linux/net/can/raw.c

827 lines
18 KiB
C
Raw Normal View History

/*
* raw.c - Raw sockets for protocol family CAN
*
* Copyright (c) 2002-2007 Volkswagen Group Electronic Research
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Volkswagen nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Alternatively, provided that this notice is retained in full, this
* software may be distributed under the terms of the GNU General
* Public License ("GPL") version 2, in which case the provisions of the
* GPL apply INSTEAD OF those given above.
*
* The provided data structures and external interfaces from this code
* are not restricted to be used by modules with a GPL compatible license.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/uio.h>
#include <linux/net.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/socket.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/core.h>
#include <linux/can/skb.h>
#include <linux/can/raw.h>
#include <net/sock.h>
#include <net/net_namespace.h>
#define CAN_RAW_VERSION CAN_VERSION
MODULE_DESCRIPTION("PF_CAN raw protocol");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>");
MODULE_ALIAS("can-proto-1");
#define MASK_ALL 0
/*
* A raw socket has a list of can_filters attached to it, each receiving
* the CAN frames matching that filter. If the filter list is empty,
* no CAN frames will be received by the socket. The default after
* opening the socket, is to have one filter which receives all frames.
* The filter list is allocated dynamically with the exception of the
* list containing only one item. This common case is optimized by
* storing the single filter in dfilter, to avoid using dynamic memory.
*/
struct raw_sock {
struct sock sk;
int bound;
int ifindex;
struct notifier_block notifier;
int loopback;
int recv_own_msgs;
int fd_frames;
int count; /* number of active filters */
struct can_filter dfilter; /* default/single filter */
struct can_filter *filter; /* pointer to filter(s) */
can_err_mask_t err_mask;
};
/*
* Return pointer to store the extra msg flags for raw_recvmsg().
* We use the space of one unsigned int beyond the 'struct sockaddr_can'
* in skb->cb.
*/
static inline unsigned int *raw_flags(struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(skb->cb) <= (sizeof(struct sockaddr_can) +
sizeof(unsigned int)));
/* return pointer after struct sockaddr_can */
return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]);
}
static inline struct raw_sock *raw_sk(const struct sock *sk)
{
return (struct raw_sock *)sk;
}
static void raw_rcv(struct sk_buff *oskb, void *data)
{
struct sock *sk = (struct sock *)data;
struct raw_sock *ro = raw_sk(sk);
struct sockaddr_can *addr;
struct sk_buff *skb;
unsigned int *pflags;
/* check the received tx sock reference */
if (!ro->recv_own_msgs && oskb->sk == sk)
return;
/* do not pass non-CAN2.0 frames to a legacy socket */
if (!ro->fd_frames && oskb->len != CAN_MTU)
return;
/* clone the given skb to be able to enqueue it into the rcv queue */
skb = skb_clone(oskb, GFP_ATOMIC);
if (!skb)
return;
/*
* Put the datagram to the queue so that raw_recvmsg() can
* get it from there. We need to pass the interface index to
* raw_recvmsg(). We pass a whole struct sockaddr_can in skb->cb
* containing the interface index.
*/
BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
addr = (struct sockaddr_can *)skb->cb;
memset(addr, 0, sizeof(*addr));
addr->can_family = AF_CAN;
addr->can_ifindex = skb->dev->ifindex;
/* add CAN specific message flags for raw_recvmsg() */
pflags = raw_flags(skb);
*pflags = 0;
if (oskb->sk)
*pflags |= MSG_DONTROUTE;
if (oskb->sk == sk)
*pflags |= MSG_CONFIRM;
if (sock_queue_rcv_skb(sk, skb) < 0)
kfree_skb(skb);
}
static int raw_enable_filters(struct net_device *dev, struct sock *sk,
struct can_filter *filter, int count)
{
int err = 0;
int i;
for (i = 0; i < count; i++) {
err = can_rx_register(dev, filter[i].can_id,
filter[i].can_mask,
raw_rcv, sk, "raw");
if (err) {
/* clean up successfully registered filters */
while (--i >= 0)
can_rx_unregister(dev, filter[i].can_id,
filter[i].can_mask,
raw_rcv, sk);
break;
}
}
return err;
}
static int raw_enable_errfilter(struct net_device *dev, struct sock *sk,
can_err_mask_t err_mask)
{
int err = 0;
if (err_mask)
err = can_rx_register(dev, 0, err_mask | CAN_ERR_FLAG,
raw_rcv, sk, "raw");
return err;
}
static void raw_disable_filters(struct net_device *dev, struct sock *sk,
struct can_filter *filter, int count)
{
int i;
for (i = 0; i < count; i++)
can_rx_unregister(dev, filter[i].can_id, filter[i].can_mask,
raw_rcv, sk);
}
static inline void raw_disable_errfilter(struct net_device *dev,
struct sock *sk,
can_err_mask_t err_mask)
{
if (err_mask)
can_rx_unregister(dev, 0, err_mask | CAN_ERR_FLAG,
raw_rcv, sk);
}
static inline void raw_disable_allfilters(struct net_device *dev,
struct sock *sk)
{
struct raw_sock *ro = raw_sk(sk);
raw_disable_filters(dev, sk, ro->filter, ro->count);
raw_disable_errfilter(dev, sk, ro->err_mask);
}
static int raw_enable_allfilters(struct net_device *dev, struct sock *sk)
{
struct raw_sock *ro = raw_sk(sk);
int err;
err = raw_enable_filters(dev, sk, ro->filter, ro->count);
if (!err) {
err = raw_enable_errfilter(dev, sk, ro->err_mask);
if (err)
raw_disable_filters(dev, sk, ro->filter, ro->count);
}
return err;
}
static int raw_notifier(struct notifier_block *nb,
unsigned long msg, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct raw_sock *ro = container_of(nb, struct raw_sock, notifier);
struct sock *sk = &ro->sk;
if (!net_eq(dev_net(dev), &init_net))
return NOTIFY_DONE;
if (dev->type != ARPHRD_CAN)
return NOTIFY_DONE;
if (ro->ifindex != dev->ifindex)
return NOTIFY_DONE;
switch (msg) {
case NETDEV_UNREGISTER:
lock_sock(sk);
/* remove current filters & unregister */
if (ro->bound)
raw_disable_allfilters(dev, sk);
if (ro->count > 1)
kfree(ro->filter);
ro->ifindex = 0;
ro->bound = 0;
ro->count = 0;
release_sock(sk);
sk->sk_err = ENODEV;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
break;
case NETDEV_DOWN:
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
break;
}
return NOTIFY_DONE;
}
static int raw_init(struct sock *sk)
{
struct raw_sock *ro = raw_sk(sk);
ro->bound = 0;
ro->ifindex = 0;
/* set default filter to single entry dfilter */
ro->dfilter.can_id = 0;
ro->dfilter.can_mask = MASK_ALL;
ro->filter = &ro->dfilter;
ro->count = 1;
/* set default loopback behaviour */
ro->loopback = 1;
ro->recv_own_msgs = 0;
ro->fd_frames = 0;
/* set notifier */
ro->notifier.notifier_call = raw_notifier;
register_netdevice_notifier(&ro->notifier);
return 0;
}
static int raw_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct raw_sock *ro;
if (!sk)
return 0;
ro = raw_sk(sk);
unregister_netdevice_notifier(&ro->notifier);
lock_sock(sk);
/* remove current filters & unregister */
if (ro->bound) {
if (ro->ifindex) {
struct net_device *dev;
dev = dev_get_by_index(&init_net, ro->ifindex);
if (dev) {
raw_disable_allfilters(dev, sk);
dev_put(dev);
}
} else
raw_disable_allfilters(NULL, sk);
}
if (ro->count > 1)
kfree(ro->filter);
ro->ifindex = 0;
ro->bound = 0;
ro->count = 0;
sock_orphan(sk);
sock->sk = NULL;
release_sock(sk);
sock_put(sk);
return 0;
}
static int raw_bind(struct socket *sock, struct sockaddr *uaddr, int len)
{
struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
struct sock *sk = sock->sk;
struct raw_sock *ro = raw_sk(sk);
int ifindex;
int err = 0;
int notify_enetdown = 0;
if (len < sizeof(*addr))
return -EINVAL;
lock_sock(sk);
if (ro->bound && addr->can_ifindex == ro->ifindex)
goto out;
if (addr->can_ifindex) {
struct net_device *dev;
dev = dev_get_by_index(&init_net, addr->can_ifindex);
if (!dev) {
err = -ENODEV;
goto out;
}
if (dev->type != ARPHRD_CAN) {
dev_put(dev);
err = -ENODEV;
goto out;
}
if (!(dev->flags & IFF_UP))
notify_enetdown = 1;
ifindex = dev->ifindex;
/* filters set by default/setsockopt */
err = raw_enable_allfilters(dev, sk);
dev_put(dev);
} else {
ifindex = 0;
/* filters set by default/setsockopt */
err = raw_enable_allfilters(NULL, sk);
}
if (!err) {
if (ro->bound) {
/* unregister old filters */
if (ro->ifindex) {
struct net_device *dev;
dev = dev_get_by_index(&init_net, ro->ifindex);
if (dev) {
raw_disable_allfilters(dev, sk);
dev_put(dev);
}
} else
raw_disable_allfilters(NULL, sk);
}
ro->ifindex = ifindex;
ro->bound = 1;
}
out:
release_sock(sk);
if (notify_enetdown) {
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
}
return err;
}
static int raw_getname(struct socket *sock, struct sockaddr *uaddr,
int *len, int peer)
{
struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
struct sock *sk = sock->sk;
struct raw_sock *ro = raw_sk(sk);
if (peer)
return -EOPNOTSUPP;
memset(addr, 0, sizeof(*addr));
addr->can_family = AF_CAN;
addr->can_ifindex = ro->ifindex;
*len = sizeof(*addr);
return 0;
}
static int raw_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct raw_sock *ro = raw_sk(sk);
struct can_filter *filter = NULL; /* dyn. alloc'ed filters */
struct can_filter sfilter; /* single filter */
struct net_device *dev = NULL;
can_err_mask_t err_mask = 0;
int count = 0;
int err = 0;
if (level != SOL_CAN_RAW)
return -EINVAL;
switch (optname) {
case CAN_RAW_FILTER:
if (optlen % sizeof(struct can_filter) != 0)
return -EINVAL;
count = optlen / sizeof(struct can_filter);
if (count > 1) {
/* filter does not fit into dfilter => alloc space */
filter = memdup_user(optval, optlen);
if (IS_ERR(filter))
return PTR_ERR(filter);
} else if (count == 1) {
if (copy_from_user(&sfilter, optval, sizeof(sfilter)))
return -EFAULT;
}
lock_sock(sk);
if (ro->bound && ro->ifindex)
dev = dev_get_by_index(&init_net, ro->ifindex);
if (ro->bound) {
/* (try to) register the new filters */
if (count == 1)
err = raw_enable_filters(dev, sk, &sfilter, 1);
else
err = raw_enable_filters(dev, sk, filter,
count);
if (err) {
if (count > 1)
kfree(filter);
goto out_fil;
}
/* remove old filter registrations */
raw_disable_filters(dev, sk, ro->filter, ro->count);
}
/* remove old filter space */
if (ro->count > 1)
kfree(ro->filter);
/* link new filters to the socket */
if (count == 1) {
/* copy filter data for single filter */
ro->dfilter = sfilter;
filter = &ro->dfilter;
}
ro->filter = filter;
ro->count = count;
out_fil:
if (dev)
dev_put(dev);
release_sock(sk);
break;
case CAN_RAW_ERR_FILTER:
if (optlen != sizeof(err_mask))
return -EINVAL;
if (copy_from_user(&err_mask, optval, optlen))
return -EFAULT;
err_mask &= CAN_ERR_MASK;
lock_sock(sk);
if (ro->bound && ro->ifindex)
dev = dev_get_by_index(&init_net, ro->ifindex);
/* remove current error mask */
if (ro->bound) {
/* (try to) register the new err_mask */
err = raw_enable_errfilter(dev, sk, err_mask);
if (err)
goto out_err;
/* remove old err_mask registration */
raw_disable_errfilter(dev, sk, ro->err_mask);
}
/* link new err_mask to the socket */
ro->err_mask = err_mask;
out_err:
if (dev)
dev_put(dev);
release_sock(sk);
break;
case CAN_RAW_LOOPBACK:
if (optlen != sizeof(ro->loopback))
return -EINVAL;
if (copy_from_user(&ro->loopback, optval, optlen))
return -EFAULT;
break;
case CAN_RAW_RECV_OWN_MSGS:
if (optlen != sizeof(ro->recv_own_msgs))
return -EINVAL;
if (copy_from_user(&ro->recv_own_msgs, optval, optlen))
return -EFAULT;
break;
case CAN_RAW_FD_FRAMES:
if (optlen != sizeof(ro->fd_frames))
return -EINVAL;
if (copy_from_user(&ro->fd_frames, optval, optlen))
return -EFAULT;
break;
default:
return -ENOPROTOOPT;
}
return err;
}
static int raw_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct raw_sock *ro = raw_sk(sk);
int len;
void *val;
int err = 0;
if (level != SOL_CAN_RAW)
return -EINVAL;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case CAN_RAW_FILTER:
lock_sock(sk);
if (ro->count > 0) {
int fsize = ro->count * sizeof(struct can_filter);
if (len > fsize)
len = fsize;
if (copy_to_user(optval, ro->filter, len))
err = -EFAULT;
} else
len = 0;
release_sock(sk);
if (!err)
err = put_user(len, optlen);
return err;
case CAN_RAW_ERR_FILTER:
if (len > sizeof(can_err_mask_t))
len = sizeof(can_err_mask_t);
val = &ro->err_mask;
break;
case CAN_RAW_LOOPBACK:
if (len > sizeof(int))
len = sizeof(int);
val = &ro->loopback;
break;
case CAN_RAW_RECV_OWN_MSGS:
if (len > sizeof(int))
len = sizeof(int);
val = &ro->recv_own_msgs;
break;
case CAN_RAW_FD_FRAMES:
if (len > sizeof(int))
len = sizeof(int);
val = &ro->fd_frames;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, val, len))
return -EFAULT;
return 0;
}
static int raw_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size)
{
struct sock *sk = sock->sk;
struct raw_sock *ro = raw_sk(sk);
struct sk_buff *skb;
struct net_device *dev;
int ifindex;
int err;
if (msg->msg_name) {
DECLARE_SOCKADDR(struct sockaddr_can *, addr, msg->msg_name);
if (msg->msg_namelen < sizeof(*addr))
return -EINVAL;
if (addr->can_family != AF_CAN)
return -EINVAL;
ifindex = addr->can_ifindex;
} else
ifindex = ro->ifindex;
if (ro->fd_frames) {
if (unlikely(size != CANFD_MTU && size != CAN_MTU))
return -EINVAL;
} else {
if (unlikely(size != CAN_MTU))
return -EINVAL;
}
dev = dev_get_by_index(&init_net, ifindex);
if (!dev)
return -ENXIO;
skb = sock_alloc_send_skb(sk, size + sizeof(struct can_skb_priv),
msg->msg_flags & MSG_DONTWAIT, &err);
if (!skb)
goto put_dev;
can_skb_reserve(skb);
can_skb_prv(skb)->ifindex = dev->ifindex;
err = memcpy_from_msg(skb_put(skb, size), msg, size);
if (err < 0)
goto free_skb;
sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
skb->dev = dev;
skb->sk = sk;
skb->priority = sk->sk_priority;
err = can_send(skb, ro->loopback);
dev_put(dev);
if (err)
goto send_failed;
return size;
free_skb:
kfree_skb(skb);
put_dev:
dev_put(dev);
send_failed:
return err;
}
static int raw_recvmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size, int flags)
{
struct sock *sk = sock->sk;
struct sk_buff *skb;
int err = 0;
int noblock;
noblock = flags & MSG_DONTWAIT;
flags &= ~MSG_DONTWAIT;
skb = skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
return err;
if (size < skb->len)
msg->msg_flags |= MSG_TRUNC;
else
size = skb->len;
err = memcpy_to_msg(msg, skb->data, size);
if (err < 0) {
skb_free_datagram(sk, skb);
return err;
}
net: Generalize socket rx gap / receive queue overflow cmsg Create a new socket level option to report number of queue overflows Recently I augmented the AF_PACKET protocol to report the number of frames lost on the socket receive queue between any two enqueued frames. This value was exported via a SOL_PACKET level cmsg. AFter I completed that work it was requested that this feature be generalized so that any datagram oriented socket could make use of this option. As such I've created this patch, It creates a new SOL_SOCKET level option called SO_RXQ_OVFL, which when enabled exports a SOL_SOCKET level cmsg that reports the nubmer of times the sk_receive_queue overflowed between any two given frames. It also augments the AF_PACKET protocol to take advantage of this new feature (as it previously did not touch sk->sk_drops, which this patch uses to record the overflow count). Tested successfully by me. Notes: 1) Unlike my previous patch, this patch simply records the sk_drops value, which is not a number of drops between packets, but rather a total number of drops. Deltas must be computed in user space. 2) While this patch currently works with datagram oriented protocols, it will also be accepted by non-datagram oriented protocols. I'm not sure if thats agreeable to everyone, but my argument in favor of doing so is that, for those protocols which aren't applicable to this option, sk_drops will always be zero, and reporting no drops on a receive queue that isn't used for those non-participating protocols seems reasonable to me. This also saves us having to code in a per-protocol opt in mechanism. 3) This applies cleanly to net-next assuming that commit 977750076d98c7ff6cbda51858bb5a5894a9d9ab (my af packet cmsg patch) is reverted Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-10-12 13:26:31 -07:00
sock_recv_ts_and_drops(msg, sk, skb);
if (msg->msg_name) {
__sockaddr_check_size(sizeof(struct sockaddr_can));
msg->msg_namelen = sizeof(struct sockaddr_can);
memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
}
/* assign the flags that have been recorded in raw_rcv() */
msg->msg_flags |= *(raw_flags(skb));
skb_free_datagram(sk, skb);
return size;
}
static const struct proto_ops raw_ops = {
.family = PF_CAN,
.release = raw_release,
.bind = raw_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = raw_getname,
.poll = datagram_poll,
.ioctl = can_ioctl, /* use can_ioctl() from af_can.c */
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = raw_setsockopt,
.getsockopt = raw_getsockopt,
.sendmsg = raw_sendmsg,
.recvmsg = raw_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static struct proto raw_proto __read_mostly = {
.name = "CAN_RAW",
.owner = THIS_MODULE,
.obj_size = sizeof(struct raw_sock),
.init = raw_init,
};
static const struct can_proto raw_can_proto = {
.type = SOCK_RAW,
.protocol = CAN_RAW,
.ops = &raw_ops,
.prot = &raw_proto,
};
static __init int raw_module_init(void)
{
int err;
pr_info("can: raw protocol (rev " CAN_RAW_VERSION ")\n");
err = can_proto_register(&raw_can_proto);
if (err < 0)
printk(KERN_ERR "can: registration of raw protocol failed\n");
return err;
}
static __exit void raw_module_exit(void)
{
can_proto_unregister(&raw_can_proto);
}
module_init(raw_module_init);
module_exit(raw_module_exit);