linux/net/sunrpc/auth_gss/svcauth_gss.c

1459 lines
36 KiB
C
Raw Normal View History

/*
* Neil Brown <neilb@cse.unsw.edu.au>
* J. Bruce Fields <bfields@umich.edu>
* Andy Adamson <andros@umich.edu>
* Dug Song <dugsong@monkey.org>
*
* RPCSEC_GSS server authentication.
* This implements RPCSEC_GSS as defined in rfc2203 (rpcsec_gss) and rfc2078
* (gssapi)
*
* The RPCSEC_GSS involves three stages:
* 1/ context creation
* 2/ data exchange
* 3/ context destruction
*
* Context creation is handled largely by upcalls to user-space.
* In particular, GSS_Accept_sec_context is handled by an upcall
* Data exchange is handled entirely within the kernel
* In particular, GSS_GetMIC, GSS_VerifyMIC, GSS_Seal, GSS_Unseal are in-kernel.
* Context destruction is handled in-kernel
* GSS_Delete_sec_context is in-kernel
*
* Context creation is initiated by a RPCSEC_GSS_INIT request arriving.
* The context handle and gss_token are used as a key into the rpcsec_init cache.
* The content of this cache includes some of the outputs of GSS_Accept_sec_context,
* being major_status, minor_status, context_handle, reply_token.
* These are sent back to the client.
* Sequence window management is handled by the kernel. The window size if currently
* a compile time constant.
*
* When user-space is happy that a context is established, it places an entry
* in the rpcsec_context cache. The key for this cache is the context_handle.
* The content includes:
* uid/gidlist - for determining access rights
* mechanism type
* mechanism specific information, such as a key
*
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/sunrpc/auth_gss.h>
#include <linux/sunrpc/gss_err.h>
#include <linux/sunrpc/svcauth.h>
#include <linux/sunrpc/svcauth_gss.h>
#include <linux/sunrpc/cache.h>
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_AUTH
#endif
/* The rpcsec_init cache is used for mapping RPCSEC_GSS_{,CONT_}INIT requests
* into replies.
*
* Key is context handle (\x if empty) and gss_token.
* Content is major_status minor_status (integers) context_handle, reply_token.
*
*/
static int netobj_equal(struct xdr_netobj *a, struct xdr_netobj *b)
{
return a->len == b->len && 0 == memcmp(a->data, b->data, a->len);
}
#define RSI_HASHBITS 6
#define RSI_HASHMAX (1<<RSI_HASHBITS)
struct rsi {
struct cache_head h;
struct xdr_netobj in_handle, in_token;
struct xdr_netobj out_handle, out_token;
int major_status, minor_status;
};
static struct cache_head *rsi_table[RSI_HASHMAX];
static struct cache_detail rsi_cache;
static struct rsi *rsi_update(struct rsi *new, struct rsi *old);
static struct rsi *rsi_lookup(struct rsi *item);
static void rsi_free(struct rsi *rsii)
{
kfree(rsii->in_handle.data);
kfree(rsii->in_token.data);
kfree(rsii->out_handle.data);
kfree(rsii->out_token.data);
}
static void rsi_put(struct kref *ref)
{
struct rsi *rsii = container_of(ref, struct rsi, h.ref);
rsi_free(rsii);
kfree(rsii);
}
static inline int rsi_hash(struct rsi *item)
{
return hash_mem(item->in_handle.data, item->in_handle.len, RSI_HASHBITS)
^ hash_mem(item->in_token.data, item->in_token.len, RSI_HASHBITS);
}
static int rsi_match(struct cache_head *a, struct cache_head *b)
{
struct rsi *item = container_of(a, struct rsi, h);
struct rsi *tmp = container_of(b, struct rsi, h);
return netobj_equal(&item->in_handle, &tmp->in_handle) &&
netobj_equal(&item->in_token, &tmp->in_token);
}
static int dup_to_netobj(struct xdr_netobj *dst, char *src, int len)
{
dst->len = len;
dst->data = (len ? kmemdup(src, len, GFP_KERNEL) : NULL);
if (len && !dst->data)
return -ENOMEM;
return 0;
}
static inline int dup_netobj(struct xdr_netobj *dst, struct xdr_netobj *src)
{
return dup_to_netobj(dst, src->data, src->len);
}
static void rsi_init(struct cache_head *cnew, struct cache_head *citem)
{
struct rsi *new = container_of(cnew, struct rsi, h);
struct rsi *item = container_of(citem, struct rsi, h);
new->out_handle.data = NULL;
new->out_handle.len = 0;
new->out_token.data = NULL;
new->out_token.len = 0;
new->in_handle.len = item->in_handle.len;
item->in_handle.len = 0;
new->in_token.len = item->in_token.len;
item->in_token.len = 0;
new->in_handle.data = item->in_handle.data;
item->in_handle.data = NULL;
new->in_token.data = item->in_token.data;
item->in_token.data = NULL;
}
static void update_rsi(struct cache_head *cnew, struct cache_head *citem)
{
struct rsi *new = container_of(cnew, struct rsi, h);
struct rsi *item = container_of(citem, struct rsi, h);
BUG_ON(new->out_handle.data || new->out_token.data);
new->out_handle.len = item->out_handle.len;
item->out_handle.len = 0;
new->out_token.len = item->out_token.len;
item->out_token.len = 0;
new->out_handle.data = item->out_handle.data;
item->out_handle.data = NULL;
new->out_token.data = item->out_token.data;
item->out_token.data = NULL;
new->major_status = item->major_status;
new->minor_status = item->minor_status;
}
static struct cache_head *rsi_alloc(void)
{
struct rsi *rsii = kmalloc(sizeof(*rsii), GFP_KERNEL);
if (rsii)
return &rsii->h;
else
return NULL;
}
static void rsi_request(struct cache_detail *cd,
struct cache_head *h,
char **bpp, int *blen)
{
struct rsi *rsii = container_of(h, struct rsi, h);
qword_addhex(bpp, blen, rsii->in_handle.data, rsii->in_handle.len);
qword_addhex(bpp, blen, rsii->in_token.data, rsii->in_token.len);
(*bpp)[-1] = '\n';
}
static int rsi_upcall(struct cache_detail *cd, struct cache_head *h)
{
return sunrpc_cache_pipe_upcall(cd, h, rsi_request);
}
static int rsi_parse(struct cache_detail *cd,
char *mesg, int mlen)
{
/* context token expiry major minor context token */
char *buf = mesg;
char *ep;
int len;
struct rsi rsii, *rsip = NULL;
time_t expiry;
int status = -EINVAL;
memset(&rsii, 0, sizeof(rsii));
/* handle */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.in_handle, buf, len))
goto out;
/* token */
len = qword_get(&mesg, buf, mlen);
status = -EINVAL;
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.in_token, buf, len))
goto out;
rsip = rsi_lookup(&rsii);
if (!rsip)
goto out;
rsii.h.flags = 0;
/* expiry */
expiry = get_expiry(&mesg);
status = -EINVAL;
if (expiry == 0)
goto out;
/* major/minor */
len = qword_get(&mesg, buf, mlen);
if (len <= 0)
goto out;
rsii.major_status = simple_strtoul(buf, &ep, 10);
if (*ep)
goto out;
len = qword_get(&mesg, buf, mlen);
if (len <= 0)
goto out;
rsii.minor_status = simple_strtoul(buf, &ep, 10);
if (*ep)
goto out;
/* out_handle */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.out_handle, buf, len))
goto out;
/* out_token */
len = qword_get(&mesg, buf, mlen);
status = -EINVAL;
if (len < 0)
goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsii.out_token, buf, len))
goto out;
rsii.h.expiry_time = expiry;
rsip = rsi_update(&rsii, rsip);
status = 0;
out:
rsi_free(&rsii);
if (rsip)
cache_put(&rsip->h, &rsi_cache);
else
status = -ENOMEM;
return status;
}
static struct cache_detail rsi_cache = {
.owner = THIS_MODULE,
.hash_size = RSI_HASHMAX,
.hash_table = rsi_table,
.name = "auth.rpcsec.init",
.cache_put = rsi_put,
.cache_upcall = rsi_upcall,
.cache_parse = rsi_parse,
.match = rsi_match,
.init = rsi_init,
.update = update_rsi,
.alloc = rsi_alloc,
};
static struct rsi *rsi_lookup(struct rsi *item)
{
struct cache_head *ch;
int hash = rsi_hash(item);
ch = sunrpc_cache_lookup(&rsi_cache, &item->h, hash);
if (ch)
return container_of(ch, struct rsi, h);
else
return NULL;
}
static struct rsi *rsi_update(struct rsi *new, struct rsi *old)
{
struct cache_head *ch;
int hash = rsi_hash(new);
ch = sunrpc_cache_update(&rsi_cache, &new->h,
&old->h, hash);
if (ch)
return container_of(ch, struct rsi, h);
else
return NULL;
}
/*
* The rpcsec_context cache is used to store a context that is
* used in data exchange.
* The key is a context handle. The content is:
* uid, gidlist, mechanism, service-set, mech-specific-data
*/
#define RSC_HASHBITS 10
#define RSC_HASHMAX (1<<RSC_HASHBITS)
#define GSS_SEQ_WIN 128
struct gss_svc_seq_data {
/* highest seq number seen so far: */
int sd_max;
/* for i such that sd_max-GSS_SEQ_WIN < i <= sd_max, the i-th bit of
* sd_win is nonzero iff sequence number i has been seen already: */
unsigned long sd_win[GSS_SEQ_WIN/BITS_PER_LONG];
spinlock_t sd_lock;
};
struct rsc {
struct cache_head h;
struct xdr_netobj handle;
struct svc_cred cred;
struct gss_svc_seq_data seqdata;
struct gss_ctx *mechctx;
char *client_name;
};
static struct cache_head *rsc_table[RSC_HASHMAX];
static struct cache_detail rsc_cache;
static struct rsc *rsc_update(struct rsc *new, struct rsc *old);
static struct rsc *rsc_lookup(struct rsc *item);
static void rsc_free(struct rsc *rsci)
{
kfree(rsci->handle.data);
if (rsci->mechctx)
gss_delete_sec_context(&rsci->mechctx);
if (rsci->cred.cr_group_info)
put_group_info(rsci->cred.cr_group_info);
kfree(rsci->client_name);
}
static void rsc_put(struct kref *ref)
{
struct rsc *rsci = container_of(ref, struct rsc, h.ref);
rsc_free(rsci);
kfree(rsci);
}
static inline int
rsc_hash(struct rsc *rsci)
{
return hash_mem(rsci->handle.data, rsci->handle.len, RSC_HASHBITS);
}
static int
rsc_match(struct cache_head *a, struct cache_head *b)
{
struct rsc *new = container_of(a, struct rsc, h);
struct rsc *tmp = container_of(b, struct rsc, h);
return netobj_equal(&new->handle, &tmp->handle);
}
static void
rsc_init(struct cache_head *cnew, struct cache_head *ctmp)
{
struct rsc *new = container_of(cnew, struct rsc, h);
struct rsc *tmp = container_of(ctmp, struct rsc, h);
new->handle.len = tmp->handle.len;
tmp->handle.len = 0;
new->handle.data = tmp->handle.data;
tmp->handle.data = NULL;
new->mechctx = NULL;
new->cred.cr_group_info = NULL;
new->client_name = NULL;
}
static void
update_rsc(struct cache_head *cnew, struct cache_head *ctmp)
{
struct rsc *new = container_of(cnew, struct rsc, h);
struct rsc *tmp = container_of(ctmp, struct rsc, h);
new->mechctx = tmp->mechctx;
tmp->mechctx = NULL;
memset(&new->seqdata, 0, sizeof(new->seqdata));
spin_lock_init(&new->seqdata.sd_lock);
new->cred = tmp->cred;
tmp->cred.cr_group_info = NULL;
new->client_name = tmp->client_name;
tmp->client_name = NULL;
}
static struct cache_head *
rsc_alloc(void)
{
struct rsc *rsci = kmalloc(sizeof(*rsci), GFP_KERNEL);
if (rsci)
return &rsci->h;
else
return NULL;
}
static int rsc_parse(struct cache_detail *cd,
char *mesg, int mlen)
{
/* contexthandle expiry [ uid gid N <n gids> mechname ...mechdata... ] */
char *buf = mesg;
int len, rv;
struct rsc rsci, *rscp = NULL;
time_t expiry;
int status = -EINVAL;
struct gss_api_mech *gm = NULL;
memset(&rsci, 0, sizeof(rsci));
/* context handle */
len = qword_get(&mesg, buf, mlen);
if (len < 0) goto out;
status = -ENOMEM;
if (dup_to_netobj(&rsci.handle, buf, len))
goto out;
rsci.h.flags = 0;
/* expiry */
expiry = get_expiry(&mesg);
status = -EINVAL;
if (expiry == 0)
goto out;
rscp = rsc_lookup(&rsci);
if (!rscp)
goto out;
/* uid, or NEGATIVE */
rv = get_int(&mesg, &rsci.cred.cr_uid);
if (rv == -EINVAL)
goto out;
if (rv == -ENOENT)
set_bit(CACHE_NEGATIVE, &rsci.h.flags);
else {
int N, i;
/* gid */
if (get_int(&mesg, &rsci.cred.cr_gid))
goto out;
/* number of additional gid's */
if (get_int(&mesg, &N))
goto out;
status = -ENOMEM;
rsci.cred.cr_group_info = groups_alloc(N);
if (rsci.cred.cr_group_info == NULL)
goto out;
/* gid's */
status = -EINVAL;
for (i=0; i<N; i++) {
gid_t gid;
if (get_int(&mesg, &gid))
goto out;
GROUP_AT(rsci.cred.cr_group_info, i) = gid;
}
/* mech name */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
gm = gss_mech_get_by_name(buf);
status = -EOPNOTSUPP;
if (!gm)
goto out;
status = -EINVAL;
/* mech-specific data: */
len = qword_get(&mesg, buf, mlen);
if (len < 0)
goto out;
status = gss_import_sec_context(buf, len, gm, &rsci.mechctx, GFP_KERNEL);
if (status)
goto out;
/* get client name */
len = qword_get(&mesg, buf, mlen);
if (len > 0) {
rsci.client_name = kstrdup(buf, GFP_KERNEL);
if (!rsci.client_name)
goto out;
}
}
rsci.h.expiry_time = expiry;
rscp = rsc_update(&rsci, rscp);
status = 0;
out:
gss_mech_put(gm);
rsc_free(&rsci);
if (rscp)
cache_put(&rscp->h, &rsc_cache);
else
status = -ENOMEM;
return status;
}
static struct cache_detail rsc_cache = {
.owner = THIS_MODULE,
.hash_size = RSC_HASHMAX,
.hash_table = rsc_table,
.name = "auth.rpcsec.context",
.cache_put = rsc_put,
.cache_parse = rsc_parse,
.match = rsc_match,
.init = rsc_init,
.update = update_rsc,
.alloc = rsc_alloc,
};
static struct rsc *rsc_lookup(struct rsc *item)
{
struct cache_head *ch;
int hash = rsc_hash(item);
ch = sunrpc_cache_lookup(&rsc_cache, &item->h, hash);
if (ch)
return container_of(ch, struct rsc, h);
else
return NULL;
}
static struct rsc *rsc_update(struct rsc *new, struct rsc *old)
{
struct cache_head *ch;
int hash = rsc_hash(new);
ch = sunrpc_cache_update(&rsc_cache, &new->h,
&old->h, hash);
if (ch)
return container_of(ch, struct rsc, h);
else
return NULL;
}
static struct rsc *
gss_svc_searchbyctx(struct xdr_netobj *handle)
{
struct rsc rsci;
struct rsc *found;
memset(&rsci, 0, sizeof(rsci));
if (dup_to_netobj(&rsci.handle, handle->data, handle->len))
return NULL;
found = rsc_lookup(&rsci);
rsc_free(&rsci);
if (!found)
return NULL;
if (cache_check(&rsc_cache, &found->h, NULL))
return NULL;
return found;
}
/* Implements sequence number algorithm as specified in RFC 2203. */
static int
gss_check_seq_num(struct rsc *rsci, int seq_num)
{
struct gss_svc_seq_data *sd = &rsci->seqdata;
spin_lock(&sd->sd_lock);
if (seq_num > sd->sd_max) {
if (seq_num >= sd->sd_max + GSS_SEQ_WIN) {
memset(sd->sd_win,0,sizeof(sd->sd_win));
sd->sd_max = seq_num;
} else while (sd->sd_max < seq_num) {
sd->sd_max++;
__clear_bit(sd->sd_max % GSS_SEQ_WIN, sd->sd_win);
}
__set_bit(seq_num % GSS_SEQ_WIN, sd->sd_win);
goto ok;
} else if (seq_num <= sd->sd_max - GSS_SEQ_WIN) {
goto drop;
}
/* sd_max - GSS_SEQ_WIN < seq_num <= sd_max */
if (__test_and_set_bit(seq_num % GSS_SEQ_WIN, sd->sd_win))
goto drop;
ok:
spin_unlock(&sd->sd_lock);
return 1;
drop:
spin_unlock(&sd->sd_lock);
return 0;
}
static inline u32 round_up_to_quad(u32 i)
{
return (i + 3 ) & ~3;
}
static inline int
svc_safe_getnetobj(struct kvec *argv, struct xdr_netobj *o)
{
int l;
if (argv->iov_len < 4)
return -1;
o->len = svc_getnl(argv);
l = round_up_to_quad(o->len);
if (argv->iov_len < l)
return -1;
o->data = argv->iov_base;
argv->iov_base += l;
argv->iov_len -= l;
return 0;
}
static inline int
svc_safe_putnetobj(struct kvec *resv, struct xdr_netobj *o)
{
u8 *p;
if (resv->iov_len + 4 > PAGE_SIZE)
return -1;
svc_putnl(resv, o->len);
p = resv->iov_base + resv->iov_len;
resv->iov_len += round_up_to_quad(o->len);
if (resv->iov_len > PAGE_SIZE)
return -1;
memcpy(p, o->data, o->len);
memset(p + o->len, 0, round_up_to_quad(o->len) - o->len);
return 0;
}
/*
* Verify the checksum on the header and return SVC_OK on success.
* Otherwise, return SVC_DROP (in the case of a bad sequence number)
* or return SVC_DENIED and indicate error in authp.
*/
static int
gss_verify_header(struct svc_rqst *rqstp, struct rsc *rsci,
__be32 *rpcstart, struct rpc_gss_wire_cred *gc, __be32 *authp)
{
struct gss_ctx *ctx_id = rsci->mechctx;
struct xdr_buf rpchdr;
struct xdr_netobj checksum;
u32 flavor = 0;
struct kvec *argv = &rqstp->rq_arg.head[0];
struct kvec iov;
/* data to compute the checksum over: */
iov.iov_base = rpcstart;
iov.iov_len = (u8 *)argv->iov_base - (u8 *)rpcstart;
xdr_buf_from_iov(&iov, &rpchdr);
*authp = rpc_autherr_badverf;
if (argv->iov_len < 4)
return SVC_DENIED;
flavor = svc_getnl(argv);
if (flavor != RPC_AUTH_GSS)
return SVC_DENIED;
if (svc_safe_getnetobj(argv, &checksum))
return SVC_DENIED;
if (rqstp->rq_deferred) /* skip verification of revisited request */
return SVC_OK;
if (gss_verify_mic(ctx_id, &rpchdr, &checksum) != GSS_S_COMPLETE) {
*authp = rpcsec_gsserr_credproblem;
return SVC_DENIED;
}
if (gc->gc_seq > MAXSEQ) {
dprintk("RPC: svcauth_gss: discarding request with "
"large sequence number %d\n", gc->gc_seq);
*authp = rpcsec_gsserr_ctxproblem;
return SVC_DENIED;
}
if (!gss_check_seq_num(rsci, gc->gc_seq)) {
dprintk("RPC: svcauth_gss: discarding request with "
"old sequence number %d\n", gc->gc_seq);
return SVC_DROP;
}
return SVC_OK;
}
static int
gss_write_null_verf(struct svc_rqst *rqstp)
{
__be32 *p;
svc_putnl(rqstp->rq_res.head, RPC_AUTH_NULL);
p = rqstp->rq_res.head->iov_base + rqstp->rq_res.head->iov_len;
/* don't really need to check if head->iov_len > PAGE_SIZE ... */
*p++ = 0;
if (!xdr_ressize_check(rqstp, p))
return -1;
return 0;
}
static int
gss_write_verf(struct svc_rqst *rqstp, struct gss_ctx *ctx_id, u32 seq)
{
__be32 xdr_seq;
u32 maj_stat;
struct xdr_buf verf_data;
struct xdr_netobj mic;
__be32 *p;
struct kvec iov;
svc_putnl(rqstp->rq_res.head, RPC_AUTH_GSS);
xdr_seq = htonl(seq);
iov.iov_base = &xdr_seq;
iov.iov_len = sizeof(xdr_seq);
xdr_buf_from_iov(&iov, &verf_data);
p = rqstp->rq_res.head->iov_base + rqstp->rq_res.head->iov_len;
mic.data = (u8 *)(p + 1);
maj_stat = gss_get_mic(ctx_id, &verf_data, &mic);
if (maj_stat != GSS_S_COMPLETE)
return -1;
*p++ = htonl(mic.len);
memset((u8 *)p + mic.len, 0, round_up_to_quad(mic.len) - mic.len);
p += XDR_QUADLEN(mic.len);
if (!xdr_ressize_check(rqstp, p))
return -1;
return 0;
}
struct gss_domain {
struct auth_domain h;
u32 pseudoflavor;
};
static struct auth_domain *
find_gss_auth_domain(struct gss_ctx *ctx, u32 svc)
{
char *name;
name = gss_service_to_auth_domain_name(ctx->mech_type, svc);
if (!name)
return NULL;
return auth_domain_find(name);
}
static struct auth_ops svcauthops_gss;
u32 svcauth_gss_flavor(struct auth_domain *dom)
{
struct gss_domain *gd = container_of(dom, struct gss_domain, h);
return gd->pseudoflavor;
}
EXPORT_SYMBOL_GPL(svcauth_gss_flavor);
int
svcauth_gss_register_pseudoflavor(u32 pseudoflavor, char * name)
{
struct gss_domain *new;
struct auth_domain *test;
int stat = -ENOMEM;
new = kmalloc(sizeof(*new), GFP_KERNEL);
if (!new)
goto out;
kref_init(&new->h.ref);
new->h.name = kstrdup(name, GFP_KERNEL);
if (!new->h.name)
goto out_free_dom;
new->h.flavour = &svcauthops_gss;
new->pseudoflavor = pseudoflavor;
stat = 0;
test = auth_domain_lookup(name, &new->h);
if (test != &new->h) { /* Duplicate registration */
auth_domain_put(test);
kfree(new->h.name);
goto out_free_dom;
}
return 0;
out_free_dom:
kfree(new);
out:
return stat;
}
EXPORT_SYMBOL_GPL(svcauth_gss_register_pseudoflavor);
static inline int
read_u32_from_xdr_buf(struct xdr_buf *buf, int base, u32 *obj)
{
__be32 raw;
int status;
status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
if (status)
return status;
*obj = ntohl(raw);
return 0;
}
/* It would be nice if this bit of code could be shared with the client.
* Obstacles:
* The client shouldn't malloc(), would have to pass in own memory.
* The server uses base of head iovec as read pointer, while the
* client uses separate pointer. */
static int
unwrap_integ_data(struct xdr_buf *buf, u32 seq, struct gss_ctx *ctx)
{
int stat = -EINVAL;
u32 integ_len, maj_stat;
struct xdr_netobj mic;
struct xdr_buf integ_buf;
integ_len = svc_getnl(&buf->head[0]);
if (integ_len & 3)
return stat;
if (integ_len > buf->len)
return stat;
if (xdr_buf_subsegment(buf, &integ_buf, 0, integ_len))
BUG();
/* copy out mic... */
if (read_u32_from_xdr_buf(buf, integ_len, &mic.len))
BUG();
if (mic.len > RPC_MAX_AUTH_SIZE)
return stat;
mic.data = kmalloc(mic.len, GFP_KERNEL);
if (!mic.data)
return stat;
if (read_bytes_from_xdr_buf(buf, integ_len + 4, mic.data, mic.len))
goto out;
maj_stat = gss_verify_mic(ctx, &integ_buf, &mic);
if (maj_stat != GSS_S_COMPLETE)
goto out;
if (svc_getnl(&buf->head[0]) != seq)
goto out;
stat = 0;
out:
kfree(mic.data);
return stat;
}
static inline int
total_buf_len(struct xdr_buf *buf)
{
return buf->head[0].iov_len + buf->page_len + buf->tail[0].iov_len;
}
static void
fix_priv_head(struct xdr_buf *buf, int pad)
{
if (buf->page_len == 0) {
/* We need to adjust head and buf->len in tandem in this
* case to make svc_defer() work--it finds the original
* buffer start using buf->len - buf->head[0].iov_len. */
buf->head[0].iov_len -= pad;
}
}
static int
unwrap_priv_data(struct svc_rqst *rqstp, struct xdr_buf *buf, u32 seq, struct gss_ctx *ctx)
{
u32 priv_len, maj_stat;
int pad, saved_len, remaining_len, offset;
rqstp->rq_splice_ok = 0;
priv_len = svc_getnl(&buf->head[0]);
if (rqstp->rq_deferred) {
/* Already decrypted last time through! The sequence number
* check at out_seq is unnecessary but harmless: */
goto out_seq;
}
/* buf->len is the number of bytes from the original start of the
* request to the end, where head[0].iov_len is just the bytes
* not yet read from the head, so these two values are different: */
remaining_len = total_buf_len(buf);
if (priv_len > remaining_len)
return -EINVAL;
pad = remaining_len - priv_len;
buf->len -= pad;
fix_priv_head(buf, pad);
/* Maybe it would be better to give gss_unwrap a length parameter: */
saved_len = buf->len;
buf->len = priv_len;
maj_stat = gss_unwrap(ctx, 0, buf);
pad = priv_len - buf->len;
buf->len = saved_len;
buf->len -= pad;
/* The upper layers assume the buffer is aligned on 4-byte boundaries.
* In the krb5p case, at least, the data ends up offset, so we need to
* move it around. */
/* XXX: This is very inefficient. It would be better to either do
* this while we encrypt, or maybe in the receive code, if we can peak
* ahead and work out the service and mechanism there. */
offset = buf->head[0].iov_len % 4;
if (offset) {
buf->buflen = RPCSVC_MAXPAYLOAD;
xdr_shift_buf(buf, offset);
fix_priv_head(buf, pad);
}
if (maj_stat != GSS_S_COMPLETE)
return -EINVAL;
out_seq:
if (svc_getnl(&buf->head[0]) != seq)
return -EINVAL;
return 0;
}
struct gss_svc_data {
/* decoded gss client cred: */
struct rpc_gss_wire_cred clcred;
/* save a pointer to the beginning of the encoded verifier,
* for use in encryption/checksumming in svcauth_gss_release: */
__be32 *verf_start;
struct rsc *rsci;
};
char *svc_gss_principal(struct svc_rqst *rqstp)
{
struct gss_svc_data *gd = (struct gss_svc_data *)rqstp->rq_auth_data;
if (gd && gd->rsci)
return gd->rsci->client_name;
return NULL;
}
EXPORT_SYMBOL_GPL(svc_gss_principal);
static int
svcauth_gss_set_client(struct svc_rqst *rqstp)
{
struct gss_svc_data *svcdata = rqstp->rq_auth_data;
struct rsc *rsci = svcdata->rsci;
struct rpc_gss_wire_cred *gc = &svcdata->clcred;
knfsd: nfsd: set rq_client to ip-address-determined-domain We want it to be possible for users to restrict exports both by IP address and by pseudoflavor. The pseudoflavor information has previously been passed using special auth_domains stored in the rq_client field. After the preceding patch that stored the pseudoflavor in rq_pflavor, that's now superfluous; so now we use rq_client for the ip information, as auth_null and auth_unix do. However, we keep around the special auth_domain in the rq_gssclient field for backwards compatibility purposes, so we can still do upcalls using the old "gss/pseudoflavor" auth_domain if upcalls using the unix domain to give us an appropriate export. This allows us to continue supporting old mountd. In fact, for this first patch, we always use the "gss/pseudoflavor" auth_domain (and only it) if it is available; thus rq_client is ignored in the auth_gss case, and this patch on its own makes no change in behavior; that will be left to later patches. Note on idmap: I'm almost tempted to just replace the auth_domain in the idmap upcall by a dummy value--no version of idmapd has ever used it, and it's unlikely anyone really wants to perform idmapping differently depending on the where the client is (they may want to perform *credential* mapping differently, but that's a different matter--the idmapper just handles id's used in getattr and setattr). But I'm updating the idmapd code anyway, just out of general backwards-compatibility paranoia. Signed-off-by: "J. Bruce Fields" <bfields@citi.umich.edu> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:04:46 +04:00
int stat;
knfsd: nfsd: set rq_client to ip-address-determined-domain We want it to be possible for users to restrict exports both by IP address and by pseudoflavor. The pseudoflavor information has previously been passed using special auth_domains stored in the rq_client field. After the preceding patch that stored the pseudoflavor in rq_pflavor, that's now superfluous; so now we use rq_client for the ip information, as auth_null and auth_unix do. However, we keep around the special auth_domain in the rq_gssclient field for backwards compatibility purposes, so we can still do upcalls using the old "gss/pseudoflavor" auth_domain if upcalls using the unix domain to give us an appropriate export. This allows us to continue supporting old mountd. In fact, for this first patch, we always use the "gss/pseudoflavor" auth_domain (and only it) if it is available; thus rq_client is ignored in the auth_gss case, and this patch on its own makes no change in behavior; that will be left to later patches. Note on idmap: I'm almost tempted to just replace the auth_domain in the idmap upcall by a dummy value--no version of idmapd has ever used it, and it's unlikely anyone really wants to perform idmapping differently depending on the where the client is (they may want to perform *credential* mapping differently, but that's a different matter--the idmapper just handles id's used in getattr and setattr). But I'm updating the idmapd code anyway, just out of general backwards-compatibility paranoia. Signed-off-by: "J. Bruce Fields" <bfields@citi.umich.edu> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:04:46 +04:00
/*
* A gss export can be specified either by:
* export *(sec=krb5,rw)
* or by
* export gss/krb5(rw)
* The latter is deprecated; but for backwards compatibility reasons
* the nfsd code will still fall back on trying it if the former
* doesn't work; so we try to make both available to nfsd, below.
*/
rqstp->rq_gssclient = find_gss_auth_domain(rsci->mechctx, gc->gc_svc);
if (rqstp->rq_gssclient == NULL)
return SVC_DENIED;
knfsd: nfsd: set rq_client to ip-address-determined-domain We want it to be possible for users to restrict exports both by IP address and by pseudoflavor. The pseudoflavor information has previously been passed using special auth_domains stored in the rq_client field. After the preceding patch that stored the pseudoflavor in rq_pflavor, that's now superfluous; so now we use rq_client for the ip information, as auth_null and auth_unix do. However, we keep around the special auth_domain in the rq_gssclient field for backwards compatibility purposes, so we can still do upcalls using the old "gss/pseudoflavor" auth_domain if upcalls using the unix domain to give us an appropriate export. This allows us to continue supporting old mountd. In fact, for this first patch, we always use the "gss/pseudoflavor" auth_domain (and only it) if it is available; thus rq_client is ignored in the auth_gss case, and this patch on its own makes no change in behavior; that will be left to later patches. Note on idmap: I'm almost tempted to just replace the auth_domain in the idmap upcall by a dummy value--no version of idmapd has ever used it, and it's unlikely anyone really wants to perform idmapping differently depending on the where the client is (they may want to perform *credential* mapping differently, but that's a different matter--the idmapper just handles id's used in getattr and setattr). But I'm updating the idmapd code anyway, just out of general backwards-compatibility paranoia. Signed-off-by: "J. Bruce Fields" <bfields@citi.umich.edu> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:04:46 +04:00
stat = svcauth_unix_set_client(rqstp);
if (stat == SVC_DROP || stat == SVC_CLOSE)
knfsd: nfsd: set rq_client to ip-address-determined-domain We want it to be possible for users to restrict exports both by IP address and by pseudoflavor. The pseudoflavor information has previously been passed using special auth_domains stored in the rq_client field. After the preceding patch that stored the pseudoflavor in rq_pflavor, that's now superfluous; so now we use rq_client for the ip information, as auth_null and auth_unix do. However, we keep around the special auth_domain in the rq_gssclient field for backwards compatibility purposes, so we can still do upcalls using the old "gss/pseudoflavor" auth_domain if upcalls using the unix domain to give us an appropriate export. This allows us to continue supporting old mountd. In fact, for this first patch, we always use the "gss/pseudoflavor" auth_domain (and only it) if it is available; thus rq_client is ignored in the auth_gss case, and this patch on its own makes no change in behavior; that will be left to later patches. Note on idmap: I'm almost tempted to just replace the auth_domain in the idmap upcall by a dummy value--no version of idmapd has ever used it, and it's unlikely anyone really wants to perform idmapping differently depending on the where the client is (they may want to perform *credential* mapping differently, but that's a different matter--the idmapper just handles id's used in getattr and setattr). But I'm updating the idmapd code anyway, just out of general backwards-compatibility paranoia. Signed-off-by: "J. Bruce Fields" <bfields@citi.umich.edu> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:04:46 +04:00
return stat;
return SVC_OK;
}
static inline int
gss_write_init_verf(struct svc_rqst *rqstp, struct rsi *rsip)
{
struct rsc *rsci;
int rc;
if (rsip->major_status != GSS_S_COMPLETE)
return gss_write_null_verf(rqstp);
rsci = gss_svc_searchbyctx(&rsip->out_handle);
if (rsci == NULL) {
rsip->major_status = GSS_S_NO_CONTEXT;
return gss_write_null_verf(rqstp);
}
rc = gss_write_verf(rqstp, rsci->mechctx, GSS_SEQ_WIN);
cache_put(&rsci->h, &rsc_cache);
return rc;
}
/*
* Having read the cred already and found we're in the context
* initiation case, read the verifier and initiate (or check the results
* of) upcalls to userspace for help with context initiation. If
* the upcall results are available, write the verifier and result.
* Otherwise, drop the request pending an answer to the upcall.
*/
static int svcauth_gss_handle_init(struct svc_rqst *rqstp,
struct rpc_gss_wire_cred *gc, __be32 *authp)
{
struct kvec *argv = &rqstp->rq_arg.head[0];
struct kvec *resv = &rqstp->rq_res.head[0];
struct xdr_netobj tmpobj;
struct rsi *rsip, rsikey;
int ret;
/* Read the verifier; should be NULL: */
*authp = rpc_autherr_badverf;
if (argv->iov_len < 2 * 4)
return SVC_DENIED;
if (svc_getnl(argv) != RPC_AUTH_NULL)
return SVC_DENIED;
if (svc_getnl(argv) != 0)
return SVC_DENIED;
/* Martial context handle and token for upcall: */
*authp = rpc_autherr_badcred;
if (gc->gc_proc == RPC_GSS_PROC_INIT && gc->gc_ctx.len != 0)
return SVC_DENIED;
memset(&rsikey, 0, sizeof(rsikey));
if (dup_netobj(&rsikey.in_handle, &gc->gc_ctx))
return SVC_CLOSE;
*authp = rpc_autherr_badverf;
if (svc_safe_getnetobj(argv, &tmpobj)) {
kfree(rsikey.in_handle.data);
return SVC_DENIED;
}
if (dup_netobj(&rsikey.in_token, &tmpobj)) {
kfree(rsikey.in_handle.data);
return SVC_CLOSE;
}
/* Perform upcall, or find upcall result: */
rsip = rsi_lookup(&rsikey);
rsi_free(&rsikey);
if (!rsip)
return SVC_CLOSE;
if (cache_check(&rsi_cache, &rsip->h, &rqstp->rq_chandle) < 0)
/* No upcall result: */
return SVC_CLOSE;
ret = SVC_CLOSE;
/* Got an answer to the upcall; use it: */
if (gss_write_init_verf(rqstp, rsip))
goto out;
if (resv->iov_len + 4 > PAGE_SIZE)
goto out;
svc_putnl(resv, RPC_SUCCESS);
if (svc_safe_putnetobj(resv, &rsip->out_handle))
goto out;
if (resv->iov_len + 3 * 4 > PAGE_SIZE)
goto out;
svc_putnl(resv, rsip->major_status);
svc_putnl(resv, rsip->minor_status);
svc_putnl(resv, GSS_SEQ_WIN);
if (svc_safe_putnetobj(resv, &rsip->out_token))
goto out;
ret = SVC_COMPLETE;
out:
cache_put(&rsip->h, &rsi_cache);
return ret;
}
/*
* Accept an rpcsec packet.
* If context establishment, punt to user space
* If data exchange, verify/decrypt
* If context destruction, handle here
* In the context establishment and destruction case we encode
* response here and return SVC_COMPLETE.
*/
static int
svcauth_gss_accept(struct svc_rqst *rqstp, __be32 *authp)
{
struct kvec *argv = &rqstp->rq_arg.head[0];
struct kvec *resv = &rqstp->rq_res.head[0];
u32 crlen;
struct gss_svc_data *svcdata = rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc;
struct rsc *rsci = NULL;
__be32 *rpcstart;
__be32 *reject_stat = resv->iov_base + resv->iov_len;
int ret;
dprintk("RPC: svcauth_gss: argv->iov_len = %zd\n",
argv->iov_len);
*authp = rpc_autherr_badcred;
if (!svcdata)
svcdata = kmalloc(sizeof(*svcdata), GFP_KERNEL);
if (!svcdata)
goto auth_err;
rqstp->rq_auth_data = svcdata;
svcdata->verf_start = NULL;
svcdata->rsci = NULL;
gc = &svcdata->clcred;
/* start of rpc packet is 7 u32's back from here:
* xid direction rpcversion prog vers proc flavour
*/
rpcstart = argv->iov_base;
rpcstart -= 7;
/* credential is:
* version(==1), proc(0,1,2,3), seq, service (1,2,3), handle
* at least 5 u32s, and is preceeded by length, so that makes 6.
*/
if (argv->iov_len < 5 * 4)
goto auth_err;
crlen = svc_getnl(argv);
if (svc_getnl(argv) != RPC_GSS_VERSION)
goto auth_err;
gc->gc_proc = svc_getnl(argv);
gc->gc_seq = svc_getnl(argv);
gc->gc_svc = svc_getnl(argv);
if (svc_safe_getnetobj(argv, &gc->gc_ctx))
goto auth_err;
if (crlen != round_up_to_quad(gc->gc_ctx.len) + 5 * 4)
goto auth_err;
if ((gc->gc_proc != RPC_GSS_PROC_DATA) && (rqstp->rq_proc != 0))
goto auth_err;
*authp = rpc_autherr_badverf;
switch (gc->gc_proc) {
case RPC_GSS_PROC_INIT:
case RPC_GSS_PROC_CONTINUE_INIT:
return svcauth_gss_handle_init(rqstp, gc, authp);
case RPC_GSS_PROC_DATA:
case RPC_GSS_PROC_DESTROY:
/* Look up the context, and check the verifier: */
*authp = rpcsec_gsserr_credproblem;
rsci = gss_svc_searchbyctx(&gc->gc_ctx);
if (!rsci)
goto auth_err;
switch (gss_verify_header(rqstp, rsci, rpcstart, gc, authp)) {
case SVC_OK:
break;
case SVC_DENIED:
goto auth_err;
case SVC_DROP:
goto drop;
}
break;
default:
*authp = rpc_autherr_rejectedcred;
goto auth_err;
}
/* now act upon the command: */
switch (gc->gc_proc) {
case RPC_GSS_PROC_DESTROY:
if (gss_write_verf(rqstp, rsci->mechctx, gc->gc_seq))
goto auth_err;
rsci->h.expiry_time = get_seconds();
set_bit(CACHE_NEGATIVE, &rsci->h.flags);
if (resv->iov_len + 4 > PAGE_SIZE)
goto drop;
svc_putnl(resv, RPC_SUCCESS);
goto complete;
case RPC_GSS_PROC_DATA:
*authp = rpcsec_gsserr_ctxproblem;
svcdata->verf_start = resv->iov_base + resv->iov_len;
if (gss_write_verf(rqstp, rsci->mechctx, gc->gc_seq))
goto auth_err;
rqstp->rq_cred = rsci->cred;
get_group_info(rsci->cred.cr_group_info);
*authp = rpc_autherr_badcred;
switch (gc->gc_svc) {
case RPC_GSS_SVC_NONE:
break;
case RPC_GSS_SVC_INTEGRITY:
/* placeholders for length and seq. number: */
svc_putnl(resv, 0);
svc_putnl(resv, 0);
if (unwrap_integ_data(&rqstp->rq_arg,
gc->gc_seq, rsci->mechctx))
goto garbage_args;
break;
case RPC_GSS_SVC_PRIVACY:
/* placeholders for length and seq. number: */
svc_putnl(resv, 0);
svc_putnl(resv, 0);
if (unwrap_priv_data(rqstp, &rqstp->rq_arg,
gc->gc_seq, rsci->mechctx))
goto garbage_args;
break;
default:
goto auth_err;
}
svcdata->rsci = rsci;
cache_get(&rsci->h);
rqstp->rq_flavor = gss_svc_to_pseudoflavor(
rsci->mechctx->mech_type, gc->gc_svc);
ret = SVC_OK;
goto out;
}
garbage_args:
ret = SVC_GARBAGE;
goto out;
auth_err:
/* Restore write pointer to its original value: */
xdr_ressize_check(rqstp, reject_stat);
ret = SVC_DENIED;
goto out;
complete:
ret = SVC_COMPLETE;
goto out;
drop:
ret = SVC_DROP;
out:
if (rsci)
cache_put(&rsci->h, &rsc_cache);
return ret;
}
static __be32 *
svcauth_gss_prepare_to_wrap(struct xdr_buf *resbuf, struct gss_svc_data *gsd)
{
__be32 *p;
u32 verf_len;
p = gsd->verf_start;
gsd->verf_start = NULL;
/* If the reply stat is nonzero, don't wrap: */
if (*(p-1) != rpc_success)
return NULL;
/* Skip the verifier: */
p += 1;
verf_len = ntohl(*p++);
p += XDR_QUADLEN(verf_len);
/* move accept_stat to right place: */
memcpy(p, p + 2, 4);
/* Also don't wrap if the accept stat is nonzero: */
if (*p != rpc_success) {
resbuf->head[0].iov_len -= 2 * 4;
return NULL;
}
p++;
return p;
}
static inline int
svcauth_gss_wrap_resp_integ(struct svc_rqst *rqstp)
{
struct gss_svc_data *gsd = (struct gss_svc_data *)rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc = &gsd->clcred;
struct xdr_buf *resbuf = &rqstp->rq_res;
struct xdr_buf integ_buf;
struct xdr_netobj mic;
struct kvec *resv;
__be32 *p;
int integ_offset, integ_len;
int stat = -EINVAL;
p = svcauth_gss_prepare_to_wrap(resbuf, gsd);
if (p == NULL)
goto out;
integ_offset = (u8 *)(p + 1) - (u8 *)resbuf->head[0].iov_base;
integ_len = resbuf->len - integ_offset;
BUG_ON(integ_len % 4);
*p++ = htonl(integ_len);
*p++ = htonl(gc->gc_seq);
if (xdr_buf_subsegment(resbuf, &integ_buf, integ_offset,
integ_len))
BUG();
if (resbuf->tail[0].iov_base == NULL) {
if (resbuf->head[0].iov_len + RPC_MAX_AUTH_SIZE > PAGE_SIZE)
goto out_err;
resbuf->tail[0].iov_base = resbuf->head[0].iov_base
+ resbuf->head[0].iov_len;
resbuf->tail[0].iov_len = 0;
resv = &resbuf->tail[0];
} else {
resv = &resbuf->tail[0];
}
mic.data = (u8 *)resv->iov_base + resv->iov_len + 4;
if (gss_get_mic(gsd->rsci->mechctx, &integ_buf, &mic))
goto out_err;
svc_putnl(resv, mic.len);
memset(mic.data + mic.len, 0,
round_up_to_quad(mic.len) - mic.len);
resv->iov_len += XDR_QUADLEN(mic.len) << 2;
/* not strictly required: */
resbuf->len += XDR_QUADLEN(mic.len) << 2;
BUG_ON(resv->iov_len > PAGE_SIZE);
out:
stat = 0;
out_err:
return stat;
}
static inline int
svcauth_gss_wrap_resp_priv(struct svc_rqst *rqstp)
{
struct gss_svc_data *gsd = (struct gss_svc_data *)rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc = &gsd->clcred;
struct xdr_buf *resbuf = &rqstp->rq_res;
struct page **inpages = NULL;
__be32 *p, *len;
int offset;
int pad;
p = svcauth_gss_prepare_to_wrap(resbuf, gsd);
if (p == NULL)
return 0;
len = p++;
offset = (u8 *)p - (u8 *)resbuf->head[0].iov_base;
*p++ = htonl(gc->gc_seq);
inpages = resbuf->pages;
/* XXX: Would be better to write some xdr helper functions for
* nfs{2,3,4}xdr.c that place the data right, instead of copying: */
/*
* If there is currently tail data, make sure there is
* room for the head, tail, and 2 * RPC_MAX_AUTH_SIZE in
* the page, and move the current tail data such that
* there is RPC_MAX_AUTH_SIZE slack space available in
* both the head and tail.
*/
if (resbuf->tail[0].iov_base) {
BUG_ON(resbuf->tail[0].iov_base >= resbuf->head[0].iov_base
+ PAGE_SIZE);
BUG_ON(resbuf->tail[0].iov_base < resbuf->head[0].iov_base);
if (resbuf->tail[0].iov_len + resbuf->head[0].iov_len
+ 2 * RPC_MAX_AUTH_SIZE > PAGE_SIZE)
return -ENOMEM;
memmove(resbuf->tail[0].iov_base + RPC_MAX_AUTH_SIZE,
resbuf->tail[0].iov_base,
resbuf->tail[0].iov_len);
resbuf->tail[0].iov_base += RPC_MAX_AUTH_SIZE;
}
/*
* If there is no current tail data, make sure there is
* room for the head data, and 2 * RPC_MAX_AUTH_SIZE in the
* allotted page, and set up tail information such that there
* is RPC_MAX_AUTH_SIZE slack space available in both the
* head and tail.
*/
if (resbuf->tail[0].iov_base == NULL) {
if (resbuf->head[0].iov_len + 2*RPC_MAX_AUTH_SIZE > PAGE_SIZE)
return -ENOMEM;
resbuf->tail[0].iov_base = resbuf->head[0].iov_base
+ resbuf->head[0].iov_len + RPC_MAX_AUTH_SIZE;
resbuf->tail[0].iov_len = 0;
}
if (gss_wrap(gsd->rsci->mechctx, offset, resbuf, inpages))
return -ENOMEM;
*len = htonl(resbuf->len - offset);
pad = 3 - ((resbuf->len - offset - 1)&3);
p = (__be32 *)(resbuf->tail[0].iov_base + resbuf->tail[0].iov_len);
memset(p, 0, pad);
resbuf->tail[0].iov_len += pad;
resbuf->len += pad;
return 0;
}
static int
svcauth_gss_release(struct svc_rqst *rqstp)
{
struct gss_svc_data *gsd = (struct gss_svc_data *)rqstp->rq_auth_data;
struct rpc_gss_wire_cred *gc = &gsd->clcred;
struct xdr_buf *resbuf = &rqstp->rq_res;
int stat = -EINVAL;
if (gc->gc_proc != RPC_GSS_PROC_DATA)
goto out;
/* Release can be called twice, but we only wrap once. */
if (gsd->verf_start == NULL)
goto out;
/* normally not set till svc_send, but we need it here: */
/* XXX: what for? Do we mess it up the moment we call svc_putu32
* or whatever? */
resbuf->len = total_buf_len(resbuf);
switch (gc->gc_svc) {
case RPC_GSS_SVC_NONE:
break;
case RPC_GSS_SVC_INTEGRITY:
stat = svcauth_gss_wrap_resp_integ(rqstp);
if (stat)
goto out_err;
break;
case RPC_GSS_SVC_PRIVACY:
stat = svcauth_gss_wrap_resp_priv(rqstp);
if (stat)
goto out_err;
break;
/*
* For any other gc_svc value, svcauth_gss_accept() already set
* the auth_error appropriately; just fall through:
*/
}
out:
stat = 0;
out_err:
if (rqstp->rq_client)
auth_domain_put(rqstp->rq_client);
rqstp->rq_client = NULL;
knfsd: nfsd: set rq_client to ip-address-determined-domain We want it to be possible for users to restrict exports both by IP address and by pseudoflavor. The pseudoflavor information has previously been passed using special auth_domains stored in the rq_client field. After the preceding patch that stored the pseudoflavor in rq_pflavor, that's now superfluous; so now we use rq_client for the ip information, as auth_null and auth_unix do. However, we keep around the special auth_domain in the rq_gssclient field for backwards compatibility purposes, so we can still do upcalls using the old "gss/pseudoflavor" auth_domain if upcalls using the unix domain to give us an appropriate export. This allows us to continue supporting old mountd. In fact, for this first patch, we always use the "gss/pseudoflavor" auth_domain (and only it) if it is available; thus rq_client is ignored in the auth_gss case, and this patch on its own makes no change in behavior; that will be left to later patches. Note on idmap: I'm almost tempted to just replace the auth_domain in the idmap upcall by a dummy value--no version of idmapd has ever used it, and it's unlikely anyone really wants to perform idmapping differently depending on the where the client is (they may want to perform *credential* mapping differently, but that's a different matter--the idmapper just handles id's used in getattr and setattr). But I'm updating the idmapd code anyway, just out of general backwards-compatibility paranoia. Signed-off-by: "J. Bruce Fields" <bfields@citi.umich.edu> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 15:04:46 +04:00
if (rqstp->rq_gssclient)
auth_domain_put(rqstp->rq_gssclient);
rqstp->rq_gssclient = NULL;
if (rqstp->rq_cred.cr_group_info)
put_group_info(rqstp->rq_cred.cr_group_info);
rqstp->rq_cred.cr_group_info = NULL;
if (gsd->rsci)
cache_put(&gsd->rsci->h, &rsc_cache);
gsd->rsci = NULL;
return stat;
}
static void
svcauth_gss_domain_release(struct auth_domain *dom)
{
struct gss_domain *gd = container_of(dom, struct gss_domain, h);
kfree(dom->name);
kfree(gd);
}
static struct auth_ops svcauthops_gss = {
.name = "rpcsec_gss",
.owner = THIS_MODULE,
.flavour = RPC_AUTH_GSS,
.accept = svcauth_gss_accept,
.release = svcauth_gss_release,
.domain_release = svcauth_gss_domain_release,
.set_client = svcauth_gss_set_client,
};
int
gss_svc_init(void)
{
int rv = svc_auth_register(RPC_AUTH_GSS, &svcauthops_gss);
if (rv)
return rv;
rv = cache_register(&rsc_cache);
if (rv)
goto out1;
rv = cache_register(&rsi_cache);
if (rv)
goto out2;
return 0;
out2:
cache_unregister(&rsc_cache);
out1:
svc_auth_unregister(RPC_AUTH_GSS);
return rv;
}
void
gss_svc_shutdown(void)
{
cache_unregister(&rsc_cache);
cache_unregister(&rsi_cache);
svc_auth_unregister(RPC_AUTH_GSS);
}