vdev ) ) ;
2009-09-11 07:01:06 +04:00
if ( dev - > vbi_dev )
2009-11-27 19:57:15 +03:00
em28xx_info ( " V4L2 VBI device registered as %s \n " ,
video_device_node_name ( dev - > vbi_dev ) ) ;
2008-11-20 16:30:26 +03:00
return 0 ;
}