License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
2005-04-17 02:20:36 +04:00
/* -*- linux-c -*-
* sysctl_net_core . c : sysctl interface to net core subsystem .
*
* Begun April 1 , 1996 , Mike Shaver .
* Added / proc / sys / net / core directory entry ( empty = ) ) . [ MS ]
*/
2021-12-29 03:49:13 +03:00
# include <linux/filter.h>
2005-04-17 02:20:36 +04:00
# include <linux/mm.h>
# include <linux/sysctl.h>
# include <linux/module.h>
2005-08-16 09:18:02 +04:00
# include <linux/socket.h>
2007-10-24 08:13:53 +04:00
# include <linux/netdevice.h>
2009-09-22 18:18:09 +04:00
# include <linux/ratelimit.h>
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
# include <linux/vmalloc.h>
2007-12-05 12:37:34 +03:00
# include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
# include <linux/slab.h>
2009-09-22 18:18:09 +04:00
2009-02-25 13:32:14 +03:00
# include <net/ip.h>
2005-08-16 09:18:02 +04:00
# include <net/sock.h>
2011-05-27 21:41:33 +04:00
# include <net/net_ratelimit.h>
2013-07-10 18:13:17 +04:00
# include <net/busy_poll.h>
2013-08-28 03:19:08 +04:00
# include <net/pkt_sched.h>
2005-04-17 02:20:36 +04:00
2022-04-07 00:37:54 +03:00
# include "dev.h"
2021-03-23 09:49:23 +03:00
static int int_3600 = 3600 ;
2015-03-11 14:29:17 +03:00
static int min_sndbuf = SOCK_MIN_SNDBUF ;
static int min_rcvbuf = SOCK_MIN_RCVBUF ;
2016-02-03 11:26:57 +03:00
static int max_skb_frags = MAX_SKB_FRAGS ;
bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K
Michael and Sandipan report:
Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF
JIT allocations. At compile time it defaults to PAGE_SIZE * 40000,
and is adjusted again at init time if MODULES_VADDR is defined.
For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with
the compile-time default at boot-time, which is 0x9c400000 when
using 64K page size. This overflows the signed 32-bit bpf_jit_limit
value:
root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit
-1673527296
and can cause various unexpected failures throughout the network
stack. In one case `strace dhclient eth0` reported:
setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8},
16) = -1 ENOTSUPP (Unknown error 524)
and similar failures can be seen with tools like tcpdump. This doesn't
always reproduce however, and I'm not sure why. The more consistent
failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9
host would time out on systemd/netplan configuring a virtio-net NIC
with no noticeable errors in the logs.
Given this and also given that in near future some architectures like
arm64 will have a custom area for BPF JIT image allocations we should
get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For
4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec()
so therefore add another overridable bpf_jit_alloc_exec_limit() helper
function which returns the possible size of the memory area for deriving
the default heuristic in bpf_jit_charge_init().
Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new
bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default
JIT memory provider, and therefore in case archs implement their custom
module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for
vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}.
Additionally, for archs supporting large page sizes, we should change
the sysctl to be handled as long to not run into sysctl restrictions
in future.
Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Reported-by: Sandipan Das <sandipan@linux.ibm.com>
Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-11 14:14:12 +03:00
static long long_max __maybe_unused = LONG_MAX ;
2013-01-24 00:35:28 +04:00
2014-11-11 21:59:17 +03:00
static int net_msg_warn ; /* Unused, but still a sysctl */
net: do not create fallback tunnels for non-default namespaces
fallback tunnels (like tunl0, gre0, gretap0, erspan0, sit0,
ip6tnl0, ip6gre0) are automatically created when the corresponding
module is loaded.
These tunnels are also automatically created when a new network
namespace is created, at a great cost.
In many cases, netns are used for isolation purposes, and these
extra network devices are a waste of resources. We are using
thousands of netns per host, and hit the netns creation/delete
bottleneck a lot. (Many thanks to Kirill for recent work on this)
Add a new sysctl so that we can opt-out from this automatic creation.
Note that these tunnels are still created for the initial namespace,
to be the least intrusive for typical setups.
Tested:
lpk43:~# cat add_del_unshare.sh
for i in `seq 1 40`
do
(for j in `seq 1 100` ; do unshare -n /bin/true >/dev/null ; done) &
done
wait
lpk43:~# echo 0 >/proc/sys/net/core/fb_tunnels_only_for_init_net
lpk43:~# time ./add_del_unshare.sh
real 0m37.521s
user 0m0.886s
sys 7m7.084s
lpk43:~# echo 1 >/proc/sys/net/core/fb_tunnels_only_for_init_net
lpk43:~# time ./add_del_unshare.sh
real 0m4.761s
user 0m0.851s
sys 1m8.343s
lpk43:~#
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-08 23:51:41 +03:00
int sysctl_fb_tunnels_only_for_init_net __read_mostly = 0 ;
EXPORT_SYMBOL ( sysctl_fb_tunnels_only_for_init_net ) ;
2019-01-18 10:27:11 +03:00
/* 0 - Keep current behavior:
* IPv4 : inherit all current settings from init_net
* IPv6 : reset all settings to default
* 1 - Both inherit all current settings from init_net
* 2 - Both reset all settings to default
2020-05-13 16:58:43 +03:00
* 3 - Both inherit all settings from current netns
2019-01-18 10:27:11 +03:00
*/
int sysctl_devconf_inherit_init_net __read_mostly ;
EXPORT_SYMBOL ( sysctl_devconf_inherit_init_net ) ;
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
# ifdef CONFIG_RPS
2013-06-12 10:04:25 +04:00
static int rps_sock_flow_sysctl ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
{
unsigned int orig_size , size ;
int ret , i ;
2013-06-12 10:04:25 +04:00
struct ctl_table tmp = {
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
. data = & size ,
. maxlen = sizeof ( size ) ,
. mode = table - > mode
} ;
struct rps_sock_flow_table * orig_sock_table , * sock_table ;
static DEFINE_MUTEX ( sock_flow_mutex ) ;
mutex_lock ( & sock_flow_mutex ) ;
2010-10-25 07:02:02 +04:00
orig_sock_table = rcu_dereference_protected ( rps_sock_flow_table ,
lockdep_is_held ( & sock_flow_mutex ) ) ;
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
size = orig_size = orig_sock_table ? orig_sock_table - > mask + 1 : 0 ;
ret = proc_dointvec ( & tmp , write , buffer , lenp , ppos ) ;
if ( write ) {
if ( size ) {
2015-02-09 07:39:13 +03:00
if ( size > 1 < < 29 ) {
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
/* Enforce limit to prevent overflow */
mutex_unlock ( & sock_flow_mutex ) ;
return - EINVAL ;
}
size = roundup_pow_of_two ( size ) ;
if ( size ! = orig_size ) {
sock_table =
vmalloc ( RPS_SOCK_FLOW_TABLE_SIZE ( size ) ) ;
if ( ! sock_table ) {
mutex_unlock ( & sock_flow_mutex ) ;
return - ENOMEM ;
}
net: rfs: add hash collision detection
Receive Flow Steering is a nice solution but suffers from
hash collisions when a mix of connected and unconnected traffic
is received on the host, when flow hash table is populated.
Also, clearing flow in inet_release() makes RFS not very good
for short lived flows, as many packets can follow close().
(FIN , ACK packets, ...)
This patch extends the information stored into global hash table
to not only include cpu number, but upper part of the hash value.
I use a 32bit value, and dynamically split it in two parts.
For host with less than 64 possible cpus, this gives 6 bits for the
cpu number, and 26 (32-6) bits for the upper part of the hash.
Since hash bucket selection use low order bits of the hash, we have
a full hash match, if /proc/sys/net/core/rps_sock_flow_entries is big
enough.
If the hash found in flow table does not match, we fallback to RPS (if
it is enabled for the rxqueue).
This means that a packet for an non connected flow can avoid the
IPI through a unrelated/victim CPU.
This also means we no longer have to clear the table at socket
close time, and this helps short lived flows performance.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-06 23:59:01 +03:00
rps_cpu_mask = roundup_pow_of_two ( nr_cpu_ids ) - 1 ;
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
sock_table - > mask = size - 1 ;
} else
sock_table = orig_sock_table ;
for ( i = 0 ; i < size ; i + + )
sock_table - > ents [ i ] = RPS_NO_CPU ;
} else
sock_table = NULL ;
if ( sock_table ! = orig_sock_table ) {
rcu_assign_pointer ( rps_sock_flow_table , sock_table ) ;
2016-12-07 19:29:10 +03:00
if ( sock_table ) {
2019-03-22 18:56:38 +03:00
static_branch_inc ( & rps_needed ) ;
static_branch_inc ( & rfs_needed ) ;
2016-12-07 19:29:10 +03:00
}
2011-11-17 07:13:26 +04:00
if ( orig_sock_table ) {
2019-03-22 18:56:38 +03:00
static_branch_dec ( & rps_needed ) ;
static_branch_dec ( & rfs_needed ) ;
2022-02-25 19:18:55 +03:00
kvfree_rcu ( orig_sock_table ) ;
2011-11-17 07:13:26 +04:00
}
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
}
}
mutex_unlock ( & sock_flow_mutex ) ;
return ret ;
}
# endif /* CONFIG_RPS */
2013-05-20 08:02:32 +04:00
# ifdef CONFIG_NET_FLOW_LIMIT
static DEFINE_MUTEX ( flow_limit_update_mutex ) ;
2013-06-12 10:04:25 +04:00
static int flow_limit_cpu_sysctl ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
2013-05-20 08:02:32 +04:00
{
struct sd_flow_limit * cur ;
struct softnet_data * sd ;
cpumask_var_t mask ;
int i , len , ret = 0 ;
if ( ! alloc_cpumask_var ( & mask , GFP_KERNEL ) )
return - ENOMEM ;
if ( write ) {
2020-06-03 08:52:34 +03:00
ret = cpumask_parse ( buffer , mask ) ;
2013-05-20 08:02:32 +04:00
if ( ret )
goto done ;
mutex_lock ( & flow_limit_update_mutex ) ;
len = sizeof ( * cur ) + netdev_flow_limit_table_len ;
for_each_possible_cpu ( i ) {
sd = & per_cpu ( softnet_data , i ) ;
cur = rcu_dereference_protected ( sd - > flow_limit ,
lockdep_is_held ( & flow_limit_update_mutex ) ) ;
if ( cur & & ! cpumask_test_cpu ( i , mask ) ) {
RCU_INIT_POINTER ( sd - > flow_limit , NULL ) ;
2022-02-25 19:18:55 +03:00
kfree_rcu ( cur ) ;
2013-05-20 08:02:32 +04:00
} else if ( ! cur & & cpumask_test_cpu ( i , mask ) ) {
2013-12-18 18:46:23 +04:00
cur = kzalloc_node ( len , GFP_KERNEL ,
cpu_to_node ( i ) ) ;
2013-05-20 08:02:32 +04:00
if ( ! cur ) {
/* not unwinding previous changes */
ret = - ENOMEM ;
goto write_unlock ;
}
cur - > num_buckets = netdev_flow_limit_table_len ;
rcu_assign_pointer ( sd - > flow_limit , cur ) ;
}
}
write_unlock :
mutex_unlock ( & flow_limit_update_mutex ) ;
} else {
2013-06-13 23:29:38 +04:00
char kbuf [ 128 ] ;
2013-05-20 08:02:32 +04:00
if ( * ppos | | ! * lenp ) {
* lenp = 0 ;
goto done ;
}
cpumask_clear ( mask ) ;
rcu_read_lock ( ) ;
for_each_possible_cpu ( i ) {
sd = & per_cpu ( softnet_data , i ) ;
if ( rcu_dereference ( sd - > flow_limit ) )
cpumask_set_cpu ( i , mask ) ;
}
rcu_read_unlock ( ) ;
2013-06-13 23:29:38 +04:00
len = min ( sizeof ( kbuf ) - 1 , * lenp ) ;
2015-02-14 01:37:42 +03:00
len = scnprintf ( kbuf , len , " %*pb " , cpumask_pr_args ( mask ) ) ;
2013-06-13 23:29:38 +04:00
if ( ! len ) {
* lenp = 0 ;
goto done ;
}
if ( len < * lenp )
kbuf [ len + + ] = ' \n ' ;
2020-04-24 09:43:38 +03:00
memcpy ( buffer , kbuf , len ) ;
2013-06-13 23:29:38 +04:00
* lenp = len ;
* ppos + = len ;
2013-05-20 08:02:32 +04:00
}
done :
free_cpumask_var ( mask ) ;
return ret ;
}
2013-06-12 10:04:25 +04:00
static int flow_limit_table_len_sysctl ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
2013-05-20 08:02:32 +04:00
{
unsigned int old , * ptr ;
int ret ;
mutex_lock ( & flow_limit_update_mutex ) ;
ptr = table - > data ;
old = * ptr ;
ret = proc_dointvec ( table , write , buffer , lenp , ppos ) ;
if ( ! ret & & write & & ! is_power_of_2 ( * ptr ) ) {
* ptr = old ;
ret = - EINVAL ;
}
mutex_unlock ( & flow_limit_update_mutex ) ;
return ret ;
}
# endif /* CONFIG_NET_FLOW_LIMIT */
2013-08-28 03:19:08 +04:00
# ifdef CONFIG_NET_SCHED
static int set_default_qdisc ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
2013-08-28 03:19:08 +04:00
{
char id [ IFNAMSIZ ] ;
struct ctl_table tbl = {
. data = id ,
. maxlen = IFNAMSIZ ,
} ;
int ret ;
qdisc_get_default ( id , IFNAMSIZ ) ;
ret = proc_dostring ( & tbl , write , buffer , lenp , ppos ) ;
if ( write & & ret = = 0 )
ret = qdisc_set_default ( id ) ;
return ret ;
}
# endif
2016-12-29 23:37:21 +03:00
static int proc_do_dev_weight ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
2016-12-29 23:37:21 +03:00
{
int ret ;
ret = proc_dointvec ( table , write , buffer , lenp , ppos ) ;
if ( ret ! = 0 )
return ret ;
dev_rx_weight = weight_p * dev_weight_rx_bias ;
dev_tx_weight = weight_p * dev_weight_tx_bias ;
return ret ;
}
2014-11-16 17:23:05 +03:00
static int proc_do_rss_key ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
2014-11-16 17:23:05 +03:00
{
struct ctl_table fake_table ;
char buf [ NETDEV_RSS_KEY_LEN * 3 ] ;
snprintf ( buf , sizeof ( buf ) , " %*phC " , NETDEV_RSS_KEY_LEN , netdev_rss_key ) ;
fake_table . data = buf ;
fake_table . maxlen = sizeof ( buf ) ;
return proc_dostring ( & fake_table , write , buffer , lenp , ppos ) ;
}
2018-01-20 03:24:34 +03:00
# ifdef CONFIG_BPF_JIT
static int proc_dointvec_minmax_bpf_enable ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp ,
2018-01-20 03:24:34 +03:00
loff_t * ppos )
{
int ret , jit_enable = * ( int * ) table - > data ;
2022-05-10 06:35:03 +03:00
int min = * ( int * ) table - > extra1 ;
int max = * ( int * ) table - > extra2 ;
2018-01-20 03:24:34 +03:00
struct ctl_table tmp = * table ;
if ( write & & ! capable ( CAP_SYS_ADMIN ) )
return - EPERM ;
tmp . data = & jit_enable ;
ret = proc_dointvec_minmax ( & tmp , write , buffer , lenp , ppos ) ;
if ( write & & ! ret ) {
if ( jit_enable < 2 | |
2020-07-03 01:45:23 +03:00
( jit_enable = = 2 & & bpf_dump_raw_ok ( current_cred ( ) ) ) ) {
2018-01-20 03:24:34 +03:00
* ( int * ) table - > data = jit_enable ;
if ( jit_enable = = 2 )
pr_warn ( " bpf_jit_enable = 2 was set! NEVER use this in production, only for JIT debugging! \n " ) ;
} else {
ret = - EPERM ;
}
}
2022-05-10 06:35:03 +03:00
if ( write & & ret & & min = = max )
pr_info_once ( " CONFIG_BPF_JIT_ALWAYS_ON is enabled, bpf_jit_enable is permanently set to 1. \n " ) ;
2018-01-20 03:24:34 +03:00
return ret ;
}
net, sysctl: Fix compiler warning when only cBPF is present
proc_dointvec_minmax_bpf_restricted() has been firstly introduced
in commit 2e4a30983b0f ("bpf: restrict access to core bpf sysctls")
under CONFIG_HAVE_EBPF_JIT. Then, this ifdef has been removed in
ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv
allocations"), because a new sysctl, bpf_jit_limit, made use of it.
Finally, this parameter has become long instead of integer with
fdadd04931c2 ("bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K")
and thus, a new proc_dolongvec_minmax_bpf_restricted() has been
added.
With this last change, we got back to that
proc_dointvec_minmax_bpf_restricted() is used only under
CONFIG_HAVE_EBPF_JIT, but the corresponding ifdef has not been
brought back.
So, in configurations like CONFIG_BPF_JIT=y && CONFIG_HAVE_EBPF_JIT=n
since v4.20 we have:
CC net/core/sysctl_net_core.o
net/core/sysctl_net_core.c:292:1: warning: ‘proc_dointvec_minmax_bpf_restricted’ defined but not used [-Wunused-function]
292 | proc_dointvec_minmax_bpf_restricted(struct ctl_table *table, int write,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppress this by guarding it with CONFIG_HAVE_EBPF_JIT again.
Fixes: fdadd04931c2 ("bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K")
Signed-off-by: Alexander Lobakin <alobakin@dlink.ru>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191218091821.7080-1-alobakin@dlink.ru
2019-12-18 12:18:21 +03:00
# ifdef CONFIG_HAVE_EBPF_JIT
2018-01-20 03:24:34 +03:00
static int
proc_dointvec_minmax_bpf_restricted ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
2018-01-20 03:24:34 +03:00
{
if ( ! capable ( CAP_SYS_ADMIN ) )
return - EPERM ;
return proc_dointvec_minmax ( table , write , buffer , lenp , ppos ) ;
}
net, sysctl: Fix compiler warning when only cBPF is present
proc_dointvec_minmax_bpf_restricted() has been firstly introduced
in commit 2e4a30983b0f ("bpf: restrict access to core bpf sysctls")
under CONFIG_HAVE_EBPF_JIT. Then, this ifdef has been removed in
ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv
allocations"), because a new sysctl, bpf_jit_limit, made use of it.
Finally, this parameter has become long instead of integer with
fdadd04931c2 ("bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K")
and thus, a new proc_dolongvec_minmax_bpf_restricted() has been
added.
With this last change, we got back to that
proc_dointvec_minmax_bpf_restricted() is used only under
CONFIG_HAVE_EBPF_JIT, but the corresponding ifdef has not been
brought back.
So, in configurations like CONFIG_BPF_JIT=y && CONFIG_HAVE_EBPF_JIT=n
since v4.20 we have:
CC net/core/sysctl_net_core.o
net/core/sysctl_net_core.c:292:1: warning: ‘proc_dointvec_minmax_bpf_restricted’ defined but not used [-Wunused-function]
292 | proc_dointvec_minmax_bpf_restricted(struct ctl_table *table, int write,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppress this by guarding it with CONFIG_HAVE_EBPF_JIT again.
Fixes: fdadd04931c2 ("bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K")
Signed-off-by: Alexander Lobakin <alobakin@dlink.ru>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191218091821.7080-1-alobakin@dlink.ru
2019-12-18 12:18:21 +03:00
# endif /* CONFIG_HAVE_EBPF_JIT */
bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K
Michael and Sandipan report:
Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF
JIT allocations. At compile time it defaults to PAGE_SIZE * 40000,
and is adjusted again at init time if MODULES_VADDR is defined.
For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with
the compile-time default at boot-time, which is 0x9c400000 when
using 64K page size. This overflows the signed 32-bit bpf_jit_limit
value:
root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit
-1673527296
and can cause various unexpected failures throughout the network
stack. In one case `strace dhclient eth0` reported:
setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8},
16) = -1 ENOTSUPP (Unknown error 524)
and similar failures can be seen with tools like tcpdump. This doesn't
always reproduce however, and I'm not sure why. The more consistent
failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9
host would time out on systemd/netplan configuring a virtio-net NIC
with no noticeable errors in the logs.
Given this and also given that in near future some architectures like
arm64 will have a custom area for BPF JIT image allocations we should
get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For
4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec()
so therefore add another overridable bpf_jit_alloc_exec_limit() helper
function which returns the possible size of the memory area for deriving
the default heuristic in bpf_jit_charge_init().
Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new
bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default
JIT memory provider, and therefore in case archs implement their custom
module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for
vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}.
Additionally, for archs supporting large page sizes, we should change
the sysctl to be handled as long to not run into sysctl restrictions
in future.
Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Reported-by: Sandipan Das <sandipan@linux.ibm.com>
Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-11 14:14:12 +03:00
static int
proc_dolongvec_minmax_bpf_restricted ( struct ctl_table * table , int write ,
2020-04-24 09:43:38 +03:00
void * buffer , size_t * lenp , loff_t * ppos )
bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K
Michael and Sandipan report:
Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF
JIT allocations. At compile time it defaults to PAGE_SIZE * 40000,
and is adjusted again at init time if MODULES_VADDR is defined.
For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with
the compile-time default at boot-time, which is 0x9c400000 when
using 64K page size. This overflows the signed 32-bit bpf_jit_limit
value:
root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit
-1673527296
and can cause various unexpected failures throughout the network
stack. In one case `strace dhclient eth0` reported:
setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8},
16) = -1 ENOTSUPP (Unknown error 524)
and similar failures can be seen with tools like tcpdump. This doesn't
always reproduce however, and I'm not sure why. The more consistent
failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9
host would time out on systemd/netplan configuring a virtio-net NIC
with no noticeable errors in the logs.
Given this and also given that in near future some architectures like
arm64 will have a custom area for BPF JIT image allocations we should
get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For
4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec()
so therefore add another overridable bpf_jit_alloc_exec_limit() helper
function which returns the possible size of the memory area for deriving
the default heuristic in bpf_jit_charge_init().
Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new
bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default
JIT memory provider, and therefore in case archs implement their custom
module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for
vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}.
Additionally, for archs supporting large page sizes, we should change
the sysctl to be handled as long to not run into sysctl restrictions
in future.
Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Reported-by: Sandipan Das <sandipan@linux.ibm.com>
Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-11 14:14:12 +03:00
{
if ( ! capable ( CAP_SYS_ADMIN ) )
return - EPERM ;
return proc_doulongvec_minmax ( table , write , buffer , lenp , ppos ) ;
}
2018-01-20 03:24:34 +03:00
# endif
2007-12-05 12:37:34 +03:00
static struct ctl_table net_core_table [ ] = {
2005-04-17 02:20:36 +04:00
{
. procname = " wmem_max " ,
. data = & sysctl_wmem_max ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2013-01-24 00:35:28 +04:00
. proc_handler = proc_dointvec_minmax ,
2015-03-11 14:29:17 +03:00
. extra1 = & min_sndbuf ,
2005-04-17 02:20:36 +04:00
} ,
{
. procname = " rmem_max " ,
. data = & sysctl_rmem_max ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2013-01-24 00:35:28 +04:00
. proc_handler = proc_dointvec_minmax ,
2015-03-11 14:29:17 +03:00
. extra1 = & min_rcvbuf ,
2005-04-17 02:20:36 +04:00
} ,
{
. procname = " wmem_default " ,
. data = & sysctl_wmem_default ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2013-01-24 00:35:28 +04:00
. proc_handler = proc_dointvec_minmax ,
2015-03-11 14:29:17 +03:00
. extra1 = & min_sndbuf ,
2005-04-17 02:20:36 +04:00
} ,
{
. procname = " rmem_default " ,
. data = & sysctl_rmem_default ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2013-01-24 00:35:28 +04:00
. proc_handler = proc_dointvec_minmax ,
2015-03-11 14:29:17 +03:00
. extra1 = & min_rcvbuf ,
2005-04-17 02:20:36 +04:00
} ,
{
. procname = " dev_weight " ,
. data = & weight_p ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2016-12-29 23:37:21 +03:00
. proc_handler = proc_do_dev_weight ,
} ,
{
. procname = " dev_weight_rx_bias " ,
. data = & dev_weight_rx_bias ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = proc_do_dev_weight ,
} ,
{
. procname = " dev_weight_tx_bias " ,
. data = & dev_weight_tx_bias ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = proc_do_dev_weight ,
2005-04-17 02:20:36 +04:00
} ,
{
. procname = " netdev_max_backlog " ,
. data = & netdev_max_backlog ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2008-11-04 05:21:05 +03:00
. proc_handler = proc_dointvec
2005-04-17 02:20:36 +04:00
} ,
2014-11-16 17:23:05 +03:00
{
. procname = " netdev_rss_key " ,
. data = & netdev_rss_key ,
. maxlen = sizeof ( int ) ,
. mode = 0444 ,
. proc_handler = proc_do_rss_key ,
} ,
2011-04-20 13:27:32 +04:00
# ifdef CONFIG_BPF_JIT
{
. procname = " bpf_jit_enable " ,
. data = & bpf_jit_enable ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2018-01-20 03:24:34 +03:00
. proc_handler = proc_dointvec_minmax_bpf_enable ,
2018-01-20 03:24:33 +03:00
# ifdef CONFIG_BPF_JIT_ALWAYS_ON
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ONE ,
. extra2 = SYSCTL_ONE ,
2018-01-20 03:24:33 +03:00
# else
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2022-05-01 06:55:22 +03:00
. extra2 = SYSCTL_TWO ,
2018-01-20 03:24:33 +03:00
# endif
2011-04-20 13:27:32 +04:00
} ,
bpf: add generic constant blinding for use in jits
This work adds a generic facility for use from eBPF JIT compilers
that allows for further hardening of JIT generated images through
blinding constants. In response to the original work on BPF JIT
spraying published by Keegan McAllister [1], most BPF JITs were
changed to make images read-only and start at a randomized offset
in the page, where the rest was filled with trap instructions. We
have this nowadays in x86, arm, arm64 and s390 JIT compilers.
Additionally, later work also made eBPF interpreter images read
only for kernels supporting DEBUG_SET_MODULE_RONX, that is, x86,
arm, arm64 and s390 archs as well currently. This is done by
default for mentioned JITs when JITing is enabled. Furthermore,
we had a generic and configurable constant blinding facility on our
todo for quite some time now to further make spraying harder, and
first implementation since around netconf 2016.
We found that for systems where untrusted users can load cBPF/eBPF
code where JIT is enabled, start offset randomization helps a bit
to make jumps into crafted payload harder, but in case where larger
programs that cross page boundary are injected, we again have some
part of the program opcodes at a page start offset. With improved
guessing and more reliable payload injection, chances can increase
to jump into such payload. Elena Reshetova recently wrote a test
case for it [2, 3]. Moreover, eBPF comes with 64 bit constants, which
can leave some more room for payloads. Note that for all this,
additional bugs in the kernel are still required to make the jump
(and of course to guess right, to not jump into a trap) and naturally
the JIT must be enabled, which is disabled by default.
For helping mitigation, the general idea is to provide an option
bpf_jit_harden that admins can tweak along with bpf_jit_enable, so
that for cases where JIT should be enabled for performance reasons,
the generated image can be further hardened with blinding constants
for unpriviledged users (bpf_jit_harden == 1), with trading off
performance for these, but not for privileged ones. We also added
the option of blinding for all users (bpf_jit_harden == 2), which
is quite helpful for testing f.e. with test_bpf.ko. There are no
further e.g. hardening levels of bpf_jit_harden switch intended,
rationale is to have it dead simple to use as on/off. Since this
functionality would need to be duplicated over and over for JIT
compilers to use, which are already complex enough, we provide a
generic eBPF byte-code level based blinding implementation, which is
then just transparently JITed. JIT compilers need to make only a few
changes to integrate this facility and can be migrated one by one.
This option is for eBPF JITs and will be used in x86, arm64, s390
without too much effort, and soon ppc64 JITs, thus that native eBPF
can be blinded as well as cBPF to eBPF migrations, so that both can
be covered with a single implementation. The rule for JITs is that
bpf_jit_blind_constants() must be called from bpf_int_jit_compile(),
and in case blinding is disabled, we follow normally with JITing the
passed program. In case blinding is enabled and we fail during the
process of blinding itself, we must return with the interpreter.
Similarly, in case the JITing process after the blinding failed, we
return normally to the interpreter with the non-blinded code. Meaning,
interpreter doesn't change in any way and operates on eBPF code as
usual. For doing this pre-JIT blinding step, we need to make use of
a helper/auxiliary register, here BPF_REG_AX. This is strictly internal
to the JIT and not in any way part of the eBPF architecture. Just like
in the same way as JITs internally make use of some helper registers
when emitting code, only that here the helper register is one
abstraction level higher in eBPF bytecode, but nevertheless in JIT
phase. That helper register is needed since f.e. manually written
program can issue loads to all registers of eBPF architecture.
The core concept with the additional register is: blind out all 32
and 64 bit constants by converting BPF_K based instructions into a
small sequence from K_VAL into ((RND ^ K_VAL) ^ RND). Therefore, this
is transformed into: BPF_REG_AX := (RND ^ K_VAL), BPF_REG_AX ^= RND,
and REG <OP> BPF_REG_AX, so actual operation on the target register
is translated from BPF_K into BPF_X one that is operating on
BPF_REG_AX's content. During rewriting phase when blinding, RND is
newly generated via prandom_u32() for each processed instruction.
64 bit loads are split into two 32 bit loads to make translation and
patching not too complex. Only basic thing required by JITs is to
call the helper bpf_jit_blind_constants()/bpf_jit_prog_release_other()
pair, and to map BPF_REG_AX into an unused register.
Small bpf_jit_disasm extract from [2] when applied to x86 JIT:
echo 0 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f5e9 + <x>:
[...]
39: mov $0xa8909090,%eax
3e: mov $0xa8909090,%eax
43: mov $0xa8ff3148,%eax
48: mov $0xa89081b4,%eax
4d: mov $0xa8900bb0,%eax
52: mov $0xa810e0c1,%eax
57: mov $0xa8908eb4,%eax
5c: mov $0xa89020b0,%eax
[...]
echo 1 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f1e5 + <x>:
[...]
39: mov $0xe1192563,%r10d
3f: xor $0x4989b5f3,%r10d
46: mov %r10d,%eax
49: mov $0xb8296d93,%r10d
4f: xor $0x10b9fd03,%r10d
56: mov %r10d,%eax
59: mov $0x8c381146,%r10d
5f: xor $0x24c7200e,%r10d
66: mov %r10d,%eax
69: mov $0xeb2a830e,%r10d
6f: xor $0x43ba02ba,%r10d
76: mov %r10d,%eax
79: mov $0xd9730af,%r10d
7f: xor $0xa5073b1f,%r10d
86: mov %r10d,%eax
89: mov $0x9a45662b,%r10d
8f: xor $0x325586ea,%r10d
96: mov %r10d,%eax
[...]
As can be seen, original constants that carry payload are hidden
when enabled, actual operations are transformed from constant-based
to register-based ones, making jumps into constants ineffective.
Above extract/example uses single BPF load instruction over and
over, but of course all instructions with constants are blinded.
Performance wise, JIT with blinding performs a bit slower than just
JIT and faster than interpreter case. This is expected, since we
still get all the performance benefits from JITing and in normal
use-cases not every single instruction needs to be blinded. Summing
up all 296 test cases averaged over multiple runs from test_bpf.ko
suite, interpreter was 55% slower than JIT only and JIT with blinding
was 8% slower than JIT only. Since there are also some extremes in
the test suite, I expect for ordinary workloads that the performance
for the JIT with blinding case is even closer to JIT only case,
f.e. nmap test case from suite has averaged timings in ns 29 (JIT),
35 (+ blinding), and 151 (interpreter).
BPF test suite, seccomp test suite, eBPF sample code and various
bigger networking eBPF programs have been tested with this and were
running fine. For testing purposes, I also adapted interpreter and
redirected blinded eBPF image to interpreter and also here all tests
pass.
[1] http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
[2] https://github.com/01org/jit-spray-poc-for-ksp/
[3] http://www.openwall.com/lists/kernel-hardening/2016/05/03/5
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Elena Reshetova <elena.reshetova@intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-13 20:08:32 +03:00
# ifdef CONFIG_HAVE_EBPF_JIT
{
. procname = " bpf_jit_harden " ,
. data = & bpf_jit_harden ,
. maxlen = sizeof ( int ) ,
. mode = 0600 ,
2018-01-20 03:24:34 +03:00
. proc_handler = proc_dointvec_minmax_bpf_restricted ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2022-05-01 06:55:22 +03:00
. extra2 = SYSCTL_TWO ,
bpf: add generic constant blinding for use in jits
This work adds a generic facility for use from eBPF JIT compilers
that allows for further hardening of JIT generated images through
blinding constants. In response to the original work on BPF JIT
spraying published by Keegan McAllister [1], most BPF JITs were
changed to make images read-only and start at a randomized offset
in the page, where the rest was filled with trap instructions. We
have this nowadays in x86, arm, arm64 and s390 JIT compilers.
Additionally, later work also made eBPF interpreter images read
only for kernels supporting DEBUG_SET_MODULE_RONX, that is, x86,
arm, arm64 and s390 archs as well currently. This is done by
default for mentioned JITs when JITing is enabled. Furthermore,
we had a generic and configurable constant blinding facility on our
todo for quite some time now to further make spraying harder, and
first implementation since around netconf 2016.
We found that for systems where untrusted users can load cBPF/eBPF
code where JIT is enabled, start offset randomization helps a bit
to make jumps into crafted payload harder, but in case where larger
programs that cross page boundary are injected, we again have some
part of the program opcodes at a page start offset. With improved
guessing and more reliable payload injection, chances can increase
to jump into such payload. Elena Reshetova recently wrote a test
case for it [2, 3]. Moreover, eBPF comes with 64 bit constants, which
can leave some more room for payloads. Note that for all this,
additional bugs in the kernel are still required to make the jump
(and of course to guess right, to not jump into a trap) and naturally
the JIT must be enabled, which is disabled by default.
For helping mitigation, the general idea is to provide an option
bpf_jit_harden that admins can tweak along with bpf_jit_enable, so
that for cases where JIT should be enabled for performance reasons,
the generated image can be further hardened with blinding constants
for unpriviledged users (bpf_jit_harden == 1), with trading off
performance for these, but not for privileged ones. We also added
the option of blinding for all users (bpf_jit_harden == 2), which
is quite helpful for testing f.e. with test_bpf.ko. There are no
further e.g. hardening levels of bpf_jit_harden switch intended,
rationale is to have it dead simple to use as on/off. Since this
functionality would need to be duplicated over and over for JIT
compilers to use, which are already complex enough, we provide a
generic eBPF byte-code level based blinding implementation, which is
then just transparently JITed. JIT compilers need to make only a few
changes to integrate this facility and can be migrated one by one.
This option is for eBPF JITs and will be used in x86, arm64, s390
without too much effort, and soon ppc64 JITs, thus that native eBPF
can be blinded as well as cBPF to eBPF migrations, so that both can
be covered with a single implementation. The rule for JITs is that
bpf_jit_blind_constants() must be called from bpf_int_jit_compile(),
and in case blinding is disabled, we follow normally with JITing the
passed program. In case blinding is enabled and we fail during the
process of blinding itself, we must return with the interpreter.
Similarly, in case the JITing process after the blinding failed, we
return normally to the interpreter with the non-blinded code. Meaning,
interpreter doesn't change in any way and operates on eBPF code as
usual. For doing this pre-JIT blinding step, we need to make use of
a helper/auxiliary register, here BPF_REG_AX. This is strictly internal
to the JIT and not in any way part of the eBPF architecture. Just like
in the same way as JITs internally make use of some helper registers
when emitting code, only that here the helper register is one
abstraction level higher in eBPF bytecode, but nevertheless in JIT
phase. That helper register is needed since f.e. manually written
program can issue loads to all registers of eBPF architecture.
The core concept with the additional register is: blind out all 32
and 64 bit constants by converting BPF_K based instructions into a
small sequence from K_VAL into ((RND ^ K_VAL) ^ RND). Therefore, this
is transformed into: BPF_REG_AX := (RND ^ K_VAL), BPF_REG_AX ^= RND,
and REG <OP> BPF_REG_AX, so actual operation on the target register
is translated from BPF_K into BPF_X one that is operating on
BPF_REG_AX's content. During rewriting phase when blinding, RND is
newly generated via prandom_u32() for each processed instruction.
64 bit loads are split into two 32 bit loads to make translation and
patching not too complex. Only basic thing required by JITs is to
call the helper bpf_jit_blind_constants()/bpf_jit_prog_release_other()
pair, and to map BPF_REG_AX into an unused register.
Small bpf_jit_disasm extract from [2] when applied to x86 JIT:
echo 0 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f5e9 + <x>:
[...]
39: mov $0xa8909090,%eax
3e: mov $0xa8909090,%eax
43: mov $0xa8ff3148,%eax
48: mov $0xa89081b4,%eax
4d: mov $0xa8900bb0,%eax
52: mov $0xa810e0c1,%eax
57: mov $0xa8908eb4,%eax
5c: mov $0xa89020b0,%eax
[...]
echo 1 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f1e5 + <x>:
[...]
39: mov $0xe1192563,%r10d
3f: xor $0x4989b5f3,%r10d
46: mov %r10d,%eax
49: mov $0xb8296d93,%r10d
4f: xor $0x10b9fd03,%r10d
56: mov %r10d,%eax
59: mov $0x8c381146,%r10d
5f: xor $0x24c7200e,%r10d
66: mov %r10d,%eax
69: mov $0xeb2a830e,%r10d
6f: xor $0x43ba02ba,%r10d
76: mov %r10d,%eax
79: mov $0xd9730af,%r10d
7f: xor $0xa5073b1f,%r10d
86: mov %r10d,%eax
89: mov $0x9a45662b,%r10d
8f: xor $0x325586ea,%r10d
96: mov %r10d,%eax
[...]
As can be seen, original constants that carry payload are hidden
when enabled, actual operations are transformed from constant-based
to register-based ones, making jumps into constants ineffective.
Above extract/example uses single BPF load instruction over and
over, but of course all instructions with constants are blinded.
Performance wise, JIT with blinding performs a bit slower than just
JIT and faster than interpreter case. This is expected, since we
still get all the performance benefits from JITing and in normal
use-cases not every single instruction needs to be blinded. Summing
up all 296 test cases averaged over multiple runs from test_bpf.ko
suite, interpreter was 55% slower than JIT only and JIT with blinding
was 8% slower than JIT only. Since there are also some extremes in
the test suite, I expect for ordinary workloads that the performance
for the JIT with blinding case is even closer to JIT only case,
f.e. nmap test case from suite has averaged timings in ns 29 (JIT),
35 (+ blinding), and 151 (interpreter).
BPF test suite, seccomp test suite, eBPF sample code and various
bigger networking eBPF programs have been tested with this and were
running fine. For testing purposes, I also adapted interpreter and
redirected blinded eBPF image to interpreter and also here all tests
pass.
[1] http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
[2] https://github.com/01org/jit-spray-poc-for-ksp/
[3] http://www.openwall.com/lists/kernel-hardening/2016/05/03/5
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Elena Reshetova <elena.reshetova@intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-13 20:08:32 +03:00
} ,
bpf: make jited programs visible in traces
Long standing issue with JITed programs is that stack traces from
function tracing check whether a given address is kernel code
through {__,}kernel_text_address(), which checks for code in core
kernel, modules and dynamically allocated ftrace trampolines. But
what is still missing is BPF JITed programs (interpreted programs
are not an issue as __bpf_prog_run() will be attributed to them),
thus when a stack trace is triggered, the code walking the stack
won't see any of the JITed ones. The same for address correlation
done from user space via reading /proc/kallsyms. This is read by
tools like perf, but the latter is also useful for permanent live
tracing with eBPF itself in combination with stack maps when other
eBPF types are part of the callchain. See offwaketime example on
dumping stack from a map.
This work tries to tackle that issue by making the addresses and
symbols known to the kernel. The lookup from *kernel_text_address()
is implemented through a latched RB tree that can be read under
RCU in fast-path that is also shared for symbol/size/offset lookup
for a specific given address in kallsyms. The slow-path iteration
through all symbols in the seq file done via RCU list, which holds
a tiny fraction of all exported ksyms, usually below 0.1 percent.
Function symbols are exported as bpf_prog_<tag>, in order to aide
debugging and attribution. This facility is currently enabled for
root-only when bpf_jit_kallsyms is set to 1, and disabled if hardening
is active in any mode. The rationale behind this is that still a lot
of systems ship with world read permissions on kallsyms thus addresses
should not get suddenly exposed for them. If that situation gets
much better in future, we always have the option to change the
default on this. Likewise, unprivileged programs are not allowed
to add entries there either, but that is less of a concern as most
such programs types relevant in this context are for root-only anyway.
If enabled, call graphs and stack traces will then show a correct
attribution; one example is illustrated below, where the trace is
now visible in tooling such as perf script --kallsyms=/proc/kallsyms
and friends.
Before:
7fff8166889d bpf_clone_redirect+0x80007f0020ed (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff006451f1a007 (/usr/lib64/libc-2.18.so)
After:
7fff816688b7 bpf_clone_redirect+0x80007f002107 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa0575728 bpf_prog_33c45a467c9e061a+0x8000600020fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa07ef1fc cls_bpf_classify+0x8000600020dc (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81678b68 tc_classify+0x80007f002078 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d40b __netif_receive_skb_core+0x80007f0025fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d718 __netif_receive_skb+0x80007f002018 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164e565 process_backlog+0x80007f002095 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164dc71 net_rx_action+0x80007f002231 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81767461 __softirqentry_text_start+0x80007f0020d1 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817658ac do_softirq_own_stack+0x80007f00201c (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2c20 do_softirq+0x80007f002050 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2cb5 __local_bh_enable_ip+0x80007f002085 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168d452 ip_finish_output2+0x80007f002152 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168ea3d ip_finish_output+0x80007f00217d (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168f2af ip_output+0x80007f00203f (/lib/modules/4.9.0-rc8+/build/vmlinux)
[...]
7fff81005854 do_syscall_64+0x80007f002054 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817649eb return_from_SYSCALL_64+0x80007f002000 (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff01c484812007 (/usr/lib64/libc-2.18.so)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-17 00:24:50 +03:00
{
. procname = " bpf_jit_kallsyms " ,
. data = & bpf_jit_kallsyms ,
. maxlen = sizeof ( int ) ,
. mode = 0600 ,
2018-01-20 03:24:34 +03:00
. proc_handler = proc_dointvec_minmax_bpf_restricted ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
. extra2 = SYSCTL_ONE ,
bpf: make jited programs visible in traces
Long standing issue with JITed programs is that stack traces from
function tracing check whether a given address is kernel code
through {__,}kernel_text_address(), which checks for code in core
kernel, modules and dynamically allocated ftrace trampolines. But
what is still missing is BPF JITed programs (interpreted programs
are not an issue as __bpf_prog_run() will be attributed to them),
thus when a stack trace is triggered, the code walking the stack
won't see any of the JITed ones. The same for address correlation
done from user space via reading /proc/kallsyms. This is read by
tools like perf, but the latter is also useful for permanent live
tracing with eBPF itself in combination with stack maps when other
eBPF types are part of the callchain. See offwaketime example on
dumping stack from a map.
This work tries to tackle that issue by making the addresses and
symbols known to the kernel. The lookup from *kernel_text_address()
is implemented through a latched RB tree that can be read under
RCU in fast-path that is also shared for symbol/size/offset lookup
for a specific given address in kallsyms. The slow-path iteration
through all symbols in the seq file done via RCU list, which holds
a tiny fraction of all exported ksyms, usually below 0.1 percent.
Function symbols are exported as bpf_prog_<tag>, in order to aide
debugging and attribution. This facility is currently enabled for
root-only when bpf_jit_kallsyms is set to 1, and disabled if hardening
is active in any mode. The rationale behind this is that still a lot
of systems ship with world read permissions on kallsyms thus addresses
should not get suddenly exposed for them. If that situation gets
much better in future, we always have the option to change the
default on this. Likewise, unprivileged programs are not allowed
to add entries there either, but that is less of a concern as most
such programs types relevant in this context are for root-only anyway.
If enabled, call graphs and stack traces will then show a correct
attribution; one example is illustrated below, where the trace is
now visible in tooling such as perf script --kallsyms=/proc/kallsyms
and friends.
Before:
7fff8166889d bpf_clone_redirect+0x80007f0020ed (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff006451f1a007 (/usr/lib64/libc-2.18.so)
After:
7fff816688b7 bpf_clone_redirect+0x80007f002107 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa0575728 bpf_prog_33c45a467c9e061a+0x8000600020fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa07ef1fc cls_bpf_classify+0x8000600020dc (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81678b68 tc_classify+0x80007f002078 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d40b __netif_receive_skb_core+0x80007f0025fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d718 __netif_receive_skb+0x80007f002018 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164e565 process_backlog+0x80007f002095 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164dc71 net_rx_action+0x80007f002231 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81767461 __softirqentry_text_start+0x80007f0020d1 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817658ac do_softirq_own_stack+0x80007f00201c (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2c20 do_softirq+0x80007f002050 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2cb5 __local_bh_enable_ip+0x80007f002085 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168d452 ip_finish_output2+0x80007f002152 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168ea3d ip_finish_output+0x80007f00217d (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168f2af ip_output+0x80007f00203f (/lib/modules/4.9.0-rc8+/build/vmlinux)
[...]
7fff81005854 do_syscall_64+0x80007f002054 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817649eb return_from_SYSCALL_64+0x80007f002000 (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff01c484812007 (/usr/lib64/libc-2.18.so)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-17 00:24:50 +03:00
} ,
bpf: add generic constant blinding for use in jits
This work adds a generic facility for use from eBPF JIT compilers
that allows for further hardening of JIT generated images through
blinding constants. In response to the original work on BPF JIT
spraying published by Keegan McAllister [1], most BPF JITs were
changed to make images read-only and start at a randomized offset
in the page, where the rest was filled with trap instructions. We
have this nowadays in x86, arm, arm64 and s390 JIT compilers.
Additionally, later work also made eBPF interpreter images read
only for kernels supporting DEBUG_SET_MODULE_RONX, that is, x86,
arm, arm64 and s390 archs as well currently. This is done by
default for mentioned JITs when JITing is enabled. Furthermore,
we had a generic and configurable constant blinding facility on our
todo for quite some time now to further make spraying harder, and
first implementation since around netconf 2016.
We found that for systems where untrusted users can load cBPF/eBPF
code where JIT is enabled, start offset randomization helps a bit
to make jumps into crafted payload harder, but in case where larger
programs that cross page boundary are injected, we again have some
part of the program opcodes at a page start offset. With improved
guessing and more reliable payload injection, chances can increase
to jump into such payload. Elena Reshetova recently wrote a test
case for it [2, 3]. Moreover, eBPF comes with 64 bit constants, which
can leave some more room for payloads. Note that for all this,
additional bugs in the kernel are still required to make the jump
(and of course to guess right, to not jump into a trap) and naturally
the JIT must be enabled, which is disabled by default.
For helping mitigation, the general idea is to provide an option
bpf_jit_harden that admins can tweak along with bpf_jit_enable, so
that for cases where JIT should be enabled for performance reasons,
the generated image can be further hardened with blinding constants
for unpriviledged users (bpf_jit_harden == 1), with trading off
performance for these, but not for privileged ones. We also added
the option of blinding for all users (bpf_jit_harden == 2), which
is quite helpful for testing f.e. with test_bpf.ko. There are no
further e.g. hardening levels of bpf_jit_harden switch intended,
rationale is to have it dead simple to use as on/off. Since this
functionality would need to be duplicated over and over for JIT
compilers to use, which are already complex enough, we provide a
generic eBPF byte-code level based blinding implementation, which is
then just transparently JITed. JIT compilers need to make only a few
changes to integrate this facility and can be migrated one by one.
This option is for eBPF JITs and will be used in x86, arm64, s390
without too much effort, and soon ppc64 JITs, thus that native eBPF
can be blinded as well as cBPF to eBPF migrations, so that both can
be covered with a single implementation. The rule for JITs is that
bpf_jit_blind_constants() must be called from bpf_int_jit_compile(),
and in case blinding is disabled, we follow normally with JITing the
passed program. In case blinding is enabled and we fail during the
process of blinding itself, we must return with the interpreter.
Similarly, in case the JITing process after the blinding failed, we
return normally to the interpreter with the non-blinded code. Meaning,
interpreter doesn't change in any way and operates on eBPF code as
usual. For doing this pre-JIT blinding step, we need to make use of
a helper/auxiliary register, here BPF_REG_AX. This is strictly internal
to the JIT and not in any way part of the eBPF architecture. Just like
in the same way as JITs internally make use of some helper registers
when emitting code, only that here the helper register is one
abstraction level higher in eBPF bytecode, but nevertheless in JIT
phase. That helper register is needed since f.e. manually written
program can issue loads to all registers of eBPF architecture.
The core concept with the additional register is: blind out all 32
and 64 bit constants by converting BPF_K based instructions into a
small sequence from K_VAL into ((RND ^ K_VAL) ^ RND). Therefore, this
is transformed into: BPF_REG_AX := (RND ^ K_VAL), BPF_REG_AX ^= RND,
and REG <OP> BPF_REG_AX, so actual operation on the target register
is translated from BPF_K into BPF_X one that is operating on
BPF_REG_AX's content. During rewriting phase when blinding, RND is
newly generated via prandom_u32() for each processed instruction.
64 bit loads are split into two 32 bit loads to make translation and
patching not too complex. Only basic thing required by JITs is to
call the helper bpf_jit_blind_constants()/bpf_jit_prog_release_other()
pair, and to map BPF_REG_AX into an unused register.
Small bpf_jit_disasm extract from [2] when applied to x86 JIT:
echo 0 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f5e9 + <x>:
[...]
39: mov $0xa8909090,%eax
3e: mov $0xa8909090,%eax
43: mov $0xa8ff3148,%eax
48: mov $0xa89081b4,%eax
4d: mov $0xa8900bb0,%eax
52: mov $0xa810e0c1,%eax
57: mov $0xa8908eb4,%eax
5c: mov $0xa89020b0,%eax
[...]
echo 1 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f1e5 + <x>:
[...]
39: mov $0xe1192563,%r10d
3f: xor $0x4989b5f3,%r10d
46: mov %r10d,%eax
49: mov $0xb8296d93,%r10d
4f: xor $0x10b9fd03,%r10d
56: mov %r10d,%eax
59: mov $0x8c381146,%r10d
5f: xor $0x24c7200e,%r10d
66: mov %r10d,%eax
69: mov $0xeb2a830e,%r10d
6f: xor $0x43ba02ba,%r10d
76: mov %r10d,%eax
79: mov $0xd9730af,%r10d
7f: xor $0xa5073b1f,%r10d
86: mov %r10d,%eax
89: mov $0x9a45662b,%r10d
8f: xor $0x325586ea,%r10d
96: mov %r10d,%eax
[...]
As can be seen, original constants that carry payload are hidden
when enabled, actual operations are transformed from constant-based
to register-based ones, making jumps into constants ineffective.
Above extract/example uses single BPF load instruction over and
over, but of course all instructions with constants are blinded.
Performance wise, JIT with blinding performs a bit slower than just
JIT and faster than interpreter case. This is expected, since we
still get all the performance benefits from JITing and in normal
use-cases not every single instruction needs to be blinded. Summing
up all 296 test cases averaged over multiple runs from test_bpf.ko
suite, interpreter was 55% slower than JIT only and JIT with blinding
was 8% slower than JIT only. Since there are also some extremes in
the test suite, I expect for ordinary workloads that the performance
for the JIT with blinding case is even closer to JIT only case,
f.e. nmap test case from suite has averaged timings in ns 29 (JIT),
35 (+ blinding), and 151 (interpreter).
BPF test suite, seccomp test suite, eBPF sample code and various
bigger networking eBPF programs have been tested with this and were
running fine. For testing purposes, I also adapted interpreter and
redirected blinded eBPF image to interpreter and also here all tests
pass.
[1] http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
[2] https://github.com/01org/jit-spray-poc-for-ksp/
[3] http://www.openwall.com/lists/kernel-hardening/2016/05/03/5
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Elena Reshetova <elena.reshetova@intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-13 20:08:32 +03:00
# endif
2018-10-23 02:11:04 +03:00
{
. procname = " bpf_jit_limit " ,
. data = & bpf_jit_limit ,
bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K
Michael and Sandipan report:
Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF
JIT allocations. At compile time it defaults to PAGE_SIZE * 40000,
and is adjusted again at init time if MODULES_VADDR is defined.
For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with
the compile-time default at boot-time, which is 0x9c400000 when
using 64K page size. This overflows the signed 32-bit bpf_jit_limit
value:
root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit
-1673527296
and can cause various unexpected failures throughout the network
stack. In one case `strace dhclient eth0` reported:
setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8},
16) = -1 ENOTSUPP (Unknown error 524)
and similar failures can be seen with tools like tcpdump. This doesn't
always reproduce however, and I'm not sure why. The more consistent
failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9
host would time out on systemd/netplan configuring a virtio-net NIC
with no noticeable errors in the logs.
Given this and also given that in near future some architectures like
arm64 will have a custom area for BPF JIT image allocations we should
get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For
4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec()
so therefore add another overridable bpf_jit_alloc_exec_limit() helper
function which returns the possible size of the memory area for deriving
the default heuristic in bpf_jit_charge_init().
Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new
bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default
JIT memory provider, and therefore in case archs implement their custom
module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for
vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}.
Additionally, for archs supporting large page sizes, we should change
the sysctl to be handled as long to not run into sysctl restrictions
in future.
Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Reported-by: Sandipan Das <sandipan@linux.ibm.com>
Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-11 14:14:12 +03:00
. maxlen = sizeof ( long ) ,
2018-10-23 02:11:04 +03:00
. mode = 0600 ,
bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K
Michael and Sandipan report:
Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF
JIT allocations. At compile time it defaults to PAGE_SIZE * 40000,
and is adjusted again at init time if MODULES_VADDR is defined.
For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with
the compile-time default at boot-time, which is 0x9c400000 when
using 64K page size. This overflows the signed 32-bit bpf_jit_limit
value:
root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit
-1673527296
and can cause various unexpected failures throughout the network
stack. In one case `strace dhclient eth0` reported:
setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8},
16) = -1 ENOTSUPP (Unknown error 524)
and similar failures can be seen with tools like tcpdump. This doesn't
always reproduce however, and I'm not sure why. The more consistent
failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9
host would time out on systemd/netplan configuring a virtio-net NIC
with no noticeable errors in the logs.
Given this and also given that in near future some architectures like
arm64 will have a custom area for BPF JIT image allocations we should
get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For
4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec()
so therefore add another overridable bpf_jit_alloc_exec_limit() helper
function which returns the possible size of the memory area for deriving
the default heuristic in bpf_jit_charge_init().
Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new
bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default
JIT memory provider, and therefore in case archs implement their custom
module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for
vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}.
Additionally, for archs supporting large page sizes, we should change
the sysctl to be handled as long to not run into sysctl restrictions
in future.
Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations")
Reported-by: Sandipan Das <sandipan@linux.ibm.com>
Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-11 14:14:12 +03:00
. proc_handler = proc_dolongvec_minmax_bpf_restricted ,
2022-05-01 06:55:22 +03:00
. extra1 = SYSCTL_LONG_ONE ,
2021-10-14 17:25:53 +03:00
. extra2 = & bpf_jit_limit_max ,
2018-10-23 02:11:04 +03:00
} ,
2011-04-20 13:27:32 +04:00
# endif
net: Consistent skb timestamping
With RPS inclusion, skb timestamping is not consistent in RX path.
If netif_receive_skb() is used, its deferred after RPS dispatch.
If netif_rx() is used, its done before RPS dispatch.
This can give strange tcpdump timestamps results.
I think timestamping should be done as soon as possible in the receive
path, to get meaningful values (ie timestamps taken at the time packet
was delivered by NIC driver to our stack), even if NAPI already can
defer timestamping a bit (RPS can help to reduce the gap)
Tom Herbert prefer to sample timestamps after RPS dispatch. In case
sampling is expensive (HPET/acpi_pm on x86), this makes sense.
Let admins switch from one mode to another, using a new
sysctl, /proc/sys/net/core/netdev_tstamp_prequeue
Its default value (1), means timestamps are taken as soon as possible,
before backlog queueing, giving accurate timestamps.
Setting a 0 value permits to sample timestamps when processing backlog,
after RPS dispatch, to lower the load of the pre-RPS cpu.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-16 10:57:10 +04:00
{
. procname = " netdev_tstamp_prequeue " ,
. data = & netdev_tstamp_prequeue ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec
} ,
2005-04-17 02:20:36 +04:00
{
. procname = " message_cost " ,
2008-07-25 12:45:58 +04:00
. data = & net_ratelimit_state . interval ,
2005-04-17 02:20:36 +04:00
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2008-11-04 05:21:05 +03:00
. proc_handler = proc_dointvec_jiffies ,
2005-04-17 02:20:36 +04:00
} ,
{
. procname = " message_burst " ,
2008-07-25 12:45:58 +04:00
. data = & net_ratelimit_state . burst ,
2005-04-17 02:20:36 +04:00
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2008-11-04 05:21:05 +03:00
. proc_handler = proc_dointvec ,
2005-04-17 02:20:36 +04:00
} ,
{
. procname = " optmem_max " ,
. data = & sysctl_optmem_max ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2008-11-04 05:21:05 +03:00
. proc_handler = proc_dointvec
2005-04-17 02:20:36 +04:00
} ,
2015-01-30 21:29:32 +03:00
{
. procname = " tstamp_allow_data " ,
. data = & sysctl_tstamp_allow_data ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
. extra2 = SYSCTL_ONE
2015-01-30 21:29:32 +03:00
} ,
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers
received packets for layer 3 and 4 processing to the CPU where
the application for the corresponding flow is running. RFS is an
extension of Receive Packet Steering (RPS).
The basic idea of RFS is that when an application calls recvmsg
(or sendmsg) the application's running CPU is stored in a hash
table that is indexed by the connection's rxhash which is stored in
the socket structure. The rxhash is passed in skb's received on
the connection from netif_receive_skb. For each received packet,
the associated rxhash is used to look up the CPU in the hash table,
if a valid CPU is set then the packet is steered to that CPU using
the RPS mechanisms.
The convolution of the simple approach is that it would potentially
allow OOO packets. If threads are thrashing around CPUs or multiple
threads are trying to read from the same sockets, a quickly changing
CPU value in the hash table could cause rampant OOO packets--
we consider this a non-starter.
To avoid OOO packets, this solution implements two types of hash
tables: rps_sock_flow_table and rps_dev_flow_table.
rps_sock_table is a global hash table. Each entry is just a CPU
number and it is populated in recvmsg and sendmsg as described above.
This table contains the "desired" CPUs for flows.
rps_dev_flow_table is specific to each device queue. Each entry
contains a CPU and a tail queue counter. The CPU is the "current"
CPU for a matching flow. The tail queue counter holds the value
of a tail queue counter for the associated CPU's backlog queue at
the time of last enqueue for a flow matching the entry.
Each backlog queue has a queue head counter which is incremented
on dequeue, and so a queue tail counter is computed as queue head
count + queue length. When a packet is enqueued on a backlog queue,
the current value of the queue tail counter is saved in the hash
entry of the rps_dev_flow_table.
And now the trick: when selecting the CPU for RPS (get_rps_cpu)
the rps_sock_flow table and the rps_dev_flow table for the RX queue
are consulted. When the desired CPU for the flow (found in the
rps_sock_flow table) does not match the current CPU (found in the
rps_dev_flow table), the current CPU is changed to the desired CPU
if one of the following is true:
- The current CPU is unset (equal to RPS_NO_CPU)
- Current CPU is offline
- The current CPU's queue head counter >= queue tail counter in the
rps_dev_flow table. This checks if the queue tail has advanced
beyond the last packet that was enqueued using this table entry.
This guarantees that all packets queued using this entry have been
dequeued, thus preserving in order delivery.
Making each queue have its own rps_dev_flow table has two advantages:
1) the tail queue counters will be written on each receive, so
keeping the table local to interrupting CPU s good for locality. 2)
this allows lockless access to the table-- the CPU number and queue
tail counter need to be accessed together under mutual exclusion
from netif_receive_skb, we assume that this is only called from
device napi_poll which is non-reentrant.
This patch implements RFS for TCP and connected UDP sockets.
It should be usable for other flow oriented protocols.
There are two configuration parameters for RFS. The
"rps_flow_entries" kernel init parameter sets the number of
entries in the rps_sock_flow_table, the per rxqueue sysfs entry
"rps_flow_cnt" contains the number of entries in the rps_dev_flow
table for the rxqueue. Both are rounded to power of two.
The obvious benefit of RFS (over just RPS) is that it achieves
CPU locality between the receive processing for a flow and the
applications processing; this can result in increased performance
(higher pps, lower latency).
The benefits of RFS are dependent on cache hierarchy, application
load, and other factors. On simple benchmarks, we don't necessarily
see improvement and sometimes see degradation. However, for more
complex benchmarks and for applications where cache pressure is
much higher this technique seems to perform very well.
Below are some benchmark results which show the potential benfit of
this patch. The netperf test has 500 instances of netperf TCP_RR
test with 1 byte req. and resp. The RPC test is an request/response
test similar in structure to netperf RR test ith 100 threads on
each host, but does more work in userspace that netperf.
e1000e on 8 core Intel
No RFS or RPS 104K tps at 30% CPU
No RFS (best RPS config): 290K tps at 63% CPU
RFS 303K tps at 61% CPU
RPC test tps CPU% 50/90/99% usec latency Latency StdDev
No RFS/RPS 103K 48% 757/900/3185 4472.35
RPS only: 174K 73% 415/993/2468 491.66
RFS 223K 73% 379/651/1382 315.61
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-17 03:01:27 +04:00
# ifdef CONFIG_RPS
{
. procname = " rps_sock_flow_entries " ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = rps_sock_flow_sysctl
} ,
# endif
2013-05-20 08:02:32 +04:00
# ifdef CONFIG_NET_FLOW_LIMIT
{
. procname = " flow_limit_cpu_bitmap " ,
. mode = 0644 ,
. proc_handler = flow_limit_cpu_sysctl
} ,
{
. procname = " flow_limit_table_len " ,
. data = & netdev_flow_limit_table_len ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = flow_limit_table_len_sysctl
} ,
# endif /* CONFIG_NET_FLOW_LIMIT */
2013-08-01 07:10:25 +04:00
# ifdef CONFIG_NET_RX_BUSY_POLL
2013-06-10 12:39:50 +04:00
{
2013-07-10 18:13:36 +04:00
. procname = " busy_poll " ,
. data = & sysctl_net_busy_poll ,
2013-06-14 17:33:25 +04:00
. maxlen = sizeof ( unsigned int ) ,
2013-06-10 12:39:50 +04:00
. mode = 0644 ,
2017-03-24 19:38:03 +03:00
. proc_handler = proc_dointvec_minmax ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2013-06-10 12:39:50 +04:00
} ,
2013-06-24 11:28:03 +04:00
{
2013-07-10 18:13:36 +04:00
. procname = " busy_read " ,
. data = & sysctl_net_busy_read ,
2013-06-24 11:28:03 +04:00
. maxlen = sizeof ( unsigned int ) ,
. mode = 0644 ,
2017-03-24 19:38:03 +03:00
. proc_handler = proc_dointvec_minmax ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2013-06-24 11:28:03 +04:00
} ,
2013-08-28 03:19:08 +04:00
# endif
# ifdef CONFIG_NET_SCHED
{
. procname = " default_qdisc " ,
. mode = 0644 ,
. maxlen = IFNAMSIZ ,
. proc_handler = set_default_qdisc
} ,
2013-06-10 12:39:50 +04:00
# endif
2005-06-24 07:14:40 +04:00
{
. procname = " netdev_budget " ,
. data = & netdev_budget ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2008-11-04 05:21:05 +03:00
. proc_handler = proc_dointvec
2005-06-24 07:14:40 +04:00
} ,
2007-03-09 07:41:08 +03:00
{
. procname = " warnings " ,
. data = & net_msg_warn ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
2008-11-04 05:21:05 +03:00
. proc_handler = proc_dointvec
2007-03-09 07:41:08 +03:00
} ,
2016-02-03 11:26:57 +03:00
{
. procname = " max_skb_frags " ,
. data = & sysctl_max_skb_frags ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ONE ,
2016-02-03 11:26:57 +03:00
. extra2 = & max_skb_frags ,
} ,
2017-04-19 19:37:10 +03:00
{
. procname = " netdev_budget_usecs " ,
. data = & netdev_budget_usecs ,
. maxlen = sizeof ( unsigned int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2017-04-19 19:37:10 +03:00
} ,
net: do not create fallback tunnels for non-default namespaces
fallback tunnels (like tunl0, gre0, gretap0, erspan0, sit0,
ip6tnl0, ip6gre0) are automatically created when the corresponding
module is loaded.
These tunnels are also automatically created when a new network
namespace is created, at a great cost.
In many cases, netns are used for isolation purposes, and these
extra network devices are a waste of resources. We are using
thousands of netns per host, and hit the netns creation/delete
bottleneck a lot. (Many thanks to Kirill for recent work on this)
Add a new sysctl so that we can opt-out from this automatic creation.
Note that these tunnels are still created for the initial namespace,
to be the least intrusive for typical setups.
Tested:
lpk43:~# cat add_del_unshare.sh
for i in `seq 1 40`
do
(for j in `seq 1 100` ; do unshare -n /bin/true >/dev/null ; done) &
done
wait
lpk43:~# echo 0 >/proc/sys/net/core/fb_tunnels_only_for_init_net
lpk43:~# time ./add_del_unshare.sh
real 0m37.521s
user 0m0.886s
sys 7m7.084s
lpk43:~# echo 1 >/proc/sys/net/core/fb_tunnels_only_for_init_net
lpk43:~# time ./add_del_unshare.sh
real 0m4.761s
user 0m0.851s
sys 1m8.343s
lpk43:~#
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-08 23:51:41 +03:00
{
. procname = " fb_tunnels_only_for_init_net " ,
. data = & sysctl_fb_tunnels_only_for_init_net ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2022-05-01 06:55:22 +03:00
. extra2 = SYSCTL_TWO ,
net: do not create fallback tunnels for non-default namespaces
fallback tunnels (like tunl0, gre0, gretap0, erspan0, sit0,
ip6tnl0, ip6gre0) are automatically created when the corresponding
module is loaded.
These tunnels are also automatically created when a new network
namespace is created, at a great cost.
In many cases, netns are used for isolation purposes, and these
extra network devices are a waste of resources. We are using
thousands of netns per host, and hit the netns creation/delete
bottleneck a lot. (Many thanks to Kirill for recent work on this)
Add a new sysctl so that we can opt-out from this automatic creation.
Note that these tunnels are still created for the initial namespace,
to be the least intrusive for typical setups.
Tested:
lpk43:~# cat add_del_unshare.sh
for i in `seq 1 40`
do
(for j in `seq 1 100` ; do unshare -n /bin/true >/dev/null ; done) &
done
wait
lpk43:~# echo 0 >/proc/sys/net/core/fb_tunnels_only_for_init_net
lpk43:~# time ./add_del_unshare.sh
real 0m37.521s
user 0m0.886s
sys 7m7.084s
lpk43:~# echo 1 >/proc/sys/net/core/fb_tunnels_only_for_init_net
lpk43:~# time ./add_del_unshare.sh
real 0m4.761s
user 0m0.851s
sys 1m8.343s
lpk43:~#
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-08 23:51:41 +03:00
} ,
2019-01-18 10:27:11 +03:00
{
. procname = " devconf_inherit_init_net " ,
. data = & sysctl_devconf_inherit_init_net ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2022-05-01 06:55:23 +03:00
. extra2 = SYSCTL_THREE ,
2019-01-18 10:27:11 +03:00
} ,
2019-06-15 02:22:21 +03:00
{
. procname = " high_order_alloc_disable " ,
. data = & net_high_order_alloc_disable_key . key ,
. maxlen = sizeof ( net_high_order_alloc_disable_key ) ,
. mode = 0644 ,
. proc_handler = proc_do_static_key ,
} ,
net: use listified RX for handling GRO_NORMAL skbs
When GRO decides not to coalesce a packet, in napi_frags_finish(), instead
of passing it to the stack immediately, place it on a list in the napi
struct. Then, at flush time (napi_complete_done(), napi_poll(), or
napi_busy_loop()), call netif_receive_skb_list_internal() on the list.
We'd like to do that in napi_gro_flush(), but it's not called if
!napi->gro_bitmask, so we have to do it in the callers instead. (There are
a handful of drivers that call napi_gro_flush() themselves, but it's not
clear why, or whether this will affect them.)
Because a full 64 packets is an inefficiently large batch, also consume the
list whenever it exceeds gro_normal_batch, a new net/core sysctl that
defaults to 8.
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-06 16:53:55 +03:00
{
. procname = " gro_normal_batch " ,
. data = & gro_normal_batch ,
. maxlen = sizeof ( unsigned int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
. extra1 = SYSCTL_ONE ,
} ,
2021-03-23 09:49:23 +03:00
{
. procname = " netdev_unregister_timeout_secs " ,
. data = & netdev_unregister_timeout_secs ,
. maxlen = sizeof ( unsigned int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
2021-03-25 17:52:45 +03:00
. extra1 = SYSCTL_ONE ,
2021-03-23 09:49:23 +03:00
. extra2 = & int_3600 ,
} ,
2022-05-16 07:24:55 +03:00
{
. procname = " skb_defer_max " ,
. data = & sysctl_skb_defer_max ,
. maxlen = sizeof ( unsigned int ) ,
. mode = 0644 ,
. proc_handler = proc_dointvec_minmax ,
. extra1 = SYSCTL_ZERO ,
} ,
2009-11-06 00:32:03 +03:00
{ }
2005-04-17 02:20:36 +04:00
} ;
2007-12-05 12:37:34 +03:00
2008-05-20 00:49:52 +04:00
static struct ctl_table netns_core_table [ ] = {
{
. procname = " somaxconn " ,
. data = & init_net . core . sysctl_somaxconn ,
. maxlen = sizeof ( int ) ,
. mode = 0644 ,
proc/sysctl: add shared variables for range check
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-19 01:58:50 +03:00
. extra1 = SYSCTL_ZERO ,
2013-08-02 18:36:40 +04:00
. proc_handler = proc_dointvec_minmax
2008-05-20 00:49:52 +04:00
} ,
2022-01-31 16:31:21 +03:00
{
. procname = " txrehash " ,
. data = & init_net . core . sysctl_txrehash ,
. maxlen = sizeof ( u8 ) ,
. mode = 0644 ,
. extra1 = SYSCTL_ZERO ,
. extra2 = SYSCTL_ONE ,
. proc_handler = proc_dou8vec_minmax ,
} ,
2009-11-06 00:32:03 +03:00
{ }
2008-05-20 00:49:52 +04:00
} ;
2020-08-26 19:05:35 +03:00
static int __init fb_tunnels_only_for_init_net_sysctl_setup ( char * str )
{
/* fallback tunnels for initns only */
if ( ! strncmp ( str , " initns " , 6 ) )
sysctl_fb_tunnels_only_for_init_net = 1 ;
/* no fallback tunnels anywhere */
else if ( ! strncmp ( str , " none " , 4 ) )
sysctl_fb_tunnels_only_for_init_net = 2 ;
return 1 ;
}
__setup ( " fb_tunnels= " , fb_tunnels_only_for_init_net_sysctl_setup ) ;
2007-12-08 11:09:24 +03:00
static __net_init int sysctl_core_net_init ( struct net * net )
2007-12-05 12:37:34 +03:00
{
2022-01-31 16:31:21 +03:00
struct ctl_table * tbl , * tmp ;
2007-12-08 11:09:24 +03:00
2008-05-20 00:49:52 +04:00
tbl = netns_core_table ;
2009-11-26 02:14:13 +03:00
if ( ! net_eq ( net , & init_net ) ) {
2008-05-20 00:49:52 +04:00
tbl = kmemdup ( tbl , sizeof ( netns_core_table ) , GFP_KERNEL ) ;
2007-12-08 11:09:24 +03:00
if ( tbl = = NULL )
goto err_dup ;
2022-01-31 16:31:21 +03:00
for ( tmp = tbl ; tmp - > procname ; tmp + + )
tmp - > data + = ( char * ) net - ( char * ) & init_net ;
2012-11-16 07:02:59 +04:00
/* Don't export any sysctls to unprivileged users */
if ( net - > user_ns ! = & init_user_ns ) {
tbl [ 0 ] . procname = NULL ;
}
2007-12-08 11:09:24 +03:00
}
2012-04-19 17:44:49 +04:00
net - > core . sysctl_hdr = register_net_sysctl ( net , " net/core " , tbl ) ;
2008-04-01 06:41:14 +04:00
if ( net - > core . sysctl_hdr = = NULL )
2007-12-08 11:09:24 +03:00
goto err_reg ;
2007-12-05 12:37:34 +03:00
2007-12-08 11:09:24 +03:00
return 0 ;
err_reg :
2008-05-20 00:49:52 +04:00
if ( tbl ! = netns_core_table )
2007-12-08 11:09:24 +03:00
kfree ( tbl ) ;
err_dup :
return - ENOMEM ;
}
static __net_exit void sysctl_core_net_exit ( struct net * net )
{
struct ctl_table * tbl ;
2008-04-01 06:41:14 +04:00
tbl = net - > core . sysctl_hdr - > ctl_table_arg ;
unregister_net_sysctl_table ( net - > core . sysctl_hdr ) ;
2008-05-20 00:49:52 +04:00
BUG_ON ( tbl = = netns_core_table ) ;
2007-12-08 11:09:24 +03:00
kfree ( tbl ) ;
}
static __net_initdata struct pernet_operations sysctl_core_ops = {
. init = sysctl_core_net_init ,
. exit = sysctl_core_net_exit ,
} ;
static __init int sysctl_core_init ( void )
{
2012-04-19 17:22:55 +04:00
register_net_sysctl ( & init_net , " net/core " , net_core_table ) ;
2007-12-08 11:09:24 +03:00
return register_pernet_subsys ( & sysctl_core_ops ) ;
2007-12-05 12:37:34 +03:00
}
2008-11-26 05:00:48 +03:00
fs_initcall ( sysctl_core_init ) ;