2019-01-21 17:16:57 +03:00
=========================
2017-11-28 18:53:32 +03:00
Linux I2C fault injection
=========================
The GPIO based I2C bus master driver can be configured to provide fault
injection capabilities. It is then meant to be connected to another I2C bus
which is driven by the I2C bus master driver under test. The GPIO fault
injection driver can create special states on the bus which the other I2C bus
master driver should handle gracefully.
Once the Kconfig option I2C_GPIO_FAULT_INJECTOR is enabled, there will be an
'i2c-fault-injector' subdirectory in the Kernel debugfs filesystem, usually
mounted at /sys/kernel/debug. There will be a separate subdirectory per GPIO
driven I2C bus. Each subdirectory will contain files to trigger the fault
injection. They will be described now along with their intended use-cases.
2019-01-21 17:16:57 +03:00
Wire states
===========
2017-11-28 18:53:32 +03:00
"scl"
-----
By reading this file, you get the current state of SCL. By writing, you can
change its state to either force it low or to release it again. So, by using
"echo 0 > scl" you force SCL low and thus, no communication will be possible
because the bus master under test will not be able to clock. It should detect
the condition of SCL being unresponsive and report an error to the upper
layers.
"sda"
-----
By reading this file, you get the current state of SDA. By writing, you can
change its state to either force it low or to release it again. So, by using
"echo 0 > sda" you force SDA low and thus, data cannot be transmitted. The bus
master under test should detect this condition and trigger a bus recovery (see
I2C specification version 4, section 3.1.16) using the helpers of the Linux I2C
core (see 'struct bus_recovery_info'). However, the bus recovery will not
succeed because SDA is still pinned low until you manually release it again
with "echo 1 > sda". A test with an automatic release can be done with the
2019-01-21 17:16:57 +03:00
"incomplete transfers" class of fault injectors.
2017-11-28 18:53:32 +03:00
2019-01-21 17:16:57 +03:00
Incomplete transfers
====================
2018-06-29 12:12:46 +03:00
The following fault injectors create situations where SDA will be held low by a
device. Bus recovery should be able to fix these situations. But please note:
there are I2C client devices which detect a stuck SDA on their side and release
it on their own after a few milliseconds. Also, there might be an external
device deglitching and monitoring the I2C bus. It could also detect a stuck SDA
and will init a bus recovery on its own. If you want to implement bus recovery
in a bus master driver, make sure you checked your hardware setup for such
devices before. And always verify with a scope or logic analyzer!
"incomplete_address_phase"
--------------------------
2017-11-28 18:53:32 +03:00
This file is write only and you need to write the address of an existing I2C
2018-06-29 12:12:46 +03:00
client device to it. Then, a read transfer to this device will be started, but
it will stop at the ACK phase after the address of the client has been
2017-11-28 18:53:32 +03:00
transmitted. Because the device will ACK its presence, this results in SDA
being pulled low by the device while SCL is high. So, similar to the "sda" file
above, the bus master under test should detect this condition and try a bus
recovery. This time, however, it should succeed and the device should release
2018-06-29 12:12:46 +03:00
SDA after toggling SCL.
2018-06-29 12:12:47 +03:00
"incomplete_write_byte"
-----------------------
Similar to above, this file is write only and you need to write the address of
an existing I2C client device to it.
The injector will again stop at one ACK phase, so the device will keep SDA low
because it acknowledges data. However, there are two differences compared to
'incomplete_address_phase':
a) the message sent out will be a write message
b) after the address byte, a 0x00 byte will be transferred. Then, stop at ACK.
This is a highly delicate state, the device is set up to write any data to
register 0x00 (if it has registers) when further clock pulses happen on SCL.
This is why bus recovery (up to 9 clock pulses) must either check SDA or send
additional STOP conditions to ensure the bus has been released. Otherwise
random data will be written to a device!
2019-02-19 19:39:45 +03:00
Lost arbitration
================
Here, we want to simulate the condition where the master under test loses the
bus arbitration against another master in a multi-master setup.
"lose_arbitration"
------------------
This file is write only and you need to write the duration of the arbitration
intereference (in µs, maximum is 100ms). The calling process will then sleep
and wait for the next bus clock. The process is interruptible, though.
Arbitration lost is achieved by waiting for SCL going down by the master under
test and then pulling SDA low for some time. So, the I2C address sent out
should be corrupted and that should be detected properly. That means that the
address sent out should have a lot of '1' bits to be able to detect corruption.
There doesn't need to be a device at this address because arbitration lost
should be detected beforehand. Also note, that SCL going down is monitored
using interrupts, so the interrupt latency might cause the first bits to be not
corrupted. A good starting point for using this fault injector on an otherwise
2019-07-26 15:51:16 +03:00
idle bus is::
2019-02-19 19:39:45 +03:00
2019-07-26 15:51:16 +03:00
# echo 200 > lose_arbitration &
# i2cget -y <bus_to_test> 0x3f
2019-02-19 19:39:46 +03:00
Panic during transfer
=====================
This fault injector will create a Kernel panic once the master under test
started a transfer. This usually means that the state machine of the bus master
driver will be ungracefully interrupted and the bus may end up in an unusual
state. Use this to check if your shutdown/reboot/boot code can handle this
scenario.
"inject_panic"
--------------
This file is write only and you need to write the delay between the detected
start of a transmission and the induced Kernel panic (in µs, maximum is 100ms).
The calling process will then sleep and wait for the next bus clock. The
process is interruptible, though.
Start of a transfer is detected by waiting for SCL going down by the master
2019-07-26 15:51:16 +03:00
under test. A good starting point for using this fault injector is::
2019-02-19 19:39:46 +03:00
2019-07-26 15:51:16 +03:00
# echo 0 > inject_panic &
# i2cget -y <bus_to_test> <some_address>
2019-02-19 19:39:46 +03:00
Note that there doesn't need to be a device listening to the address you are
using. Results may vary depending on that, though.