linux/net/ipv4/ip_output.c

1747 lines
44 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* The Internet Protocol (IP) output module.
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Donald Becker, <becker@super.org>
* Alan Cox, <Alan.Cox@linux.org>
* Richard Underwood
* Stefan Becker, <stefanb@yello.ping.de>
* Jorge Cwik, <jorge@laser.satlink.net>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Hirokazu Takahashi, <taka@valinux.co.jp>
*
* See ip_input.c for original log
*
* Fixes:
* Alan Cox : Missing nonblock feature in ip_build_xmit.
* Mike Kilburn : htons() missing in ip_build_xmit.
* Bradford Johnson: Fix faulty handling of some frames when
* no route is found.
* Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
* (in case if packet not accepted by
* output firewall rules)
* Mike McLagan : Routing by source
* Alexey Kuznetsov: use new route cache
* Andi Kleen: Fix broken PMTU recovery and remove
* some redundant tests.
* Vitaly E. Lavrov : Transparent proxy revived after year coma.
* Andi Kleen : Replace ip_reply with ip_send_reply.
* Andi Kleen : Split fast and slow ip_build_xmit path
* for decreased register pressure on x86
* and more readability.
* Marc Boucher : When call_out_firewall returns FW_QUEUE,
* silently drop skb instead of failing with -EPERM.
* Detlev Wengorz : Copy protocol for fragments.
* Hirokazu Takahashi: HW checksumming for outgoing UDP
* datagrams.
* Hirokazu Takahashi: sendfile() on UDP works now.
*/
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/highmem.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <net/snmp.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/xfrm.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/arp.h>
#include <net/icmp.h>
#include <net/checksum.h>
#include <net/inetpeer.h>
#include <net/inet_ecn.h>
#include <net/lwtunnel.h>
#include <linux/bpf-cgroup.h>
#include <linux/igmp.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter_bridge.h>
#include <linux/netlink.h>
#include <linux/tcp.h>
static int
ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
unsigned int mtu,
int (*output)(struct net *, struct sock *, struct sk_buff *));
/* Generate a checksum for an outgoing IP datagram. */
void ip_send_check(struct iphdr *iph)
{
iph->check = 0;
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
}
EXPORT_SYMBOL(ip_send_check);
int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = htons(skb->len);
ip_send_check(iph);
/* if egress device is enslaved to an L3 master device pass the
* skb to its handler for processing
*/
skb = l3mdev_ip_out(sk, skb);
if (unlikely(!skb))
return 0;
skb->protocol = htons(ETH_P_IP);
2015-09-15 20:04:16 -05:00
return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
net, sk, skb, NULL, skb_dst(skb)->dev,
dst_output);
}
int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
{
int err;
err = __ip_local_out(net, sk, skb);
if (likely(err == 1))
err = dst_output(net, sk, skb);
return err;
}
EXPORT_SYMBOL_GPL(ip_local_out);
static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
{
int ttl = inet->uc_ttl;
if (ttl < 0)
ttl = ip4_dst_hoplimit(dst);
return ttl;
}
/*
* Add an ip header to a skbuff and send it out.
*
*/
int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
__be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
u8 tos)
{
struct inet_sock *inet = inet_sk(sk);
struct rtable *rt = skb_rtable(skb);
struct net *net = sock_net(sk);
struct iphdr *iph;
/* Build the IP header. */
skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
iph->version = 4;
iph->ihl = 5;
iph->tos = tos;
iph->ttl = ip_select_ttl(inet, &rt->dst);
iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
iph->saddr = saddr;
iph->protocol = sk->sk_protocol;
/* Do not bother generating IPID for small packets (eg SYNACK) */
if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
iph->frag_off = htons(IP_DF);
iph->id = 0;
} else {
iph->frag_off = 0;
/* TCP packets here are SYNACK with fat IPv4/TCP options.
* Avoid using the hashed IP ident generator.
*/
if (sk->sk_protocol == IPPROTO_TCP)
iph->id = (__force __be16)prandom_u32();
else
__ip_select_ident(net, iph, 1);
}
if (opt && opt->opt.optlen) {
iph->ihl += opt->opt.optlen>>2;
ip_options_build(skb, &opt->opt, daddr, rt);
}
skb->priority = sk->sk_priority;
if (!skb->mark)
skb->mark = sk->sk_mark;
/* Send it out. */
return ip_local_out(net, skb->sk, skb);
}
EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct rtable *rt = (struct rtable *)dst;
struct net_device *dev = dst->dev;
unsigned int hh_len = LL_RESERVED_SPACE(dev);
struct neighbour *neigh;
ipv4: Add helpers for neigh lookup for nexthop A common theme in the output path is looking up a neigh entry for a nexthop, either the gateway in an rtable or a fallback to the daddr in the skb: nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); To allow the nexthop to be an IPv6 address we need to consider the family of the nexthop and then call __ipv{4,6}_neigh_lookup_noref based on it. To make this simpler, add a ip_neigh_gw4 helper similar to ip_neigh_gw6 added in an earlier patch which handles: neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); And then add a second one, ip_neigh_for_gw, that calls either ip_neigh_gw4 or ip_neigh_gw6 based on the address family of the gateway. Update the output paths in the VRF driver and core v4 code to use ip_neigh_for_gw simplifying the family based lookup and making both ready for a v6 nexthop. ipv4_neigh_lookup has a different need - the potential to resolve a passed in address in addition to any gateway in the rtable or skb. Since this is a one-off, add ip_neigh_gw4 and ip_neigh_gw6 diectly. The difference between __neigh_create used by the helpers and neigh_create called by ipv4_neigh_lookup is taking a refcount, so add rcu_read_lock_bh and bump the refcnt on the neigh entry. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-05 16:30:34 -07:00
bool is_v6gw = false;
if (rt->rt_type == RTN_MULTICAST) {
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
} else if (rt->rt_type == RTN_BROADCAST)
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
skb = skb_expand_head(skb, hh_len);
if (!skb)
return -ENOMEM;
}
if (lwtunnel_xmit_redirect(dst->lwtstate)) {
int res = lwtunnel_xmit(skb);
if (res < 0 || res == LWTUNNEL_XMIT_DONE)
return res;
}
rcu_read_lock_bh();
ipv4: Add helpers for neigh lookup for nexthop A common theme in the output path is looking up a neigh entry for a nexthop, either the gateway in an rtable or a fallback to the daddr in the skb: nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); To allow the nexthop to be an IPv6 address we need to consider the family of the nexthop and then call __ipv{4,6}_neigh_lookup_noref based on it. To make this simpler, add a ip_neigh_gw4 helper similar to ip_neigh_gw6 added in an earlier patch which handles: neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); And then add a second one, ip_neigh_for_gw, that calls either ip_neigh_gw4 or ip_neigh_gw6 based on the address family of the gateway. Update the output paths in the VRF driver and core v4 code to use ip_neigh_for_gw simplifying the family based lookup and making both ready for a v6 nexthop. ipv4_neigh_lookup has a different need - the potential to resolve a passed in address in addition to any gateway in the rtable or skb. Since this is a one-off, add ip_neigh_gw4 and ip_neigh_gw6 diectly. The difference between __neigh_create used by the helpers and neigh_create called by ipv4_neigh_lookup is taking a refcount, so add rcu_read_lock_bh and bump the refcnt on the neigh entry. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-05 16:30:34 -07:00
neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
if (!IS_ERR(neigh)) {
int res;
sock_confirm_neigh(skb, neigh);
ipv4: Add helpers for neigh lookup for nexthop A common theme in the output path is looking up a neigh entry for a nexthop, either the gateway in an rtable or a fallback to the daddr in the skb: nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); To allow the nexthop to be an IPv6 address we need to consider the family of the nexthop and then call __ipv{4,6}_neigh_lookup_noref based on it. To make this simpler, add a ip_neigh_gw4 helper similar to ip_neigh_gw6 added in an earlier patch which handles: neigh = __ipv4_neigh_lookup_noref(dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); And then add a second one, ip_neigh_for_gw, that calls either ip_neigh_gw4 or ip_neigh_gw6 based on the address family of the gateway. Update the output paths in the VRF driver and core v4 code to use ip_neigh_for_gw simplifying the family based lookup and making both ready for a v6 nexthop. ipv4_neigh_lookup has a different need - the potential to resolve a passed in address in addition to any gateway in the rtable or skb. Since this is a one-off, add ip_neigh_gw4 and ip_neigh_gw6 diectly. The difference between __neigh_create used by the helpers and neigh_create called by ipv4_neigh_lookup is taking a refcount, so add rcu_read_lock_bh and bump the refcnt on the neigh entry. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-05 16:30:34 -07:00
/* if crossing protocols, can not use the cached header */
res = neigh_output(neigh, skb, is_v6gw);
rcu_read_unlock_bh();
return res;
}
rcu_read_unlock_bh();
net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
__func__);
kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
return -EINVAL;
}
static int ip_finish_output_gso(struct net *net, struct sock *sk,
struct sk_buff *skb, unsigned int mtu)
{
struct sk_buff *segs, *nskb;
netdev_features_t features;
int ret = 0;
/* common case: seglen is <= mtu
*/
if (skb_gso_validate_network_len(skb, mtu))
return ip_finish_output2(net, sk, skb);
/* Slowpath - GSO segment length exceeds the egress MTU.
*
* This can happen in several cases:
* - Forwarding of a TCP GRO skb, when DF flag is not set.
* - Forwarding of an skb that arrived on a virtualization interface
* (virtio-net/vhost/tap) with TSO/GSO size set by other network
* stack.
* - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
* interface with a smaller MTU.
* - Arriving GRO skb (or GSO skb in a virtualized environment) that is
* bridged to a NETIF_F_TSO tunnel stacked over an interface with an
* insufficient MTU.
*/
features = netif_skb_features(skb);
BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
if (IS_ERR_OR_NULL(segs)) {
kfree_skb(skb);
return -ENOMEM;
}
consume_skb(skb);
skb_list_walk_safe(segs, segs, nskb) {
int err;
skb_mark_not_on_list(segs);
err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
if (err && ret == 0)
ret = err;
}
return ret;
}
static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
unsigned int mtu;
#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
/* Policy lookup after SNAT yielded a new policy */
if (skb_dst(skb)->xfrm) {
IPCB(skb)->flags |= IPSKB_REROUTED;
return dst_output(net, sk, skb);
}
#endif
mtu = ip_skb_dst_mtu(sk, skb);
if (skb_is_gso(skb))
return ip_finish_output_gso(net, sk, skb, mtu);
net: ip: always refragment ip defragmented packets Conntrack reassembly records the largest fragment size seen in IPCB. However, when this gets forwarded/transmitted, fragmentation will only be forced if one of the fragmented packets had the DF bit set. In that case, a flag in IPCB will force fragmentation even if the MTU is large enough. This should work fine, but this breaks with ip tunnels. Consider client that sends a UDP datagram of size X to another host. The client fragments the datagram, so two packets, of size y and z, are sent. DF bit is not set on any of these packets. Middlebox netfilter reassembles those packets back to single size-X packet, before routing decision. packet-size-vs-mtu checks in ip_forward are irrelevant, because DF bit isn't set. At output time, ip refragmentation is skipped as well because x is still smaller than the mtu of the output device. If ttransmit device is an ip tunnel, the packet size increases to x+overhead. Also, tunnel might be configured to force DF bit on outer header. In this case, packet will be dropped (exceeds MTU) and an ICMP error is generated back to sender. But sender already respects the announced MTU, all the packets that it sent did fit the announced mtu. Force refragmentation as per original sizes unconditionally so ip tunnel will encapsulate the fragments instead. The only other solution I see is to place ip refragmentation in the ip_tunnel code to handle this case. Fixes: d6b915e29f4ad ("ip_fragment: don't forward defragmented DF packet") Reported-by: Christian Perle <christian.perle@secunet.com> Signed-off-by: Florian Westphal <fw@strlen.de> Acked-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-06 00:15:23 +01:00
if (skb->len > mtu || IPCB(skb)->frag_max_size)
return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
return ip_finish_output2(net, sk, skb);
}
static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
int ret;
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
switch (ret) {
case NET_XMIT_SUCCESS:
return __ip_finish_output(net, sk, skb);
case NET_XMIT_CN:
return __ip_finish_output(net, sk, skb) ? : ret;
default:
kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
return ret;
}
}
static int ip_mc_finish_output(struct net *net, struct sock *sk,
struct sk_buff *skb)
{
struct rtable *new_rt;
bool do_cn = false;
int ret, err;
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
switch (ret) {
case NET_XMIT_CN:
do_cn = true;
fallthrough;
case NET_XMIT_SUCCESS:
break;
default:
kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
return ret;
}
/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
* this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
* see ipv4_pktinfo_prepare().
*/
new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
if (new_rt) {
new_rt->rt_iif = 0;
skb_dst_drop(skb);
skb_dst_set(skb, &new_rt->dst);
}
err = dev_loopback_xmit(net, sk, skb);
return (do_cn && err) ? ret : err;
}
int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct rtable *rt = skb_rtable(skb);
struct net_device *dev = rt->dst.dev;
/*
* If the indicated interface is up and running, send the packet.
*/
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
/*
* Multicasts are looped back for other local users
*/
if (rt->rt_flags&RTCF_MULTICAST) {
if (sk_mc_loop(sk)
#ifdef CONFIG_IP_MROUTE
/* Small optimization: do not loopback not local frames,
which returned after forwarding; they will be dropped
by ip_mr_input in any case.
Note, that local frames are looped back to be delivered
to local recipients.
This check is duplicated in ip_mr_input at the moment.
*/
&&
((rt->rt_flags & RTCF_LOCAL) ||
!(IPCB(skb)->flags & IPSKB_FORWARDED))
#endif
) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
2015-09-15 20:04:16 -05:00
net, sk, newskb, NULL, newskb->dev,
ip_mc_finish_output);
}
/* Multicasts with ttl 0 must not go beyond the host */
if (ip_hdr(skb)->ttl == 0) {
kfree_skb(skb);
return 0;
}
}
if (rt->rt_flags&RTCF_BROADCAST) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
2015-09-15 20:04:16 -05:00
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, newskb, NULL, newskb->dev,
ip_mc_finish_output);
}
2015-09-15 20:04:16 -05:00
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, skb, NULL, skb->dev,
ip_finish_output,
!(IPCB(skb)->flags & IPSKB_REROUTED));
}
int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
2015-09-15 20:04:16 -05:00
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, skb, indev, dev,
ip_finish_output,
!(IPCB(skb)->flags & IPSKB_REROUTED));
}
EXPORT_SYMBOL(ip_output);
/*
* copy saddr and daddr, possibly using 64bit load/stores
* Equivalent to :
* iph->saddr = fl4->saddr;
* iph->daddr = fl4->daddr;
*/
static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
{
BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
iph->saddr = fl4->saddr;
iph->daddr = fl4->daddr;
}
/* Note: skb->sk can be different from sk, in case of tunnels */
int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
__u8 tos)
{
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
struct ip_options_rcu *inet_opt;
struct flowi4 *fl4;
struct rtable *rt;
struct iphdr *iph;
int res;
/* Skip all of this if the packet is already routed,
* f.e. by something like SCTP.
*/
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
fl4 = &fl->u.ip4;
rt = skb_rtable(skb);
if (rt)
goto packet_routed;
/* Make sure we can route this packet. */
rt = (struct rtable *)__sk_dst_check(sk, 0);
if (!rt) {
__be32 daddr;
/* Use correct destination address if we have options. */
daddr = inet->inet_daddr;
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
/* If this fails, retransmit mechanism of transport layer will
* keep trying until route appears or the connection times
* itself out.
*/
rt = ip_route_output_ports(net, fl4, sk,
daddr, inet->inet_saddr,
inet->inet_dport,
inet->inet_sport,
sk->sk_protocol,
RT_CONN_FLAGS_TOS(sk, tos),
sk->sk_bound_dev_if);
if (IS_ERR(rt))
goto no_route;
sk_setup_caps(sk, &rt->dst);
}
skb_dst_set_noref(skb, &rt->dst);
packet_routed:
if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
goto no_route;
/* OK, we know where to send it, allocate and build IP header. */
skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
iph->frag_off = htons(IP_DF);
else
iph->frag_off = 0;
iph->ttl = ip_select_ttl(inet, &rt->dst);
iph->protocol = sk->sk_protocol;
ip_copy_addrs(iph, fl4);
/* Transport layer set skb->h.foo itself. */
if (inet_opt && inet_opt->opt.optlen) {
iph->ihl += inet_opt->opt.optlen >> 2;
ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
}
ip_select_ident_segs(net, skb, sk,
skb_shinfo(skb)->gso_segs ?: 1);
/* TODO : should we use skb->sk here instead of sk ? */
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
res = ip_local_out(net, sk, skb);
rcu_read_unlock();
return res;
no_route:
rcu_read_unlock();
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
return -EHOSTUNREACH;
}
EXPORT_SYMBOL(__ip_queue_xmit);
int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
{
return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
}
EXPORT_SYMBOL(ip_queue_xmit);
static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
{
to->pkt_type = from->pkt_type;
to->priority = from->priority;
to->protocol = from->protocol;
to->skb_iif = from->skb_iif;
skb_dst_drop(to);
skb_dst_copy(to, from);
to->dev = from->dev;
to->mark = from->mark;
ip: hash fragments consistently The skb hash for locally generated ip[v6] fragments belonging to the same datagram can vary in several circumstances: * for connected UDP[v6] sockets, the first fragment get its hash via set_owner_w()/skb_set_hash_from_sk() * for unconnected IPv6 UDPv6 sockets, the first fragment can get its hash via ip6_make_flowlabel()/skb_get_hash_flowi6(), if auto_flowlabel is enabled For the following frags the hash is usually computed via skb_get_hash(). The above can cause OoO for unconnected IPv6 UDPv6 socket: in that scenario the egress tx queue can be selected on a per packet basis via the skb hash. It may also fool flow-oriented schedulers to place fragments belonging to the same datagram in different flows. Fix the issue by copying the skb hash from the head frag into the others at fragmentation time. Before this commit: perf probe -a "dev_queue_xmit skb skb->hash skb->l4_hash:b1@0/8 skb->sw_hash:b1@1/8" netperf -H $IPV4 -t UDP_STREAM -l 5 -- -m 2000 -n & perf record -e probe:dev_queue_xmit -e probe:skb_set_owner_w -a sleep 0.1 perf script probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=3713014309 l4_hash=1 sw_hash=0 probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=0 l4_hash=0 sw_hash=0 After this commit: probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=2171763177 l4_hash=1 sw_hash=0 probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=2171763177 l4_hash=1 sw_hash=0 Fixes: b73c3d0e4f0e ("net: Save TX flow hash in sock and set in skbuf on xmit") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-23 16:50:48 +02:00
skb_copy_hash(to, from);
#ifdef CONFIG_NET_SCHED
to->tc_index = from->tc_index;
#endif
nf_copy(to, from);
sk_buff: add skb extension infrastructure This adds an optional extension infrastructure, with ispec (xfrm) and bridge netfilter as first users. objdiff shows no changes if kernel is built without xfrm and br_netfilter support. The third (planned future) user is Multipath TCP which is still out-of-tree. MPTCP needs to map logical mptcp sequence numbers to the tcp sequence numbers used by individual subflows. This DSS mapping is read/written from tcp option space on receive and written to tcp option space on transmitted tcp packets that are part of and MPTCP connection. Extending skb_shared_info or adding a private data field to skb fclones doesn't work for incoming skb, so a different DSS propagation method would be required for the receive side. mptcp has same requirements as secpath/bridge netfilter: 1. extension memory is released when the sk_buff is free'd. 2. data is shared after cloning an skb (clone inherits extension) 3. adding extension to an skb will COW the extension buffer if needed. The "MPTCP upstreaming" effort adds SKB_EXT_MPTCP extension to store the mapping for tx and rx processing. Two new members are added to sk_buff: 1. 'active_extensions' byte (filling a hole), telling which extensions are available for this skb. This has two purposes. a) avoids the need to initialize the pointer. b) allows to "delete" an extension by clearing its bit value in ->active_extensions. While it would be possible to store the active_extensions byte in the extension struct instead of sk_buff, there is one problem with this: When an extension has to be disabled, we can always clear the bit in skb->active_extensions. But in case it would be stored in the extension buffer itself, we might have to COW it first, if we are dealing with a cloned skb. On kmalloc failure we would be unable to turn an extension off. 2. extension pointer, located at the end of the sk_buff. If the active_extensions byte is 0, the pointer is undefined, it is not initialized on skb allocation. This adds extra code to skb clone and free paths (to deal with refcount/free of extension area) but this replaces similar code that manages skb->nf_bridge and skb->sp structs in the followup patches of the series. It is possible to add support for extensions that are not preseved on clones/copies. To do this, it would be needed to define a bitmask of all extensions that need copy/cow semantics, and change __skb_ext_copy() to check ->active_extensions & SKB_EXT_PRESERVE_ON_CLONE, then just set ->active_extensions to 0 on the new clone. This isn't done here because all extensions that get added here need the copy/cow semantics. v2: Allocate entire extension space using kmem_cache. Upside is that this allows better tracking of used memory, downside is that we will allocate more space than strictly needed in most cases (its unlikely that all extensions are active/needed at same time for same skb). The allocated memory (except the small extension header) is not cleared, so no additonal overhead aside from memory usage. Avoid atomic_dec_and_test operation on skb_ext_put() by using similar trick as kfree_skbmem() does with fclone_ref: If recount is 1, there is no concurrent user and we can free right away. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-18 17:15:16 +01:00
skb_ext_copy(to, from);
#if IS_ENABLED(CONFIG_IP_VS)
to->ipvs_property = from->ipvs_property;
#endif
skb_copy_secmark(to, from);
}
static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
unsigned int mtu,
int (*output)(struct net *, struct sock *, struct sk_buff *))
{
struct iphdr *iph = ip_hdr(skb);
2015-05-22 16:32:51 +02:00
if ((iph->frag_off & htons(IP_DF)) == 0)
return ip_do_fragment(net, sk, skb, output);
2015-05-22 16:32:51 +02:00
if (unlikely(!skb->ignore_df ||
(IPCB(skb)->frag_max_size &&
IPCB(skb)->frag_max_size > mtu))) {
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
htonl(mtu));
kfree_skb(skb);
return -EMSGSIZE;
}
return ip_do_fragment(net, sk, skb, output);
}
void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
unsigned int hlen, struct ip_fraglist_iter *iter)
{
unsigned int first_len = skb_pagelen(skb);
net: fix use-after-free in kfree_skb_list syzbot reported nasty use-after-free [1] Lets remove frag_list field from structs ip_fraglist_iter and ip6_fraglist_iter. This seens not needed anyway. [1] : BUG: KASAN: use-after-free in kfree_skb_list+0x5d/0x60 net/core/skbuff.c:706 Read of size 8 at addr ffff888085a3cbc0 by task syz-executor303/8947 CPU: 0 PID: 8947 Comm: syz-executor303 Not tainted 5.2.0-rc2+ #12 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 kfree_skb_list+0x5d/0x60 net/core/skbuff.c:706 ip6_fragment+0x1ef4/0x2680 net/ipv6/ip6_output.c:882 __ip6_finish_output+0x577/0xaa0 net/ipv6/ip6_output.c:144 ip6_finish_output+0x38/0x1f0 net/ipv6/ip6_output.c:156 NF_HOOK_COND include/linux/netfilter.h:294 [inline] ip6_output+0x235/0x7f0 net/ipv6/ip6_output.c:179 dst_output include/net/dst.h:433 [inline] ip6_local_out+0xbb/0x1b0 net/ipv6/output_core.c:179 ip6_send_skb+0xbb/0x350 net/ipv6/ip6_output.c:1796 ip6_push_pending_frames+0xc8/0xf0 net/ipv6/ip6_output.c:1816 rawv6_push_pending_frames net/ipv6/raw.c:617 [inline] rawv6_sendmsg+0x2993/0x35e0 net/ipv6/raw.c:947 inet_sendmsg+0x141/0x5d0 net/ipv4/af_inet.c:802 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:671 ___sys_sendmsg+0x803/0x920 net/socket.c:2292 __sys_sendmsg+0x105/0x1d0 net/socket.c:2330 __do_sys_sendmsg net/socket.c:2339 [inline] __se_sys_sendmsg net/socket.c:2337 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2337 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x44add9 Code: e8 7c e6 ff ff 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 1b 05 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f826f33bce8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00000000006e7a18 RCX: 000000000044add9 RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005 RBP: 00000000006e7a10 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000006e7a1c R13: 00007ffcec4f7ebf R14: 00007f826f33c9c0 R15: 20c49ba5e353f7cf Allocated by task 8947: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:497 slab_post_alloc_hook mm/slab.h:437 [inline] slab_alloc_node mm/slab.c:3269 [inline] kmem_cache_alloc_node+0x131/0x710 mm/slab.c:3579 __alloc_skb+0xd5/0x5e0 net/core/skbuff.c:199 alloc_skb include/linux/skbuff.h:1058 [inline] __ip6_append_data.isra.0+0x2a24/0x3640 net/ipv6/ip6_output.c:1519 ip6_append_data+0x1e5/0x320 net/ipv6/ip6_output.c:1688 rawv6_sendmsg+0x1467/0x35e0 net/ipv6/raw.c:940 inet_sendmsg+0x141/0x5d0 net/ipv4/af_inet.c:802 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:671 ___sys_sendmsg+0x803/0x920 net/socket.c:2292 __sys_sendmsg+0x105/0x1d0 net/socket.c:2330 __do_sys_sendmsg net/socket.c:2339 [inline] __se_sys_sendmsg net/socket.c:2337 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2337 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 8947: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kmem_cache_free+0x86/0x260 mm/slab.c:3698 kfree_skbmem net/core/skbuff.c:625 [inline] kfree_skbmem+0xc5/0x150 net/core/skbuff.c:619 __kfree_skb net/core/skbuff.c:682 [inline] kfree_skb net/core/skbuff.c:699 [inline] kfree_skb+0xf0/0x390 net/core/skbuff.c:693 kfree_skb_list+0x44/0x60 net/core/skbuff.c:708 __dev_xmit_skb net/core/dev.c:3551 [inline] __dev_queue_xmit+0x3034/0x36b0 net/core/dev.c:3850 dev_queue_xmit+0x18/0x20 net/core/dev.c:3914 neigh_direct_output+0x16/0x20 net/core/neighbour.c:1532 neigh_output include/net/neighbour.h:511 [inline] ip6_finish_output2+0x1034/0x2550 net/ipv6/ip6_output.c:120 ip6_fragment+0x1ebb/0x2680 net/ipv6/ip6_output.c:863 __ip6_finish_output+0x577/0xaa0 net/ipv6/ip6_output.c:144 ip6_finish_output+0x38/0x1f0 net/ipv6/ip6_output.c:156 NF_HOOK_COND include/linux/netfilter.h:294 [inline] ip6_output+0x235/0x7f0 net/ipv6/ip6_output.c:179 dst_output include/net/dst.h:433 [inline] ip6_local_out+0xbb/0x1b0 net/ipv6/output_core.c:179 ip6_send_skb+0xbb/0x350 net/ipv6/ip6_output.c:1796 ip6_push_pending_frames+0xc8/0xf0 net/ipv6/ip6_output.c:1816 rawv6_push_pending_frames net/ipv6/raw.c:617 [inline] rawv6_sendmsg+0x2993/0x35e0 net/ipv6/raw.c:947 inet_sendmsg+0x141/0x5d0 net/ipv4/af_inet.c:802 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:671 ___sys_sendmsg+0x803/0x920 net/socket.c:2292 __sys_sendmsg+0x105/0x1d0 net/socket.c:2330 __do_sys_sendmsg net/socket.c:2339 [inline] __se_sys_sendmsg net/socket.c:2337 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2337 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe The buggy address belongs to the object at ffff888085a3cbc0 which belongs to the cache skbuff_head_cache of size 224 The buggy address is located 0 bytes inside of 224-byte region [ffff888085a3cbc0, ffff888085a3cca0) The buggy address belongs to the page: page:ffffea0002168f00 refcount:1 mapcount:0 mapping:ffff88821b6f63c0 index:0x0 flags: 0x1fffc0000000200(slab) raw: 01fffc0000000200 ffffea00027bbf88 ffffea0002105b88 ffff88821b6f63c0 raw: 0000000000000000 ffff888085a3c080 000000010000000c 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888085a3ca80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888085a3cb00: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc >ffff888085a3cb80: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff888085a3cc00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888085a3cc80: fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc Fixes: 0feca6190f88 ("net: ipv6: add skbuff fraglist splitter") Fixes: c8b17be0b7a4 ("net: ipv4: add skbuff fraglist splitter") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Acked-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-02 11:24:18 -07:00
iter->frag = skb_shinfo(skb)->frag_list;
skb_frag_list_init(skb);
iter->offset = 0;
iter->iph = iph;
iter->hlen = hlen;
skb->data_len = first_len - skb_headlen(skb);
skb->len = first_len;
iph->tot_len = htons(first_len);
iph->frag_off = htons(IP_MF);
ip_send_check(iph);
}
EXPORT_SYMBOL(ip_fraglist_init);
void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
{
unsigned int hlen = iter->hlen;
struct iphdr *iph = iter->iph;
struct sk_buff *frag;
frag = iter->frag;
frag->ip_summed = CHECKSUM_NONE;
skb_reset_transport_header(frag);
__skb_push(frag, hlen);
skb_reset_network_header(frag);
memcpy(skb_network_header(frag), iph, hlen);
iter->iph = ip_hdr(frag);
iph = iter->iph;
iph->tot_len = htons(frag->len);
ip_copy_metadata(frag, skb);
iter->offset += skb->len - hlen;
iph->frag_off = htons(iter->offset >> 3);
if (frag->next)
iph->frag_off |= htons(IP_MF);
/* Ready, complete checksum */
ip_send_check(iph);
}
EXPORT_SYMBOL(ip_fraglist_prepare);
void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
unsigned int ll_rs, unsigned int mtu, bool DF,
struct ip_frag_state *state)
{
struct iphdr *iph = ip_hdr(skb);
state->DF = DF;
state->hlen = hlen;
state->ll_rs = ll_rs;
state->mtu = mtu;
state->left = skb->len - hlen; /* Space per frame */
state->ptr = hlen; /* Where to start from */
state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
state->not_last_frag = iph->frag_off & htons(IP_MF);
}
EXPORT_SYMBOL(ip_frag_init);
static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
bool first_frag)
{
/* Copy the flags to each fragment. */
IPCB(to)->flags = IPCB(from)->flags;
/* ANK: dirty, but effective trick. Upgrade options only if
* the segment to be fragmented was THE FIRST (otherwise,
* options are already fixed) and make it ONCE
* on the initial skb, so that all the following fragments
* will inherit fixed options.
*/
if (first_frag)
ip_options_fragment(from);
}
struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
{
unsigned int len = state->left;
struct sk_buff *skb2;
struct iphdr *iph;
/* IF: it doesn't fit, use 'mtu' - the data space left */
if (len > state->mtu)
len = state->mtu;
/* IF: we are not sending up to and including the packet end
then align the next start on an eight byte boundary */
if (len < state->left) {
len &= ~7;
}
/* Allocate buffer */
skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
if (!skb2)
return ERR_PTR(-ENOMEM);
/*
* Set up data on packet
*/
ip_copy_metadata(skb2, skb);
skb_reserve(skb2, state->ll_rs);
skb_put(skb2, len + state->hlen);
skb_reset_network_header(skb2);
skb2->transport_header = skb2->network_header + state->hlen;
/*
* Charge the memory for the fragment to any owner
* it might possess
*/
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
/*
* Copy the packet header into the new buffer.
*/
skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
/*
* Copy a block of the IP datagram.
*/
if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
BUG();
state->left -= len;
/*
* Fill in the new header fields.
*/
iph = ip_hdr(skb2);
iph->frag_off = htons((state->offset >> 3));
if (state->DF)
iph->frag_off |= htons(IP_DF);
/*
* Added AC : If we are fragmenting a fragment that's not the
* last fragment then keep MF on each bit
*/
if (state->left > 0 || state->not_last_frag)
iph->frag_off |= htons(IP_MF);
state->ptr += len;
state->offset += len;
iph->tot_len = htons(len + state->hlen);
ip_send_check(iph);
return skb2;
}
EXPORT_SYMBOL(ip_frag_next);
/*
* This IP datagram is too large to be sent in one piece. Break it up into
* smaller pieces (each of size equal to IP header plus
* a block of the data of the original IP data part) that will yet fit in a
* single device frame, and queue such a frame for sending.
*/
int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
int (*output)(struct net *, struct sock *, struct sk_buff *))
{
struct iphdr *iph;
struct sk_buff *skb2;
net: Add skb->mono_delivery_time to distinguish mono delivery_time from (rcv) timestamp skb->tstamp was first used as the (rcv) timestamp. The major usage is to report it to the user (e.g. SO_TIMESTAMP). Later, skb->tstamp is also set as the (future) delivery_time (e.g. EDT in TCP) during egress and used by the qdisc (e.g. sch_fq) to make decision on when the skb can be passed to the dev. Currently, there is no way to tell skb->tstamp having the (rcv) timestamp or the delivery_time, so it is always reset to 0 whenever forwarded between egress and ingress. While it makes sense to always clear the (rcv) timestamp in skb->tstamp to avoid confusing sch_fq that expects the delivery_time, it is a performance issue [0] to clear the delivery_time if the skb finally egress to a fq@phy-dev. For example, when forwarding from egress to ingress and then finally back to egress: tcp-sender => veth@netns => veth@hostns => fq@eth0@hostns ^ ^ reset rest This patch adds one bit skb->mono_delivery_time to flag the skb->tstamp is storing the mono delivery_time (EDT) instead of the (rcv) timestamp. The current use case is to keep the TCP mono delivery_time (EDT) and to be used with sch_fq. A latter patch will also allow tc-bpf@ingress to read and change the mono delivery_time. In the future, another bit (e.g. skb->user_delivery_time) can be added for the SCM_TXTIME where the clock base is tracked by sk->sk_clockid. [ This patch is a prep work. The following patches will get the other parts of the stack ready first. Then another patch after that will finally set the skb->mono_delivery_time. ] skb_set_delivery_time() function is added. It is used by the tcp_output.c and during ip[6] fragmentation to assign the delivery_time to the skb->tstamp and also set the skb->mono_delivery_time. A note on the change in ip_send_unicast_reply() in ip_output.c. It is only used by TCP to send reset/ack out of a ctl_sk. Like the new skb_set_delivery_time(), this patch sets the skb->mono_delivery_time to 0 for now as a place holder. It will be enabled in a latter patch. A similar case in tcp_ipv6 can be done with skb_set_delivery_time() in tcp_v6_send_response(). [0] (slide 22): https://linuxplumbersconf.org/event/11/contributions/953/attachments/867/1658/LPC_2021_BPF_Datapath_Extensions.pdf Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-02 11:55:25 -08:00
bool mono_delivery_time = skb->mono_delivery_time;
struct rtable *rt = skb_rtable(skb);
unsigned int mtu, hlen, ll_rs;
struct ip_fraglist_iter iter;
ktime_t tstamp = skb->tstamp;
struct ip_frag_state state;
int err = 0;
/* for offloaded checksums cleanup checksum before fragmentation */
if (skb->ip_summed == CHECKSUM_PARTIAL &&
(err = skb_checksum_help(skb)))
goto fail;
/*
* Point into the IP datagram header.
*/
iph = ip_hdr(skb);
mtu = ip_skb_dst_mtu(sk, skb);
2015-05-22 16:32:51 +02:00
if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
mtu = IPCB(skb)->frag_max_size;
/*
* Setup starting values.
*/
hlen = iph->ihl * 4;
ipv4: introduce ip_dst_mtu_maybe_forward and protect forwarding path against pmtu spoofing While forwarding we should not use the protocol path mtu to calculate the mtu for a forwarded packet but instead use the interface mtu. We mark forwarded skbs in ip_forward with IPSKB_FORWARDED, which was introduced for multicast forwarding. But as it does not conflict with our usage in unicast code path it is perfect for reuse. I moved the functions ip_sk_accept_pmtu, ip_sk_use_pmtu and ip_skb_dst_mtu along with the new ip_dst_mtu_maybe_forward to net/ip.h to fix circular dependencies because of IPSKB_FORWARDED. Because someone might have written a software which does probe destinations manually and expects the kernel to honour those path mtus I introduced a new per-namespace "ip_forward_use_pmtu" knob so someone can disable this new behaviour. We also still use mtus which are locked on a route for forwarding. The reason for this change is, that path mtus information can be injected into the kernel via e.g. icmp_err protocol handler without verification of local sockets. As such, this could cause the IPv4 forwarding path to wrongfully emit fragmentation needed notifications or start to fragment packets along a path. Tunnel and ipsec output paths clear IPCB again, thus IPSKB_FORWARDED won't be set and further fragmentation logic will use the path mtu to determine the fragmentation size. They also recheck packet size with help of path mtu discovery and report appropriate errors. Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: John Heffner <johnwheffner@gmail.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-09 10:01:15 +01:00
mtu = mtu - hlen; /* Size of data space */
IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
/* When frag_list is given, use it. First, check its validity:
* some transformers could create wrong frag_list or break existing
* one, it is not prohibited. In this case fall back to copying.
*
* LATER: this step can be merged to real generation of fragments,
* we can switch to copy when see the first bad fragment.
*/
if (skb_has_frag_list(skb)) {
struct sk_buff *frag, *frag2;
unsigned int first_len = skb_pagelen(skb);
if (first_len - hlen > mtu ||
((first_len - hlen) & 7) ||
ip_is_fragment(iph) ||
skb_cloned(skb) ||
skb_headroom(skb) < ll_rs)
goto slow_path;
skb_walk_frags(skb, frag) {
/* Correct geometry. */
if (frag->len > mtu ||
((frag->len & 7) && frag->next) ||
skb_headroom(frag) < hlen + ll_rs)
goto slow_path_clean;
/* Partially cloned skb? */
if (skb_shared(frag))
goto slow_path_clean;
BUG_ON(frag->sk);
if (skb->sk) {
frag->sk = skb->sk;
frag->destructor = sock_wfree;
}
skb->truesize -= frag->truesize;
}
/* Everything is OK. Generate! */
ip_fraglist_init(skb, iph, hlen, &iter);
for (;;) {
/* Prepare header of the next frame,
* before previous one went down. */
if (iter.frag) {
ipv4: fix ip option filtering for locally generated fragments During IP fragmentation we sanitize IP options. This means overwriting options which should not be copied with NOPs. Only the first fragment has the original, full options. ip_fraglist_prepare() copies the IP header and options from previous fragment to the next one. Commit 19c3401a917b ("net: ipv4: place control buffer handling away from fragmentation iterators") moved sanitizing options before ip_fraglist_prepare() which means options are sanitized and then overwritten again with the old values. Fixing this is not enough, however, nor did the sanitization work prior to aforementioned commit. ip_options_fragment() (which does the sanitization) uses ipcb->opt.optlen for the length of the options. ipcb->opt of fragments is not populated (it's 0), only the head skb has the state properly built. So even when called at the right time ip_options_fragment() does nothing. This seems to date back all the way to v2.5.44 when the fast path for pre-fragmented skbs had been introduced. Prior to that ip_options_build() would have been called for every fragment (in fact ever since v2.5.44 the fragmentation handing in ip_options_build() has been dead code, I'll clean it up in -next). In the original patch (see Link) caixf mentions fixing the handling for fragments other than the second one, but I'm not sure how _any_ fragment could have had their options sanitized with the code as it stood. Tested with python (MTU on lo lowered to 1000 to force fragmentation): import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.setsockopt(socket.IPPROTO_IP, socket.IP_OPTIONS, bytearray([7,4,5,192, 20|0x80,4,1,0])) s.sendto(b'1'*2000, ('127.0.0.1', 1234)) Before: IP (tos 0x0, ttl 64, id 1053, offset 0, flags [+], proto UDP (17), length 996, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost.36500 > localhost.search-agent: UDP, length 2000 IP (tos 0x0, ttl 64, id 1053, offset 968, flags [+], proto UDP (17), length 996, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost > localhost: udp IP (tos 0x0, ttl 64, id 1053, offset 1936, flags [none], proto UDP (17), length 100, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost > localhost: udp After: IP (tos 0x0, ttl 96, id 42549, offset 0, flags [+], proto UDP (17), length 996, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost.51607 > localhost.search-agent: UDP, bad length 2000 > 960 IP (tos 0x0, ttl 96, id 42549, offset 968, flags [+], proto UDP (17), length 996, options (NOP,NOP,NOP,NOP,RA value 256)) localhost > localhost: udp IP (tos 0x0, ttl 96, id 42549, offset 1936, flags [none], proto UDP (17), length 100, options (NOP,NOP,NOP,NOP,RA value 256)) localhost > localhost: udp RA (20 | 0x80) is now copied as expected, RR (7) is "NOPed out". Link: https://lore.kernel.org/netdev/20220107080559.122713-1-ooppublic@163.com/ Fixes: 19c3401a917b ("net: ipv4: place control buffer handling away from fragmentation iterators") Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: caixf <ooppublic@163.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-01-21 16:57:31 -08:00
bool first_frag = (iter.offset == 0);
IPCB(iter.frag)->flags = IPCB(skb)->flags;
ip_fraglist_prepare(skb, &iter);
ipv4: fix ip option filtering for locally generated fragments During IP fragmentation we sanitize IP options. This means overwriting options which should not be copied with NOPs. Only the first fragment has the original, full options. ip_fraglist_prepare() copies the IP header and options from previous fragment to the next one. Commit 19c3401a917b ("net: ipv4: place control buffer handling away from fragmentation iterators") moved sanitizing options before ip_fraglist_prepare() which means options are sanitized and then overwritten again with the old values. Fixing this is not enough, however, nor did the sanitization work prior to aforementioned commit. ip_options_fragment() (which does the sanitization) uses ipcb->opt.optlen for the length of the options. ipcb->opt of fragments is not populated (it's 0), only the head skb has the state properly built. So even when called at the right time ip_options_fragment() does nothing. This seems to date back all the way to v2.5.44 when the fast path for pre-fragmented skbs had been introduced. Prior to that ip_options_build() would have been called for every fragment (in fact ever since v2.5.44 the fragmentation handing in ip_options_build() has been dead code, I'll clean it up in -next). In the original patch (see Link) caixf mentions fixing the handling for fragments other than the second one, but I'm not sure how _any_ fragment could have had their options sanitized with the code as it stood. Tested with python (MTU on lo lowered to 1000 to force fragmentation): import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.setsockopt(socket.IPPROTO_IP, socket.IP_OPTIONS, bytearray([7,4,5,192, 20|0x80,4,1,0])) s.sendto(b'1'*2000, ('127.0.0.1', 1234)) Before: IP (tos 0x0, ttl 64, id 1053, offset 0, flags [+], proto UDP (17), length 996, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost.36500 > localhost.search-agent: UDP, length 2000 IP (tos 0x0, ttl 64, id 1053, offset 968, flags [+], proto UDP (17), length 996, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost > localhost: udp IP (tos 0x0, ttl 64, id 1053, offset 1936, flags [none], proto UDP (17), length 100, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost > localhost: udp After: IP (tos 0x0, ttl 96, id 42549, offset 0, flags [+], proto UDP (17), length 996, options (RR [bad length 4] [bad ptr 5] 192.148.4.1,,RA value 256)) localhost.51607 > localhost.search-agent: UDP, bad length 2000 > 960 IP (tos 0x0, ttl 96, id 42549, offset 968, flags [+], proto UDP (17), length 996, options (NOP,NOP,NOP,NOP,RA value 256)) localhost > localhost: udp IP (tos 0x0, ttl 96, id 42549, offset 1936, flags [none], proto UDP (17), length 100, options (NOP,NOP,NOP,NOP,RA value 256)) localhost > localhost: udp RA (20 | 0x80) is now copied as expected, RR (7) is "NOPed out". Link: https://lore.kernel.org/netdev/20220107080559.122713-1-ooppublic@163.com/ Fixes: 19c3401a917b ("net: ipv4: place control buffer handling away from fragmentation iterators") Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: caixf <ooppublic@163.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-01-21 16:57:31 -08:00
if (first_frag && IPCB(skb)->opt.optlen) {
/* ipcb->opt is not populated for frags
* coming from __ip_make_skb(),
* ip_options_fragment() needs optlen
*/
IPCB(iter.frag)->opt.optlen =
IPCB(skb)->opt.optlen;
ip_options_fragment(iter.frag);
ip_send_check(iter.iph);
}
}
net: Add skb->mono_delivery_time to distinguish mono delivery_time from (rcv) timestamp skb->tstamp was first used as the (rcv) timestamp. The major usage is to report it to the user (e.g. SO_TIMESTAMP). Later, skb->tstamp is also set as the (future) delivery_time (e.g. EDT in TCP) during egress and used by the qdisc (e.g. sch_fq) to make decision on when the skb can be passed to the dev. Currently, there is no way to tell skb->tstamp having the (rcv) timestamp or the delivery_time, so it is always reset to 0 whenever forwarded between egress and ingress. While it makes sense to always clear the (rcv) timestamp in skb->tstamp to avoid confusing sch_fq that expects the delivery_time, it is a performance issue [0] to clear the delivery_time if the skb finally egress to a fq@phy-dev. For example, when forwarding from egress to ingress and then finally back to egress: tcp-sender => veth@netns => veth@hostns => fq@eth0@hostns ^ ^ reset rest This patch adds one bit skb->mono_delivery_time to flag the skb->tstamp is storing the mono delivery_time (EDT) instead of the (rcv) timestamp. The current use case is to keep the TCP mono delivery_time (EDT) and to be used with sch_fq. A latter patch will also allow tc-bpf@ingress to read and change the mono delivery_time. In the future, another bit (e.g. skb->user_delivery_time) can be added for the SCM_TXTIME where the clock base is tracked by sk->sk_clockid. [ This patch is a prep work. The following patches will get the other parts of the stack ready first. Then another patch after that will finally set the skb->mono_delivery_time. ] skb_set_delivery_time() function is added. It is used by the tcp_output.c and during ip[6] fragmentation to assign the delivery_time to the skb->tstamp and also set the skb->mono_delivery_time. A note on the change in ip_send_unicast_reply() in ip_output.c. It is only used by TCP to send reset/ack out of a ctl_sk. Like the new skb_set_delivery_time(), this patch sets the skb->mono_delivery_time to 0 for now as a place holder. It will be enabled in a latter patch. A similar case in tcp_ipv6 can be done with skb_set_delivery_time() in tcp_v6_send_response(). [0] (slide 22): https://linuxplumbersconf.org/event/11/contributions/953/attachments/867/1658/LPC_2021_BPF_Datapath_Extensions.pdf Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-02 11:55:25 -08:00
skb_set_delivery_time(skb, tstamp, mono_delivery_time);
err = output(net, sk, skb);
[IPV6]: SNMPv2 "ipv6IfStatsOutFragCreates" counter error When I tested linux kernel 2.6.71.7 about statistics "ipv6IfStatsOutFragCreates", and found that it couldn't increase correctly. The criteria is RFC 2465: ipv6IfStatsOutFragCreates OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of output datagram fragments that have been generated as a result of fragmentation at this output interface." ::= { ipv6IfStatsEntry 15 } I think there are two issues in Linux kernel. 1st: RFC2465 specifies the counter is "The number of output datagram fragments...". I think increasing this counter after output a fragment successfully is better. And it should not be increased even though a fragment is created but failed to output. 2nd: If we send a big ICMP/ICMPv6 echo request to a host, and receive ICMP/ICMPv6 echo reply consisted of some fragments. As we know that in Linux kernel first fragmentation occurs in ICMP layer(maybe saying transport layer is better), but this is not the "real" fragmentation,just do some "pre-fragment" -- allocate space for date, and form a frag_list, etc. The "real" fragmentation happens in IP layer -- set offset and MF flag and so on. So I think in "fast path" for ip_fragment/ip6_fragment, if we send a fragment which "pre-fragment" by upper layer we should also increase "ipv6IfStatsOutFragCreates". Signed-off-by: Wei Dong <weid@nanjing-fnst.com> Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-08-02 13:41:21 -07:00
if (!err)
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
if (err || !iter.frag)
break;
skb = ip_fraglist_next(&iter);
}
if (err == 0) {
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
return 0;
}
net: fix use-after-free in kfree_skb_list syzbot reported nasty use-after-free [1] Lets remove frag_list field from structs ip_fraglist_iter and ip6_fraglist_iter. This seens not needed anyway. [1] : BUG: KASAN: use-after-free in kfree_skb_list+0x5d/0x60 net/core/skbuff.c:706 Read of size 8 at addr ffff888085a3cbc0 by task syz-executor303/8947 CPU: 0 PID: 8947 Comm: syz-executor303 Not tainted 5.2.0-rc2+ #12 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 kfree_skb_list+0x5d/0x60 net/core/skbuff.c:706 ip6_fragment+0x1ef4/0x2680 net/ipv6/ip6_output.c:882 __ip6_finish_output+0x577/0xaa0 net/ipv6/ip6_output.c:144 ip6_finish_output+0x38/0x1f0 net/ipv6/ip6_output.c:156 NF_HOOK_COND include/linux/netfilter.h:294 [inline] ip6_output+0x235/0x7f0 net/ipv6/ip6_output.c:179 dst_output include/net/dst.h:433 [inline] ip6_local_out+0xbb/0x1b0 net/ipv6/output_core.c:179 ip6_send_skb+0xbb/0x350 net/ipv6/ip6_output.c:1796 ip6_push_pending_frames+0xc8/0xf0 net/ipv6/ip6_output.c:1816 rawv6_push_pending_frames net/ipv6/raw.c:617 [inline] rawv6_sendmsg+0x2993/0x35e0 net/ipv6/raw.c:947 inet_sendmsg+0x141/0x5d0 net/ipv4/af_inet.c:802 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:671 ___sys_sendmsg+0x803/0x920 net/socket.c:2292 __sys_sendmsg+0x105/0x1d0 net/socket.c:2330 __do_sys_sendmsg net/socket.c:2339 [inline] __se_sys_sendmsg net/socket.c:2337 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2337 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x44add9 Code: e8 7c e6 ff ff 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 1b 05 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f826f33bce8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00000000006e7a18 RCX: 000000000044add9 RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005 RBP: 00000000006e7a10 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000006e7a1c R13: 00007ffcec4f7ebf R14: 00007f826f33c9c0 R15: 20c49ba5e353f7cf Allocated by task 8947: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:497 slab_post_alloc_hook mm/slab.h:437 [inline] slab_alloc_node mm/slab.c:3269 [inline] kmem_cache_alloc_node+0x131/0x710 mm/slab.c:3579 __alloc_skb+0xd5/0x5e0 net/core/skbuff.c:199 alloc_skb include/linux/skbuff.h:1058 [inline] __ip6_append_data.isra.0+0x2a24/0x3640 net/ipv6/ip6_output.c:1519 ip6_append_data+0x1e5/0x320 net/ipv6/ip6_output.c:1688 rawv6_sendmsg+0x1467/0x35e0 net/ipv6/raw.c:940 inet_sendmsg+0x141/0x5d0 net/ipv4/af_inet.c:802 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:671 ___sys_sendmsg+0x803/0x920 net/socket.c:2292 __sys_sendmsg+0x105/0x1d0 net/socket.c:2330 __do_sys_sendmsg net/socket.c:2339 [inline] __se_sys_sendmsg net/socket.c:2337 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2337 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 8947: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kmem_cache_free+0x86/0x260 mm/slab.c:3698 kfree_skbmem net/core/skbuff.c:625 [inline] kfree_skbmem+0xc5/0x150 net/core/skbuff.c:619 __kfree_skb net/core/skbuff.c:682 [inline] kfree_skb net/core/skbuff.c:699 [inline] kfree_skb+0xf0/0x390 net/core/skbuff.c:693 kfree_skb_list+0x44/0x60 net/core/skbuff.c:708 __dev_xmit_skb net/core/dev.c:3551 [inline] __dev_queue_xmit+0x3034/0x36b0 net/core/dev.c:3850 dev_queue_xmit+0x18/0x20 net/core/dev.c:3914 neigh_direct_output+0x16/0x20 net/core/neighbour.c:1532 neigh_output include/net/neighbour.h:511 [inline] ip6_finish_output2+0x1034/0x2550 net/ipv6/ip6_output.c:120 ip6_fragment+0x1ebb/0x2680 net/ipv6/ip6_output.c:863 __ip6_finish_output+0x577/0xaa0 net/ipv6/ip6_output.c:144 ip6_finish_output+0x38/0x1f0 net/ipv6/ip6_output.c:156 NF_HOOK_COND include/linux/netfilter.h:294 [inline] ip6_output+0x235/0x7f0 net/ipv6/ip6_output.c:179 dst_output include/net/dst.h:433 [inline] ip6_local_out+0xbb/0x1b0 net/ipv6/output_core.c:179 ip6_send_skb+0xbb/0x350 net/ipv6/ip6_output.c:1796 ip6_push_pending_frames+0xc8/0xf0 net/ipv6/ip6_output.c:1816 rawv6_push_pending_frames net/ipv6/raw.c:617 [inline] rawv6_sendmsg+0x2993/0x35e0 net/ipv6/raw.c:947 inet_sendmsg+0x141/0x5d0 net/ipv4/af_inet.c:802 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:671 ___sys_sendmsg+0x803/0x920 net/socket.c:2292 __sys_sendmsg+0x105/0x1d0 net/socket.c:2330 __do_sys_sendmsg net/socket.c:2339 [inline] __se_sys_sendmsg net/socket.c:2337 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2337 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe The buggy address belongs to the object at ffff888085a3cbc0 which belongs to the cache skbuff_head_cache of size 224 The buggy address is located 0 bytes inside of 224-byte region [ffff888085a3cbc0, ffff888085a3cca0) The buggy address belongs to the page: page:ffffea0002168f00 refcount:1 mapcount:0 mapping:ffff88821b6f63c0 index:0x0 flags: 0x1fffc0000000200(slab) raw: 01fffc0000000200 ffffea00027bbf88 ffffea0002105b88 ffff88821b6f63c0 raw: 0000000000000000 ffff888085a3c080 000000010000000c 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888085a3ca80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888085a3cb00: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc >ffff888085a3cb80: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff888085a3cc00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888085a3cc80: fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc Fixes: 0feca6190f88 ("net: ipv6: add skbuff fraglist splitter") Fixes: c8b17be0b7a4 ("net: ipv4: add skbuff fraglist splitter") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Acked-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-02 11:24:18 -07:00
kfree_skb_list(iter.frag);
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
return err;
slow_path_clean:
skb_walk_frags(skb, frag2) {
if (frag2 == frag)
break;
frag2->sk = NULL;
frag2->destructor = NULL;
skb->truesize += frag2->truesize;
}
}
slow_path:
/*
* Fragment the datagram.
*/
ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
&state);
/*
* Keep copying data until we run out.
*/
while (state.left > 0) {
bool first_frag = (state.offset == 0);
skb2 = ip_frag_next(skb, &state);
if (IS_ERR(skb2)) {
err = PTR_ERR(skb2);
goto fail;
}
ip_frag_ipcb(skb, skb2, first_frag);
/*
* Put this fragment into the sending queue.
*/
net: Add skb->mono_delivery_time to distinguish mono delivery_time from (rcv) timestamp skb->tstamp was first used as the (rcv) timestamp. The major usage is to report it to the user (e.g. SO_TIMESTAMP). Later, skb->tstamp is also set as the (future) delivery_time (e.g. EDT in TCP) during egress and used by the qdisc (e.g. sch_fq) to make decision on when the skb can be passed to the dev. Currently, there is no way to tell skb->tstamp having the (rcv) timestamp or the delivery_time, so it is always reset to 0 whenever forwarded between egress and ingress. While it makes sense to always clear the (rcv) timestamp in skb->tstamp to avoid confusing sch_fq that expects the delivery_time, it is a performance issue [0] to clear the delivery_time if the skb finally egress to a fq@phy-dev. For example, when forwarding from egress to ingress and then finally back to egress: tcp-sender => veth@netns => veth@hostns => fq@eth0@hostns ^ ^ reset rest This patch adds one bit skb->mono_delivery_time to flag the skb->tstamp is storing the mono delivery_time (EDT) instead of the (rcv) timestamp. The current use case is to keep the TCP mono delivery_time (EDT) and to be used with sch_fq. A latter patch will also allow tc-bpf@ingress to read and change the mono delivery_time. In the future, another bit (e.g. skb->user_delivery_time) can be added for the SCM_TXTIME where the clock base is tracked by sk->sk_clockid. [ This patch is a prep work. The following patches will get the other parts of the stack ready first. Then another patch after that will finally set the skb->mono_delivery_time. ] skb_set_delivery_time() function is added. It is used by the tcp_output.c and during ip[6] fragmentation to assign the delivery_time to the skb->tstamp and also set the skb->mono_delivery_time. A note on the change in ip_send_unicast_reply() in ip_output.c. It is only used by TCP to send reset/ack out of a ctl_sk. Like the new skb_set_delivery_time(), this patch sets the skb->mono_delivery_time to 0 for now as a place holder. It will be enabled in a latter patch. A similar case in tcp_ipv6 can be done with skb_set_delivery_time() in tcp_v6_send_response(). [0] (slide 22): https://linuxplumbersconf.org/event/11/contributions/953/attachments/867/1658/LPC_2021_BPF_Datapath_Extensions.pdf Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-02 11:55:25 -08:00
skb_set_delivery_time(skb2, tstamp, mono_delivery_time);
err = output(net, sk, skb2);
if (err)
goto fail;
[IPV6]: SNMPv2 "ipv6IfStatsOutFragCreates" counter error When I tested linux kernel 2.6.71.7 about statistics "ipv6IfStatsOutFragCreates", and found that it couldn't increase correctly. The criteria is RFC 2465: ipv6IfStatsOutFragCreates OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of output datagram fragments that have been generated as a result of fragmentation at this output interface." ::= { ipv6IfStatsEntry 15 } I think there are two issues in Linux kernel. 1st: RFC2465 specifies the counter is "The number of output datagram fragments...". I think increasing this counter after output a fragment successfully is better. And it should not be increased even though a fragment is created but failed to output. 2nd: If we send a big ICMP/ICMPv6 echo request to a host, and receive ICMP/ICMPv6 echo reply consisted of some fragments. As we know that in Linux kernel first fragmentation occurs in ICMP layer(maybe saying transport layer is better), but this is not the "real" fragmentation,just do some "pre-fragment" -- allocate space for date, and form a frag_list, etc. The "real" fragmentation happens in IP layer -- set offset and MF flag and so on. So I think in "fast path" for ip_fragment/ip6_fragment, if we send a fragment which "pre-fragment" by upper layer we should also increase "ipv6IfStatsOutFragCreates". Signed-off-by: Wei Dong <weid@nanjing-fnst.com> Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-08-02 13:41:21 -07:00
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
}
consume_skb(skb);
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
return err;
fail:
kfree_skb(skb);
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
return err;
}
EXPORT_SYMBOL(ip_do_fragment);
int
ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
{
struct msghdr *msg = from;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (!copy_from_iter_full(to, len, &msg->msg_iter))
return -EFAULT;
} else {
__wsum csum = 0;
if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
return -EFAULT;
skb->csum = csum_block_add(skb->csum, csum, odd);
}
return 0;
}
EXPORT_SYMBOL(ip_generic_getfrag);
static inline __wsum
csum_page(struct page *page, int offset, int copy)
{
char *kaddr;
__wsum csum;
kaddr = kmap(page);
csum = csum_partial(kaddr + offset, copy, 0);
kunmap(page);
return csum;
}
static int __ip_append_data(struct sock *sk,
struct flowi4 *fl4,
struct sk_buff_head *queue,
struct inet_cork *cork,
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
struct page_frag *pfrag,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct ubuf_info *uarg = NULL;
struct sk_buff *skb;
struct ip_options *opt = cork->opt;
int hh_len;
int exthdrlen;
int mtu;
int copy;
int err;
int offset = 0;
unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
int csummode = CHECKSUM_NONE;
struct rtable *rt = (struct rtable *)cork->dst;
unsigned int wmem_alloc_delta = 0;
bool paged, extra_uref = false;
u32 tskey = 0;
skb = skb_peek_tail(queue);
exthdrlen = !skb ? rt->dst.header_len : 0;
udp: generate gso with UDP_SEGMENT Support generic segmentation offload for udp datagrams. Callers can concatenate and send at once the payload of multiple datagrams with the same destination. To set segment size, the caller sets socket option UDP_SEGMENT to the length of each discrete payload. This value must be smaller than or equal to the relevant MTU. A follow-up patch adds cmsg UDP_SEGMENT to specify segment size on a per send call basis. Total byte length may then exceed MTU. If not an exact multiple of segment size, the last segment will be shorter. The implementation adds a gso_size field to the udp socket, ip(v6) cmsg cookie and inet_cork structure to be able to set the value at setsockopt or cmsg time and to work with both lockless and corked paths. Initial benchmark numbers show UDP GSO about as expensive as TCP GSO. tcp tso 3197 MB/s 54232 msg/s 54232 calls/s 6,457,754,262 cycles tcp gso 1765 MB/s 29939 msg/s 29939 calls/s 11,203,021,806 cycles tcp without tso/gso * 739 MB/s 12548 msg/s 12548 calls/s 11,205,483,630 cycles udp 876 MB/s 14873 msg/s 624666 calls/s 11,205,777,429 cycles udp gso 2139 MB/s 36282 msg/s 36282 calls/s 11,204,374,561 cycles [*] after reverting commit 0a6b2a1dc2a2 ("tcp: switch to GSO being always on") Measured total system cycles ('-a') for one core while pinning both the network receive path and benchmark process to that core: perf stat -a -C 12 -e cycles \ ./udpgso_bench_tx -C 12 -4 -D "$DST" -l 4 Note the reduction in calls/s with GSO. Bytes per syscall drops increases from 1470 to 61818. Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-26 13:42:17 -04:00
mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
paged = !!cork->gso_size;
udp: generate gso with UDP_SEGMENT Support generic segmentation offload for udp datagrams. Callers can concatenate and send at once the payload of multiple datagrams with the same destination. To set segment size, the caller sets socket option UDP_SEGMENT to the length of each discrete payload. This value must be smaller than or equal to the relevant MTU. A follow-up patch adds cmsg UDP_SEGMENT to specify segment size on a per send call basis. Total byte length may then exceed MTU. If not an exact multiple of segment size, the last segment will be shorter. The implementation adds a gso_size field to the udp socket, ip(v6) cmsg cookie and inet_cork structure to be able to set the value at setsockopt or cmsg time and to work with both lockless and corked paths. Initial benchmark numbers show UDP GSO about as expensive as TCP GSO. tcp tso 3197 MB/s 54232 msg/s 54232 calls/s 6,457,754,262 cycles tcp gso 1765 MB/s 29939 msg/s 29939 calls/s 11,203,021,806 cycles tcp without tso/gso * 739 MB/s 12548 msg/s 12548 calls/s 11,205,483,630 cycles udp 876 MB/s 14873 msg/s 624666 calls/s 11,205,777,429 cycles udp gso 2139 MB/s 36282 msg/s 36282 calls/s 11,204,374,561 cycles [*] after reverting commit 0a6b2a1dc2a2 ("tcp: switch to GSO being always on") Measured total system cycles ('-a') for one core while pinning both the network receive path and benchmark process to that core: perf stat -a -C 12 -e cycles \ ./udpgso_bench_tx -C 12 -4 -D "$DST" -l 4 Note the reduction in calls/s with GSO. Bytes per syscall drops increases from 1470 to 61818. Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-26 13:42:17 -04:00
if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
net-timestamp: convert sk->sk_tskey to atomic_t UDP sendmsg() can be lockless, this is causing all kinds of data races. This patch converts sk->sk_tskey to remove one of these races. BUG: KCSAN: data-race in __ip_append_data / __ip_append_data read to 0xffff8881035d4b6c of 4 bytes by task 8877 on cpu 1: __ip_append_data+0x1c1/0x1de0 net/ipv4/ip_output.c:994 ip_make_skb+0x13f/0x2d0 net/ipv4/ip_output.c:1636 udp_sendmsg+0x12bd/0x14c0 net/ipv4/udp.c:1249 inet_sendmsg+0x5f/0x80 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:705 [inline] sock_sendmsg net/socket.c:725 [inline] ____sys_sendmsg+0x39a/0x510 net/socket.c:2413 ___sys_sendmsg net/socket.c:2467 [inline] __sys_sendmmsg+0x267/0x4c0 net/socket.c:2553 __do_sys_sendmmsg net/socket.c:2582 [inline] __se_sys_sendmmsg net/socket.c:2579 [inline] __x64_sys_sendmmsg+0x53/0x60 net/socket.c:2579 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881035d4b6c of 4 bytes by task 8880 on cpu 0: __ip_append_data+0x1d8/0x1de0 net/ipv4/ip_output.c:994 ip_make_skb+0x13f/0x2d0 net/ipv4/ip_output.c:1636 udp_sendmsg+0x12bd/0x14c0 net/ipv4/udp.c:1249 inet_sendmsg+0x5f/0x80 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:705 [inline] sock_sendmsg net/socket.c:725 [inline] ____sys_sendmsg+0x39a/0x510 net/socket.c:2413 ___sys_sendmsg net/socket.c:2467 [inline] __sys_sendmmsg+0x267/0x4c0 net/socket.c:2553 __do_sys_sendmmsg net/socket.c:2582 [inline] __se_sys_sendmmsg net/socket.c:2579 [inline] __x64_sys_sendmmsg+0x53/0x60 net/socket.c:2579 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0x0000054d -> 0x0000054e Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 8880 Comm: syz-executor.5 Not tainted 5.17.0-rc2-syzkaller-00167-gdcb85f85fa6f-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Fixes: 09c2d251b707 ("net-timestamp: add key to disambiguate concurrent datagrams") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-17 09:05:02 -08:00
tskey = atomic_inc_return(&sk->sk_tskey) - 1;
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
if (cork->length + length > maxnonfragsize - fragheaderlen) {
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
mtu - (opt ? opt->optlen : 0));
return -EMSGSIZE;
}
/*
* transhdrlen > 0 means that this is the first fragment and we wish
* it won't be fragmented in the future.
*/
if (transhdrlen &&
length + fragheaderlen <= mtu &&
rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
udp: generate gso with UDP_SEGMENT Support generic segmentation offload for udp datagrams. Callers can concatenate and send at once the payload of multiple datagrams with the same destination. To set segment size, the caller sets socket option UDP_SEGMENT to the length of each discrete payload. This value must be smaller than or equal to the relevant MTU. A follow-up patch adds cmsg UDP_SEGMENT to specify segment size on a per send call basis. Total byte length may then exceed MTU. If not an exact multiple of segment size, the last segment will be shorter. The implementation adds a gso_size field to the udp socket, ip(v6) cmsg cookie and inet_cork structure to be able to set the value at setsockopt or cmsg time and to work with both lockless and corked paths. Initial benchmark numbers show UDP GSO about as expensive as TCP GSO. tcp tso 3197 MB/s 54232 msg/s 54232 calls/s 6,457,754,262 cycles tcp gso 1765 MB/s 29939 msg/s 29939 calls/s 11,203,021,806 cycles tcp without tso/gso * 739 MB/s 12548 msg/s 12548 calls/s 11,205,483,630 cycles udp 876 MB/s 14873 msg/s 624666 calls/s 11,205,777,429 cycles udp gso 2139 MB/s 36282 msg/s 36282 calls/s 11,204,374,561 cycles [*] after reverting commit 0a6b2a1dc2a2 ("tcp: switch to GSO being always on") Measured total system cycles ('-a') for one core while pinning both the network receive path and benchmark process to that core: perf stat -a -C 12 -e cycles \ ./udpgso_bench_tx -C 12 -4 -D "$DST" -l 4 Note the reduction in calls/s with GSO. Bytes per syscall drops increases from 1470 to 61818. Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-26 13:42:17 -04:00
(!(flags & MSG_MORE) || cork->gso_size) &&
(!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
csummode = CHECKSUM_PARTIAL;
if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb));
if (!uarg)
return -ENOBUFS;
extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
if (rt->dst.dev->features & NETIF_F_SG &&
csummode == CHECKSUM_PARTIAL) {
paged = true;
} else {
uarg->zerocopy = 0;
skb_zcopy_set(skb, uarg, &extra_uref);
}
}
cork->length += length;
/* So, what's going on in the loop below?
*
* We use calculated fragment length to generate chained skb,
* each of segments is IP fragment ready for sending to network after
* adding appropriate IP header.
*/
if (!skb)
goto alloc_new_skb;
while (length > 0) {
/* Check if the remaining data fits into current packet. */
copy = mtu - skb->len;
if (copy < length)
copy = maxfraglen - skb->len;
if (copy <= 0) {
char *data;
unsigned int datalen;
unsigned int fraglen;
unsigned int fraggap;
unsigned int alloclen, alloc_extra;
unsigned int pagedlen;
struct sk_buff *skb_prev;
alloc_new_skb:
skb_prev = skb;
if (skb_prev)
fraggap = skb_prev->len - maxfraglen;
else
fraggap = 0;
/*
* If remaining data exceeds the mtu,
* we know we need more fragment(s).
*/
datalen = length + fraggap;
if (datalen > mtu - fragheaderlen)
datalen = maxfraglen - fragheaderlen;
fraglen = datalen + fragheaderlen;
pagedlen = 0;
alloc_extra = hh_len + 15;
alloc_extra += exthdrlen;
/* The last fragment gets additional space at tail.
* Note, with MSG_MORE we overallocate on fragments,
* because we have no idea what fragment will be
* the last.
*/
if (datalen == length + fraggap)
alloc_extra += rt->dst.trailer_len;
if ((flags & MSG_MORE) &&
!(rt->dst.dev->features&NETIF_F_SG))
alloclen = mtu;
else if (!paged &&
(fraglen + alloc_extra < SKB_MAX_ALLOC ||
!(rt->dst.dev->features & NETIF_F_SG)))
alloclen = fraglen;
else {
alloclen = min_t(int, fraglen, MAX_HEADER);
pagedlen = fraglen - alloclen;
}
alloclen += alloc_extra;
if (transhdrlen) {
skb = sock_alloc_send_skb(sk, alloclen,
(flags & MSG_DONTWAIT), &err);
} else {
skb = NULL;
if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
2 * sk->sk_sndbuf)
skb = alloc_skb(alloclen,
sk->sk_allocation);
if (unlikely(!skb))
err = -ENOBUFS;
}
if (!skb)
goto error;
/*
* Fill in the control structures
*/
skb->ip_summed = csummode;
skb->csum = 0;
skb_reserve(skb, hh_len);
/*
* Find where to start putting bytes.
*/
data = skb_put(skb, fraglen + exthdrlen - pagedlen);
skb_set_network_header(skb, exthdrlen);
skb->transport_header = (skb->network_header +
fragheaderlen);
data += fragheaderlen + exthdrlen;
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(
skb_prev, maxfraglen,
data + transhdrlen, fraggap);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
data += fraggap;
pskb_trim_unique(skb_prev, maxfraglen);
}
copy = datalen - transhdrlen - fraggap - pagedlen;
if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
err = -EFAULT;
kfree_skb(skb);
goto error;
}
offset += copy;
length -= copy + transhdrlen;
transhdrlen = 0;
exthdrlen = 0;
csummode = CHECKSUM_NONE;
/* only the initial fragment is time stamped */
skb_shinfo(skb)->tx_flags = cork->tx_flags;
cork->tx_flags = 0;
skb_shinfo(skb)->tskey = tskey;
tskey = 0;
skb_zcopy_set(skb, uarg, &extra_uref);
if ((flags & MSG_CONFIRM) && !skb_prev)
skb_set_dst_pending_confirm(skb, 1);
/*
* Put the packet on the pending queue.
*/
if (!skb->destructor) {
skb->destructor = sock_wfree;
skb->sk = sk;
wmem_alloc_delta += skb->truesize;
}
__skb_queue_tail(queue, skb);
continue;
}
if (copy > length)
copy = length;
if (!(rt->dst.dev->features&NETIF_F_SG) &&
skb_tailroom(skb) >= copy) {
unsigned int off;
off = skb->len;
if (getfrag(from, skb_put(skb, copy),
offset, copy, off, skb) < 0) {
__skb_trim(skb, off);
err = -EFAULT;
goto error;
}
} else if (!uarg || !uarg->zerocopy) {
int i = skb_shinfo(skb)->nr_frags;
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
err = -ENOMEM;
if (!sk_page_frag_refill(sk, pfrag))
goto error;
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
if (!skb_can_coalesce(skb, i, pfrag->page,
pfrag->offset)) {
err = -EMSGSIZE;
if (i == MAX_SKB_FRAGS)
goto error;
__skb_fill_page_desc(skb, i, pfrag->page,
pfrag->offset, 0);
skb_shinfo(skb)->nr_frags = ++i;
get_page(pfrag->page);
}
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
copy = min_t(int, copy, pfrag->size - pfrag->offset);
if (getfrag(from,
page_address(pfrag->page) + pfrag->offset,
offset, copy, skb->len, skb) < 0)
goto error_efault;
pfrag->offset += copy;
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
wmem_alloc_delta += copy;
} else {
err = skb_zerocopy_iter_dgram(skb, from, copy);
if (err < 0)
goto error;
}
offset += copy;
length -= copy;
}
if (wmem_alloc_delta)
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
return 0;
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
error_efault:
err = -EFAULT;
error:
net_zcopy_put_abort(uarg, extra_uref);
cork->length -= length;
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
return err;
}
static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
struct ipcm_cookie *ipc, struct rtable **rtp)
{
struct ip_options_rcu *opt;
struct rtable *rt;
rt = *rtp;
if (unlikely(!rt))
return -EFAULT;
/*
* setup for corking.
*/
opt = ipc->opt;
if (opt) {
if (!cork->opt) {
cork->opt = kmalloc(sizeof(struct ip_options) + 40,
sk->sk_allocation);
if (unlikely(!cork->opt))
return -ENOBUFS;
}
memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
cork->flags |= IPCORK_OPT;
cork->addr = ipc->addr;
}
ipv4: introduce new IP_MTU_DISCOVER mode IP_PMTUDISC_INTERFACE Sockets marked with IP_PMTUDISC_INTERFACE won't do path mtu discovery, their sockets won't accept and install new path mtu information and they will always use the interface mtu for outgoing packets. It is guaranteed that the packet is not fragmented locally. But we won't set the DF-Flag on the outgoing frames. Florian Weimer had the idea to use this flag to ensure DNS servers are never generating outgoing fragments. They may well be fragmented on the path, but the server never stores or usees path mtu values, which could well be forged in an attack. (The root of the problem with path MTU discovery is that there is no reliable way to authenticate ICMP Fragmentation Needed But DF Set messages because they are sent from intermediate routers with their source addresses, and the IMCP payload will not always contain sufficient information to identify a flow.) Recent research in the DNS community showed that it is possible to implement an attack where DNS cache poisoning is feasible by spoofing fragments. This work was done by Amir Herzberg and Haya Shulman: <https://sites.google.com/site/hayashulman/files/fragmentation-poisoning.pdf> This issue was previously discussed among the DNS community, e.g. <http://www.ietf.org/mail-archive/web/dnsext/current/msg01204.html>, without leading to fixes. This patch depends on the patch "ipv4: fix DO and PROBE pmtu mode regarding local fragmentation with UFO/CORK" for the enforcement of the non-fragmentable checks. If other users than ip_append_page/data should use this semantic too, we have to add a new flag to IPCB(skb)->flags to suppress local fragmentation and check for this in ip_finish_output. Many thanks to Florian Weimer for the idea and feedback while implementing this patch. Cc: David S. Miller <davem@davemloft.net> Suggested-by: Florian Weimer <fweimer@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-05 02:24:17 +01:00
cork->fragsize = ip_sk_use_pmtu(sk) ?
inet: protect against too small mtu values. syzbot was once again able to crash a host by setting a very small mtu on loopback device. Let's make inetdev_valid_mtu() available in include/net/ip.h, and use it in ip_setup_cork(), so that we protect both ip_append_page() and __ip_append_data() Also add a READ_ONCE() when the device mtu is read. Pairs this lockless read with one WRITE_ONCE() in __dev_set_mtu(), even if other code paths might write over this field. Add a big comment in include/linux/netdevice.h about dev->mtu needing READ_ONCE()/WRITE_ONCE() annotations. Hopefully we will add the missing ones in followup patches. [1] refcount_t: saturated; leaking memory. WARNING: CPU: 0 PID: 9464 at lib/refcount.c:22 refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22 Kernel panic - not syncing: panic_on_warn set ... CPU: 0 PID: 9464 Comm: syz-executor850 Not tainted 5.4.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x197/0x210 lib/dump_stack.c:118 panic+0x2e3/0x75c kernel/panic.c:221 __warn.cold+0x2f/0x3e kernel/panic.c:582 report_bug+0x289/0x300 lib/bug.c:195 fixup_bug arch/x86/kernel/traps.c:174 [inline] fixup_bug arch/x86/kernel/traps.c:169 [inline] do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:267 do_invalid_op+0x37/0x50 arch/x86/kernel/traps.c:286 invalid_op+0x23/0x30 arch/x86/entry/entry_64.S:1027 RIP: 0010:refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22 Code: 06 31 ff 89 de e8 c8 f5 e6 fd 84 db 0f 85 6f ff ff ff e8 7b f4 e6 fd 48 c7 c7 e0 71 4f 88 c6 05 56 a6 a4 06 01 e8 c7 a8 b7 fd <0f> 0b e9 50 ff ff ff e8 5c f4 e6 fd 0f b6 1d 3d a6 a4 06 31 ff 89 RSP: 0018:ffff88809689f550 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff815e4336 RDI: ffffed1012d13e9c RBP: ffff88809689f560 R08: ffff88809c50a3c0 R09: fffffbfff15d31b1 R10: fffffbfff15d31b0 R11: ffffffff8ae98d87 R12: 0000000000000001 R13: 0000000000040100 R14: ffff888099041104 R15: ffff888218d96e40 refcount_add include/linux/refcount.h:193 [inline] skb_set_owner_w+0x2b6/0x410 net/core/sock.c:1999 sock_wmalloc+0xf1/0x120 net/core/sock.c:2096 ip_append_page+0x7ef/0x1190 net/ipv4/ip_output.c:1383 udp_sendpage+0x1c7/0x480 net/ipv4/udp.c:1276 inet_sendpage+0xdb/0x150 net/ipv4/af_inet.c:821 kernel_sendpage+0x92/0xf0 net/socket.c:3794 sock_sendpage+0x8b/0xc0 net/socket.c:936 pipe_to_sendpage+0x2da/0x3c0 fs/splice.c:458 splice_from_pipe_feed fs/splice.c:512 [inline] __splice_from_pipe+0x3ee/0x7c0 fs/splice.c:636 splice_from_pipe+0x108/0x170 fs/splice.c:671 generic_splice_sendpage+0x3c/0x50 fs/splice.c:842 do_splice_from fs/splice.c:861 [inline] direct_splice_actor+0x123/0x190 fs/splice.c:1035 splice_direct_to_actor+0x3b4/0xa30 fs/splice.c:990 do_splice_direct+0x1da/0x2a0 fs/splice.c:1078 do_sendfile+0x597/0xd00 fs/read_write.c:1464 __do_sys_sendfile64 fs/read_write.c:1525 [inline] __se_sys_sendfile64 fs/read_write.c:1511 [inline] __x64_sys_sendfile64+0x1dd/0x220 fs/read_write.c:1511 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x441409 Code: e8 ac e8 ff ff 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fffb64c4f78 EFLAGS: 00000246 ORIG_RAX: 0000000000000028 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000441409 RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000005 RBP: 0000000000073b8a R08: 0000000000000010 R09: 0000000000000010 R10: 0000000000010001 R11: 0000000000000246 R12: 0000000000402180 R13: 0000000000402210 R14: 0000000000000000 R15: 0000000000000000 Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 1470ddf7f8ce ("inet: Remove explicit write references to sk/inet in ip_append_data") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-05 20:43:46 -08:00
dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
if (!inetdev_valid_mtu(cork->fragsize))
return -ENETUNREACH;
udp: generate gso with UDP_SEGMENT Support generic segmentation offload for udp datagrams. Callers can concatenate and send at once the payload of multiple datagrams with the same destination. To set segment size, the caller sets socket option UDP_SEGMENT to the length of each discrete payload. This value must be smaller than or equal to the relevant MTU. A follow-up patch adds cmsg UDP_SEGMENT to specify segment size on a per send call basis. Total byte length may then exceed MTU. If not an exact multiple of segment size, the last segment will be shorter. The implementation adds a gso_size field to the udp socket, ip(v6) cmsg cookie and inet_cork structure to be able to set the value at setsockopt or cmsg time and to work with both lockless and corked paths. Initial benchmark numbers show UDP GSO about as expensive as TCP GSO. tcp tso 3197 MB/s 54232 msg/s 54232 calls/s 6,457,754,262 cycles tcp gso 1765 MB/s 29939 msg/s 29939 calls/s 11,203,021,806 cycles tcp without tso/gso * 739 MB/s 12548 msg/s 12548 calls/s 11,205,483,630 cycles udp 876 MB/s 14873 msg/s 624666 calls/s 11,205,777,429 cycles udp gso 2139 MB/s 36282 msg/s 36282 calls/s 11,204,374,561 cycles [*] after reverting commit 0a6b2a1dc2a2 ("tcp: switch to GSO being always on") Measured total system cycles ('-a') for one core while pinning both the network receive path and benchmark process to that core: perf stat -a -C 12 -e cycles \ ./udpgso_bench_tx -C 12 -4 -D "$DST" -l 4 Note the reduction in calls/s with GSO. Bytes per syscall drops increases from 1470 to 61818. Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-26 13:42:17 -04:00
cork->gso_size = ipc->gso_size;
inet: protect against too small mtu values. syzbot was once again able to crash a host by setting a very small mtu on loopback device. Let's make inetdev_valid_mtu() available in include/net/ip.h, and use it in ip_setup_cork(), so that we protect both ip_append_page() and __ip_append_data() Also add a READ_ONCE() when the device mtu is read. Pairs this lockless read with one WRITE_ONCE() in __dev_set_mtu(), even if other code paths might write over this field. Add a big comment in include/linux/netdevice.h about dev->mtu needing READ_ONCE()/WRITE_ONCE() annotations. Hopefully we will add the missing ones in followup patches. [1] refcount_t: saturated; leaking memory. WARNING: CPU: 0 PID: 9464 at lib/refcount.c:22 refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22 Kernel panic - not syncing: panic_on_warn set ... CPU: 0 PID: 9464 Comm: syz-executor850 Not tainted 5.4.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x197/0x210 lib/dump_stack.c:118 panic+0x2e3/0x75c kernel/panic.c:221 __warn.cold+0x2f/0x3e kernel/panic.c:582 report_bug+0x289/0x300 lib/bug.c:195 fixup_bug arch/x86/kernel/traps.c:174 [inline] fixup_bug arch/x86/kernel/traps.c:169 [inline] do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:267 do_invalid_op+0x37/0x50 arch/x86/kernel/traps.c:286 invalid_op+0x23/0x30 arch/x86/entry/entry_64.S:1027 RIP: 0010:refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22 Code: 06 31 ff 89 de e8 c8 f5 e6 fd 84 db 0f 85 6f ff ff ff e8 7b f4 e6 fd 48 c7 c7 e0 71 4f 88 c6 05 56 a6 a4 06 01 e8 c7 a8 b7 fd <0f> 0b e9 50 ff ff ff e8 5c f4 e6 fd 0f b6 1d 3d a6 a4 06 31 ff 89 RSP: 0018:ffff88809689f550 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff815e4336 RDI: ffffed1012d13e9c RBP: ffff88809689f560 R08: ffff88809c50a3c0 R09: fffffbfff15d31b1 R10: fffffbfff15d31b0 R11: ffffffff8ae98d87 R12: 0000000000000001 R13: 0000000000040100 R14: ffff888099041104 R15: ffff888218d96e40 refcount_add include/linux/refcount.h:193 [inline] skb_set_owner_w+0x2b6/0x410 net/core/sock.c:1999 sock_wmalloc+0xf1/0x120 net/core/sock.c:2096 ip_append_page+0x7ef/0x1190 net/ipv4/ip_output.c:1383 udp_sendpage+0x1c7/0x480 net/ipv4/udp.c:1276 inet_sendpage+0xdb/0x150 net/ipv4/af_inet.c:821 kernel_sendpage+0x92/0xf0 net/socket.c:3794 sock_sendpage+0x8b/0xc0 net/socket.c:936 pipe_to_sendpage+0x2da/0x3c0 fs/splice.c:458 splice_from_pipe_feed fs/splice.c:512 [inline] __splice_from_pipe+0x3ee/0x7c0 fs/splice.c:636 splice_from_pipe+0x108/0x170 fs/splice.c:671 generic_splice_sendpage+0x3c/0x50 fs/splice.c:842 do_splice_from fs/splice.c:861 [inline] direct_splice_actor+0x123/0x190 fs/splice.c:1035 splice_direct_to_actor+0x3b4/0xa30 fs/splice.c:990 do_splice_direct+0x1da/0x2a0 fs/splice.c:1078 do_sendfile+0x597/0xd00 fs/read_write.c:1464 __do_sys_sendfile64 fs/read_write.c:1525 [inline] __se_sys_sendfile64 fs/read_write.c:1511 [inline] __x64_sys_sendfile64+0x1dd/0x220 fs/read_write.c:1511 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x441409 Code: e8 ac e8 ff ff 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fffb64c4f78 EFLAGS: 00000246 ORIG_RAX: 0000000000000028 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000441409 RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000005 RBP: 0000000000073b8a R08: 0000000000000010 R09: 0000000000000010 R10: 0000000000010001 R11: 0000000000000246 R12: 0000000000402180 R13: 0000000000402210 R14: 0000000000000000 R15: 0000000000000000 Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 1470ddf7f8ce ("inet: Remove explicit write references to sk/inet in ip_append_data") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-05 20:43:46 -08:00
cork->dst = &rt->dst;
inet: protect against too small mtu values. syzbot was once again able to crash a host by setting a very small mtu on loopback device. Let's make inetdev_valid_mtu() available in include/net/ip.h, and use it in ip_setup_cork(), so that we protect both ip_append_page() and __ip_append_data() Also add a READ_ONCE() when the device mtu is read. Pairs this lockless read with one WRITE_ONCE() in __dev_set_mtu(), even if other code paths might write over this field. Add a big comment in include/linux/netdevice.h about dev->mtu needing READ_ONCE()/WRITE_ONCE() annotations. Hopefully we will add the missing ones in followup patches. [1] refcount_t: saturated; leaking memory. WARNING: CPU: 0 PID: 9464 at lib/refcount.c:22 refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22 Kernel panic - not syncing: panic_on_warn set ... CPU: 0 PID: 9464 Comm: syz-executor850 Not tainted 5.4.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x197/0x210 lib/dump_stack.c:118 panic+0x2e3/0x75c kernel/panic.c:221 __warn.cold+0x2f/0x3e kernel/panic.c:582 report_bug+0x289/0x300 lib/bug.c:195 fixup_bug arch/x86/kernel/traps.c:174 [inline] fixup_bug arch/x86/kernel/traps.c:169 [inline] do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:267 do_invalid_op+0x37/0x50 arch/x86/kernel/traps.c:286 invalid_op+0x23/0x30 arch/x86/entry/entry_64.S:1027 RIP: 0010:refcount_warn_saturate+0x138/0x1f0 lib/refcount.c:22 Code: 06 31 ff 89 de e8 c8 f5 e6 fd 84 db 0f 85 6f ff ff ff e8 7b f4 e6 fd 48 c7 c7 e0 71 4f 88 c6 05 56 a6 a4 06 01 e8 c7 a8 b7 fd <0f> 0b e9 50 ff ff ff e8 5c f4 e6 fd 0f b6 1d 3d a6 a4 06 31 ff 89 RSP: 0018:ffff88809689f550 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff815e4336 RDI: ffffed1012d13e9c RBP: ffff88809689f560 R08: ffff88809c50a3c0 R09: fffffbfff15d31b1 R10: fffffbfff15d31b0 R11: ffffffff8ae98d87 R12: 0000000000000001 R13: 0000000000040100 R14: ffff888099041104 R15: ffff888218d96e40 refcount_add include/linux/refcount.h:193 [inline] skb_set_owner_w+0x2b6/0x410 net/core/sock.c:1999 sock_wmalloc+0xf1/0x120 net/core/sock.c:2096 ip_append_page+0x7ef/0x1190 net/ipv4/ip_output.c:1383 udp_sendpage+0x1c7/0x480 net/ipv4/udp.c:1276 inet_sendpage+0xdb/0x150 net/ipv4/af_inet.c:821 kernel_sendpage+0x92/0xf0 net/socket.c:3794 sock_sendpage+0x8b/0xc0 net/socket.c:936 pipe_to_sendpage+0x2da/0x3c0 fs/splice.c:458 splice_from_pipe_feed fs/splice.c:512 [inline] __splice_from_pipe+0x3ee/0x7c0 fs/splice.c:636 splice_from_pipe+0x108/0x170 fs/splice.c:671 generic_splice_sendpage+0x3c/0x50 fs/splice.c:842 do_splice_from fs/splice.c:861 [inline] direct_splice_actor+0x123/0x190 fs/splice.c:1035 splice_direct_to_actor+0x3b4/0xa30 fs/splice.c:990 do_splice_direct+0x1da/0x2a0 fs/splice.c:1078 do_sendfile+0x597/0xd00 fs/read_write.c:1464 __do_sys_sendfile64 fs/read_write.c:1525 [inline] __se_sys_sendfile64 fs/read_write.c:1511 [inline] __x64_sys_sendfile64+0x1dd/0x220 fs/read_write.c:1511 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x441409 Code: e8 ac e8 ff ff 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fffb64c4f78 EFLAGS: 00000246 ORIG_RAX: 0000000000000028 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000441409 RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000005 RBP: 0000000000073b8a R08: 0000000000000010 R09: 0000000000000010 R10: 0000000000010001 R11: 0000000000000246 R12: 0000000000402180 R13: 0000000000402210 R14: 0000000000000000 R15: 0000000000000000 Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 1470ddf7f8ce ("inet: Remove explicit write references to sk/inet in ip_append_data") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-05 20:43:46 -08:00
/* We stole this route, caller should not release it. */
*rtp = NULL;
cork->length = 0;
cork->ttl = ipc->ttl;
cork->tos = ipc->tos;
cork->mark = ipc->sockc.mark;
cork->priority = ipc->priority;
cork->transmit_time = ipc->sockc.transmit_time;
cork->tx_flags = 0;
sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
return 0;
}
/*
* ip_append_data() and ip_append_page() can make one large IP datagram
* from many pieces of data. Each pieces will be holded on the socket
* until ip_push_pending_frames() is called. Each piece can be a page
* or non-page data.
*
* Not only UDP, other transport protocols - e.g. raw sockets - can use
* this interface potentially.
*
* LATER: length must be adjusted by pad at tail, when it is required.
*/
int ip_append_data(struct sock *sk, struct flowi4 *fl4,
int getfrag(void *from, char *to, int offset, int len,
int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm_cookie *ipc, struct rtable **rtp,
unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
int err;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue)) {
err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
if (err)
return err;
} else {
transhdrlen = 0;
}
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
sk_page_frag(sk), getfrag,
from, length, transhdrlen, flags);
}
ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
int offset, size_t size, int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct sk_buff *skb;
struct rtable *rt;
struct ip_options *opt = NULL;
struct inet_cork *cork;
int hh_len;
int mtu;
int len;
int err;
unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
if (inet->hdrincl)
return -EPERM;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue))
return -EINVAL;
cork = &inet->cork.base;
rt = (struct rtable *)cork->dst;
if (cork->flags & IPCORK_OPT)
opt = cork->opt;
if (!(rt->dst.dev->features & NETIF_F_SG))
return -EOPNOTSUPP;
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
udp: generate gso with UDP_SEGMENT Support generic segmentation offload for udp datagrams. Callers can concatenate and send at once the payload of multiple datagrams with the same destination. To set segment size, the caller sets socket option UDP_SEGMENT to the length of each discrete payload. This value must be smaller than or equal to the relevant MTU. A follow-up patch adds cmsg UDP_SEGMENT to specify segment size on a per send call basis. Total byte length may then exceed MTU. If not an exact multiple of segment size, the last segment will be shorter. The implementation adds a gso_size field to the udp socket, ip(v6) cmsg cookie and inet_cork structure to be able to set the value at setsockopt or cmsg time and to work with both lockless and corked paths. Initial benchmark numbers show UDP GSO about as expensive as TCP GSO. tcp tso 3197 MB/s 54232 msg/s 54232 calls/s 6,457,754,262 cycles tcp gso 1765 MB/s 29939 msg/s 29939 calls/s 11,203,021,806 cycles tcp without tso/gso * 739 MB/s 12548 msg/s 12548 calls/s 11,205,483,630 cycles udp 876 MB/s 14873 msg/s 624666 calls/s 11,205,777,429 cycles udp gso 2139 MB/s 36282 msg/s 36282 calls/s 11,204,374,561 cycles [*] after reverting commit 0a6b2a1dc2a2 ("tcp: switch to GSO being always on") Measured total system cycles ('-a') for one core while pinning both the network receive path and benchmark process to that core: perf stat -a -C 12 -e cycles \ ./udpgso_bench_tx -C 12 -4 -D "$DST" -l 4 Note the reduction in calls/s with GSO. Bytes per syscall drops increases from 1470 to 61818. Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-26 13:42:17 -04:00
mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
if (cork->length + size > maxnonfragsize - fragheaderlen) {
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
mtu - (opt ? opt->optlen : 0));
return -EMSGSIZE;
}
skb = skb_peek_tail(&sk->sk_write_queue);
if (!skb)
return -EINVAL;
cork->length += size;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 15:46:41 -07:00
while (size > 0) {
/* Check if the remaining data fits into current packet. */
len = mtu - skb->len;
if (len < size)
len = maxfraglen - skb->len;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 15:46:41 -07:00
if (len <= 0) {
struct sk_buff *skb_prev;
int alloclen;
skb_prev = skb;
fraggap = skb_prev->len - maxfraglen;
alloclen = fragheaderlen + hh_len + fraggap + 15;
skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
if (unlikely(!skb)) {
err = -ENOBUFS;
goto error;
}
/*
* Fill in the control structures
*/
skb->ip_summed = CHECKSUM_NONE;
skb->csum = 0;
skb_reserve(skb, hh_len);
/*
* Find where to start putting bytes.
*/
skb_put(skb, fragheaderlen + fraggap);
skb_reset_network_header(skb);
skb->transport_header = (skb->network_header +
fragheaderlen);
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(skb_prev,
maxfraglen,
skb_transport_header(skb),
fraggap);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
pskb_trim_unique(skb_prev, maxfraglen);
}
/*
* Put the packet on the pending queue.
*/
__skb_queue_tail(&sk->sk_write_queue, skb);
continue;
}
if (len > size)
len = size;
if (skb_append_pagefrags(skb, page, offset, len)) {
err = -EMSGSIZE;
goto error;
}
if (skb->ip_summed == CHECKSUM_NONE) {
__wsum csum;
csum = csum_page(page, offset, len);
skb->csum = csum_block_add(skb->csum, csum, skb->len);
}
skb->len += len;
skb->data_len += len;
skb->truesize += len;
refcount_add(len, &sk->sk_wmem_alloc);
offset += len;
size -= len;
}
return 0;
error:
cork->length -= size;
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
return err;
}
static void ip_cork_release(struct inet_cork *cork)
{
cork->flags &= ~IPCORK_OPT;
kfree(cork->opt);
cork->opt = NULL;
dst_release(cork->dst);
cork->dst = NULL;
}
/*
* Combined all pending IP fragments on the socket as one IP datagram
* and push them out.
*/
struct sk_buff *__ip_make_skb(struct sock *sk,
struct flowi4 *fl4,
struct sk_buff_head *queue,
struct inet_cork *cork)
{
struct sk_buff *skb, *tmp_skb;
struct sk_buff **tail_skb;
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
struct ip_options *opt = NULL;
struct rtable *rt = (struct rtable *)cork->dst;
struct iphdr *iph;
__be16 df = 0;
__u8 ttl;
skb = __skb_dequeue(queue);
if (!skb)
goto out;
tail_skb = &(skb_shinfo(skb)->frag_list);
/* move skb->data to ip header from ext header */
if (skb->data < skb_network_header(skb))
__skb_pull(skb, skb_network_offset(skb));
while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
__skb_pull(tmp_skb, skb_network_header_len(skb));
*tail_skb = tmp_skb;
tail_skb = &(tmp_skb->next);
skb->len += tmp_skb->len;
skb->data_len += tmp_skb->len;
skb->truesize += tmp_skb->truesize;
tmp_skb->destructor = NULL;
tmp_skb->sk = NULL;
}
/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
* to fragment the frame generated here. No matter, what transforms
* how transforms change size of the packet, it will come out.
*/
skb->ignore_df = ip_sk_ignore_df(sk);
/* DF bit is set when we want to see DF on outgoing frames.
* If ignore_df is set too, we still allow to fragment this frame
* locally. */
ipv4: introduce new IP_MTU_DISCOVER mode IP_PMTUDISC_INTERFACE Sockets marked with IP_PMTUDISC_INTERFACE won't do path mtu discovery, their sockets won't accept and install new path mtu information and they will always use the interface mtu for outgoing packets. It is guaranteed that the packet is not fragmented locally. But we won't set the DF-Flag on the outgoing frames. Florian Weimer had the idea to use this flag to ensure DNS servers are never generating outgoing fragments. They may well be fragmented on the path, but the server never stores or usees path mtu values, which could well be forged in an attack. (The root of the problem with path MTU discovery is that there is no reliable way to authenticate ICMP Fragmentation Needed But DF Set messages because they are sent from intermediate routers with their source addresses, and the IMCP payload will not always contain sufficient information to identify a flow.) Recent research in the DNS community showed that it is possible to implement an attack where DNS cache poisoning is feasible by spoofing fragments. This work was done by Amir Herzberg and Haya Shulman: <https://sites.google.com/site/hayashulman/files/fragmentation-poisoning.pdf> This issue was previously discussed among the DNS community, e.g. <http://www.ietf.org/mail-archive/web/dnsext/current/msg01204.html>, without leading to fixes. This patch depends on the patch "ipv4: fix DO and PROBE pmtu mode regarding local fragmentation with UFO/CORK" for the enforcement of the non-fragmentable checks. If other users than ip_append_page/data should use this semantic too, we have to add a new flag to IPCB(skb)->flags to suppress local fragmentation and check for this in ip_finish_output. Many thanks to Florian Weimer for the idea and feedback while implementing this patch. Cc: David S. Miller <davem@davemloft.net> Suggested-by: Florian Weimer <fweimer@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-05 02:24:17 +01:00
if (inet->pmtudisc == IP_PMTUDISC_DO ||
inet->pmtudisc == IP_PMTUDISC_PROBE ||
(skb->len <= dst_mtu(&rt->dst) &&
ip_dont_fragment(sk, &rt->dst)))
df = htons(IP_DF);
if (cork->flags & IPCORK_OPT)
opt = cork->opt;
if (cork->ttl != 0)
ttl = cork->ttl;
else if (rt->rt_type == RTN_MULTICAST)
ttl = inet->mc_ttl;
else
ttl = ip_select_ttl(inet, &rt->dst);
iph = ip_hdr(skb);
iph->version = 4;
iph->ihl = 5;
iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
iph->frag_off = df;
iph->ttl = ttl;
iph->protocol = sk->sk_protocol;
ip_copy_addrs(iph, fl4);
ip_select_ident(net, skb, sk);
if (opt) {
iph->ihl += opt->optlen >> 2;
ip_options_build(skb, opt, cork->addr, rt);
}
skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
skb->mark = cork->mark;
skb->tstamp = cork->transmit_time;
/*
* Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
* on dst refcount
*/
cork->dst = NULL;
skb_dst_set(skb, &rt->dst);
if (iph->protocol == IPPROTO_ICMP)
icmp_out_count(net, ((struct icmphdr *)
skb_transport_header(skb))->type);
ip_cork_release(cork);
out:
return skb;
}
int ip_send_skb(struct net *net, struct sk_buff *skb)
{
int err;
err = ip_local_out(net, skb->sk, skb);
if (err) {
if (err > 0)
err = net_xmit_errno(err);
if (err)
IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
}
return err;
}
int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
{
struct sk_buff *skb;
skb = ip_finish_skb(sk, fl4);
if (!skb)
return 0;
/* Netfilter gets whole the not fragmented skb. */
return ip_send_skb(sock_net(sk), skb);
}
/*
* Throw away all pending data on the socket.
*/
static void __ip_flush_pending_frames(struct sock *sk,
struct sk_buff_head *queue,
struct inet_cork *cork)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue_tail(queue)) != NULL)
kfree_skb(skb);
ip_cork_release(cork);
}
void ip_flush_pending_frames(struct sock *sk)
{
__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
}
struct sk_buff *ip_make_skb(struct sock *sk,
struct flowi4 *fl4,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm_cookie *ipc, struct rtable **rtp,
struct inet_cork *cork, unsigned int flags)
{
struct sk_buff_head queue;
int err;
if (flags & MSG_PROBE)
return NULL;
__skb_queue_head_init(&queue);
cork->flags = 0;
cork->addr = 0;
cork->opt = NULL;
err = ip_setup_cork(sk, cork, ipc, rtp);
if (err)
return ERR_PTR(err);
err = __ip_append_data(sk, fl4, &queue, cork,
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
&current->task_frag, getfrag,
from, length, transhdrlen, flags);
if (err) {
__ip_flush_pending_frames(sk, &queue, cork);
return ERR_PTR(err);
}
return __ip_make_skb(sk, fl4, &queue, cork);
}
/*
* Fetch data from kernel space and fill in checksum if needed.
*/
static int ip_reply_glue_bits(void *dptr, char *to, int offset,
int len, int odd, struct sk_buff *skb)
{
__wsum csum;
csum = csum_partial_copy_nocheck(dptr+offset, to, len);
skb->csum = csum_block_add(skb->csum, csum, odd);
return 0;
}
/*
* Generic function to send a packet as reply to another packet.
* Used to send some TCP resets/acks so far.
*/
void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
const struct ip_options *sopt,
__be32 daddr, __be32 saddr,
const struct ip_reply_arg *arg,
unsigned int len, u64 transmit_time)
{
struct ip_options_data replyopts;
struct ipcm_cookie ipc;
struct flowi4 fl4;
struct rtable *rt = skb_rtable(skb);
struct net *net = sock_net(sk);
struct sk_buff *nskb;
int err;
int oif;
if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
return;
ipcm_init(&ipc);
ipc.addr = daddr;
ipc.sockc.transmit_time = transmit_time;
if (replyopts.opt.opt.optlen) {
ipc.opt = &replyopts.opt;
if (replyopts.opt.opt.srr)
daddr = replyopts.opt.opt.faddr;
}
oif = arg->bound_dev_if;
if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
oif = skb->skb_iif;
flowi4_init_output(&fl4, oif,
IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
RT_TOS(arg->tos),
RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
ip_reply_arg_flowi_flags(arg),
daddr, saddr,
tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
arg->uid);
security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
rt = ip_route_output_key(net, &fl4);
if (IS_ERR(rt))
return;
inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
sk->sk_protocol = ip_hdr(skb)->protocol;
sk->sk_bound_dev_if = arg->bound_dev_if;
sk->sk_sndbuf = sysctl_wmem_default;
ipc.sockc.mark = fl4.flowi4_mark;
err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
len, 0, &ipc, &rt, MSG_DONTWAIT);
if (unlikely(err)) {
ip_flush_pending_frames(sk);
goto out;
}
nskb = skb_peek(&sk->sk_write_queue);
if (nskb) {
if (arg->csumoffset >= 0)
*((__sum16 *)skb_transport_header(nskb) +
arg->csumoffset) = csum_fold(csum_add(nskb->csum,
arg->csum));
nskb->ip_summed = CHECKSUM_NONE;
nskb->mono_delivery_time = !!transmit_time;
ip_push_pending_frames(sk, &fl4);
}
out:
ip_rt_put(rt);
}
void __init ip_init(void)
{
ip_rt_init();
inet_initpeers();
#if defined(CONFIG_IP_MULTICAST)
igmp_mc_init();
#endif
}