1448 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
* Copyright (c) 2004 Intel Corporation. All rights reserved.
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_cache.h>
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
#include <rdma/ib_addr.h>
#include "core_priv.h"
int ib_rate_to_mult(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 1;
case IB_RATE_5_GBPS: return 2;
case IB_RATE_10_GBPS: return 4;
case IB_RATE_20_GBPS: return 8;
case IB_RATE_30_GBPS: return 12;
case IB_RATE_40_GBPS: return 16;
case IB_RATE_60_GBPS: return 24;
case IB_RATE_80_GBPS: return 32;
case IB_RATE_120_GBPS: return 48;
default: return -1;
}
}
EXPORT_SYMBOL(ib_rate_to_mult);
enum ib_rate mult_to_ib_rate(int mult)
{
switch (mult) {
case 1: return IB_RATE_2_5_GBPS;
case 2: return IB_RATE_5_GBPS;
case 4: return IB_RATE_10_GBPS;
case 8: return IB_RATE_20_GBPS;
case 12: return IB_RATE_30_GBPS;
case 16: return IB_RATE_40_GBPS;
case 24: return IB_RATE_60_GBPS;
case 32: return IB_RATE_80_GBPS;
case 48: return IB_RATE_120_GBPS;
default: return IB_RATE_PORT_CURRENT;
}
}
EXPORT_SYMBOL(mult_to_ib_rate);
int ib_rate_to_mbps(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 2500;
case IB_RATE_5_GBPS: return 5000;
case IB_RATE_10_GBPS: return 10000;
case IB_RATE_20_GBPS: return 20000;
case IB_RATE_30_GBPS: return 30000;
case IB_RATE_40_GBPS: return 40000;
case IB_RATE_60_GBPS: return 60000;
case IB_RATE_80_GBPS: return 80000;
case IB_RATE_120_GBPS: return 120000;
case IB_RATE_14_GBPS: return 14062;
case IB_RATE_56_GBPS: return 56250;
case IB_RATE_112_GBPS: return 112500;
case IB_RATE_168_GBPS: return 168750;
case IB_RATE_25_GBPS: return 25781;
case IB_RATE_100_GBPS: return 103125;
case IB_RATE_200_GBPS: return 206250;
case IB_RATE_300_GBPS: return 309375;
default: return -1;
}
}
EXPORT_SYMBOL(ib_rate_to_mbps);
enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type)
{
switch (node_type) {
case RDMA_NODE_IB_CA:
case RDMA_NODE_IB_SWITCH:
case RDMA_NODE_IB_ROUTER:
return RDMA_TRANSPORT_IB;
case RDMA_NODE_RNIC:
return RDMA_TRANSPORT_IWARP;
case RDMA_NODE_USNIC:
return RDMA_TRANSPORT_USNIC;
case RDMA_NODE_USNIC_UDP:
return RDMA_TRANSPORT_USNIC_UDP;
default:
BUG();
return 0;
}
}
EXPORT_SYMBOL(rdma_node_get_transport);
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
{
if (device->get_link_layer)
return device->get_link_layer(device, port_num);
switch (rdma_node_get_transport(device->node_type)) {
case RDMA_TRANSPORT_IB:
return IB_LINK_LAYER_INFINIBAND;
case RDMA_TRANSPORT_IWARP:
case RDMA_TRANSPORT_USNIC:
case RDMA_TRANSPORT_USNIC_UDP:
return IB_LINK_LAYER_ETHERNET;
default:
return IB_LINK_LAYER_UNSPECIFIED;
}
}
EXPORT_SYMBOL(rdma_port_get_link_layer);
/* Protection domains */
struct ib_pd *ib_alloc_pd(struct ib_device *device)
{
struct ib_pd *pd;
pd = device->alloc_pd(device, NULL, NULL);
if (!IS_ERR(pd)) {
pd->device = device;
pd->uobject = NULL;
atomic_set(&pd->usecnt, 0);
}
return pd;
}
EXPORT_SYMBOL(ib_alloc_pd);
int ib_dealloc_pd(struct ib_pd *pd)
{
if (atomic_read(&pd->usecnt))
return -EBUSY;
return pd->device->dealloc_pd(pd);
}
EXPORT_SYMBOL(ib_dealloc_pd);
/* Address handles */
struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
{
struct ib_ah *ah;
ah = pd->device->create_ah(pd, ah_attr);
if (!IS_ERR(ah)) {
ah->device = pd->device;
ah->pd = pd;
ah->uobject = NULL;
atomic_inc(&pd->usecnt);
}
return ah;
}
EXPORT_SYMBOL(ib_create_ah);
int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
struct ib_grh *grh, struct ib_ah_attr *ah_attr)
{
u32 flow_class;
u16 gid_index;
int ret;
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
int is_eth = (rdma_port_get_link_layer(device, port_num) ==
IB_LINK_LAYER_ETHERNET);
memset(ah_attr, 0, sizeof *ah_attr);
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
if (is_eth) {
if (!(wc->wc_flags & IB_WC_GRH))
return -EPROTOTYPE;
if (wc->wc_flags & IB_WC_WITH_SMAC &&
wc->wc_flags & IB_WC_WITH_VLAN) {
memcpy(ah_attr->dmac, wc->smac, ETH_ALEN);
ah_attr->vlan_id = wc->vlan_id;
} else {
ret = rdma_addr_find_dmac_by_grh(&grh->dgid, &grh->sgid,
ah_attr->dmac, &ah_attr->vlan_id);
if (ret)
return ret;
}
} else {
ah_attr->vlan_id = 0xffff;
}
ah_attr->dlid = wc->slid;
ah_attr->sl = wc->sl;
ah_attr->src_path_bits = wc->dlid_path_bits;
ah_attr->port_num = port_num;
if (wc->wc_flags & IB_WC_GRH) {
ah_attr->ah_flags = IB_AH_GRH;
ah_attr->grh.dgid = grh->sgid;
ret = ib_find_cached_gid(device, &grh->dgid, &port_num,
&gid_index);
if (ret)
return ret;
ah_attr->grh.sgid_index = (u8) gid_index;
flow_class = be32_to_cpu(grh->version_tclass_flow);
ah_attr->grh.flow_label = flow_class & 0xFFFFF;
ah_attr->grh.hop_limit = 0xFF;
ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
}
return 0;
}
EXPORT_SYMBOL(ib_init_ah_from_wc);
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
struct ib_grh *grh, u8 port_num)
{
struct ib_ah_attr ah_attr;
int ret;
ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
if (ret)
return ERR_PTR(ret);
return ib_create_ah(pd, &ah_attr);
}
EXPORT_SYMBOL(ib_create_ah_from_wc);
int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
{
return ah->device->modify_ah ?
ah->device->modify_ah(ah, ah_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_modify_ah);
int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
{
return ah->device->query_ah ?
ah->device->query_ah(ah, ah_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_query_ah);
int ib_destroy_ah(struct ib_ah *ah)
{
struct ib_pd *pd;
int ret;
pd = ah->pd;
ret = ah->device->destroy_ah(ah);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_destroy_ah);
/* Shared receive queues */
struct ib_srq *ib_create_srq(struct ib_pd *pd,
struct ib_srq_init_attr *srq_init_attr)
{
struct ib_srq *srq;
if (!pd->device->create_srq)
return ERR_PTR(-ENOSYS);
srq = pd->device->create_srq(pd, srq_init_attr, NULL);
if (!IS_ERR(srq)) {
srq->device = pd->device;
srq->pd = pd;
srq->uobject = NULL;
srq->event_handler = srq_init_attr->event_handler;
srq->srq_context = srq_init_attr->srq_context;
srq->srq_type = srq_init_attr->srq_type;
if (srq->srq_type == IB_SRQT_XRC) {
srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
atomic_inc(&srq->ext.xrc.xrcd->usecnt);
atomic_inc(&srq->ext.xrc.cq->usecnt);
}
atomic_inc(&pd->usecnt);
atomic_set(&srq->usecnt, 0);
}
return srq;
}
EXPORT_SYMBOL(ib_create_srq);
int ib_modify_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask)
{
return srq->device->modify_srq ?
srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_modify_srq);
int ib_query_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr)
{
return srq->device->query_srq ?
srq->device->query_srq(srq, srq_attr) : -ENOSYS;
}
EXPORT_SYMBOL(ib_query_srq);
int ib_destroy_srq(struct ib_srq *srq)
{
struct ib_pd *pd;
enum ib_srq_type srq_type;
struct ib_xrcd *uninitialized_var(xrcd);
struct ib_cq *uninitialized_var(cq);
int ret;
if (atomic_read(&srq->usecnt))
return -EBUSY;
pd = srq->pd;
srq_type = srq->srq_type;
if (srq_type == IB_SRQT_XRC) {
xrcd = srq->ext.xrc.xrcd;
cq = srq->ext.xrc.cq;
}
ret = srq->device->destroy_srq(srq);
if (!ret) {
atomic_dec(&pd->usecnt);
if (srq_type == IB_SRQT_XRC) {
atomic_dec(&xrcd->usecnt);
atomic_dec(&cq->usecnt);
}
}
return ret;
}
EXPORT_SYMBOL(ib_destroy_srq);
/* Queue pairs */
static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
{
struct ib_qp *qp = context;
unsigned long flags;
spin_lock_irqsave(&qp->device->event_handler_lock, flags);
list_for_each_entry(event->element.qp, &qp->open_list, open_list)
if (event->element.qp->event_handler)
event->element.qp->event_handler(event, event->element.qp->qp_context);
spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
}
static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
{
mutex_lock(&xrcd->tgt_qp_mutex);
list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
mutex_unlock(&xrcd->tgt_qp_mutex);
}
static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
void (*event_handler)(struct ib_event *, void *),
void *qp_context)
{
struct ib_qp *qp;
unsigned long flags;
qp = kzalloc(sizeof *qp, GFP_KERNEL);
if (!qp)
return ERR_PTR(-ENOMEM);
qp->real_qp = real_qp;
atomic_inc(&real_qp->usecnt);
qp->device = real_qp->device;
qp->event_handler = event_handler;
qp->qp_context = qp_context;
qp->qp_num = real_qp->qp_num;
qp->qp_type = real_qp->qp_type;
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
list_add(&qp->open_list, &real_qp->open_list);
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
return qp;
}
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
struct ib_qp_open_attr *qp_open_attr)
{
struct ib_qp *qp, *real_qp;
if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
return ERR_PTR(-EINVAL);
qp = ERR_PTR(-EINVAL);
mutex_lock(&xrcd->tgt_qp_mutex);
list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
if (real_qp->qp_num == qp_open_attr->qp_num) {
qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
qp_open_attr->qp_context);
break;
}
}
mutex_unlock(&xrcd->tgt_qp_mutex);
return qp;
}
EXPORT_SYMBOL(ib_open_qp);
struct ib_qp *ib_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct ib_qp *qp, *real_qp;
struct ib_device *device;
device = pd ? pd->device : qp_init_attr->xrcd->device;
qp = device->create_qp(pd, qp_init_attr, NULL);
if (!IS_ERR(qp)) {
qp->device = device;
qp->real_qp = qp;
qp->uobject = NULL;
qp->qp_type = qp_init_attr->qp_type;
atomic_set(&qp->usecnt, 0);
if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
qp->event_handler = __ib_shared_qp_event_handler;
qp->qp_context = qp;
qp->pd = NULL;
qp->send_cq = qp->recv_cq = NULL;
qp->srq = NULL;
qp->xrcd = qp_init_attr->xrcd;
atomic_inc(&qp_init_attr->xrcd->usecnt);
INIT_LIST_HEAD(&qp->open_list);
real_qp = qp;
qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
qp_init_attr->qp_context);
if (!IS_ERR(qp))
__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
else
real_qp->device->destroy_qp(real_qp);
} else {
qp->event_handler = qp_init_attr->event_handler;
qp->qp_context = qp_init_attr->qp_context;
if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
qp->recv_cq = NULL;
qp->srq = NULL;
} else {
qp->recv_cq = qp_init_attr->recv_cq;
atomic_inc(&qp_init_attr->recv_cq->usecnt);
qp->srq = qp_init_attr->srq;
if (qp->srq)
atomic_inc(&qp_init_attr->srq->usecnt);
}
qp->pd = pd;
qp->send_cq = qp_init_attr->send_cq;
qp->xrcd = NULL;
atomic_inc(&pd->usecnt);
atomic_inc(&qp_init_attr->send_cq->usecnt);
}
}
return qp;
}
EXPORT_SYMBOL(ib_create_qp);
static const struct {
int valid;
enum ib_qp_attr_mask req_param[IB_QPT_MAX];
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
enum ib_qp_attr_mask req_param_add_eth[IB_QPT_MAX];
enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
enum ib_qp_attr_mask opt_param_add_eth[IB_QPT_MAX];
} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_RAW_PACKET] = IB_QP_PORT,
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
},
[IB_QPS_INIT] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
[IB_QPS_RTR] = {
.valid = 1,
.req_param = {
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN),
[IB_QPT_RC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_XRC_INI] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN),
[IB_QPT_XRC_TGT] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_MIN_RNR_TIMER),
},
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
.req_param_add_eth = {
[IB_QPT_RC] = (IB_QP_SMAC),
[IB_QPT_UC] = (IB_QP_SMAC),
[IB_QPT_XRC_INI] = (IB_QP_SMAC),
[IB_QPT_XRC_TGT] = (IB_QP_SMAC)
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_RC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
},
.opt_param_add_eth = {
[IB_QPT_RC] = (IB_QP_ALT_SMAC |
IB_QP_VID |
IB_QP_ALT_VID),
[IB_QPT_UC] = (IB_QP_ALT_SMAC |
IB_QP_VID |
IB_QP_ALT_VID),
[IB_QPT_XRC_INI] = (IB_QP_ALT_SMAC |
IB_QP_VID |
IB_QP_ALT_VID),
[IB_QPT_XRC_TGT] = (IB_QP_ALT_SMAC |
IB_QP_VID |
IB_QP_ALT_VID)
}
}
},
[IB_QPS_RTR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = IB_QP_SQ_PSN,
[IB_QPT_UC] = IB_QP_SQ_PSN,
[IB_QPT_RC] = (IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_SQ_PSN |
IB_QP_MAX_QP_RD_ATOMIC),
[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_SQ_PSN |
IB_QP_MAX_QP_RD_ATOMIC),
[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
IB_QP_SQ_PSN),
[IB_QPT_SMI] = IB_QP_SQ_PSN,
[IB_QPT_GSI] = IB_QP_SQ_PSN,
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
}
},
[IB_QPS_RTS] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
}
},
},
[IB_QPS_SQD] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_MAX_QP_RD_ATOMIC |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_MAX_QP_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
}
},
[IB_QPS_SQE] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
}
},
[IB_QPS_ERR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 }
}
};
int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
enum ib_qp_type type, enum ib_qp_attr_mask mask,
enum rdma_link_layer ll)
{
enum ib_qp_attr_mask req_param, opt_param;
if (cur_state < 0 || cur_state > IB_QPS_ERR ||
next_state < 0 || next_state > IB_QPS_ERR)
return 0;
if (mask & IB_QP_CUR_STATE &&
cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
return 0;
if (!qp_state_table[cur_state][next_state].valid)
return 0;
req_param = qp_state_table[cur_state][next_state].req_param[type];
opt_param = qp_state_table[cur_state][next_state].opt_param[type];
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-12 18:03:11 +02:00
if (ll == IB_LINK_LAYER_ETHERNET) {
req_param |= qp_state_table[cur_state][next_state].
req_param_add_eth[type];
opt_param |= qp_state_table[cur_state][next_state].
opt_param_add_eth[type];
}
if ((mask & req_param) != req_param)
return 0;
if (mask & ~(req_param | opt_param | IB_QP_STATE))
return 0;
return 1;
}
EXPORT_SYMBOL(ib_modify_qp_is_ok);
int ib_resolve_eth_l2_attrs(struct ib_qp *qp,
struct ib_qp_attr *qp_attr, int *qp_attr_mask)
{
int ret = 0;
union ib_gid sgid;
if ((*qp_attr_mask & IB_QP_AV) &&
(rdma_port_get_link_layer(qp->device, qp_attr->ah_attr.port_num) == IB_LINK_LAYER_ETHERNET)) {
ret = ib_query_gid(qp->device, qp_attr->ah_attr.port_num,
qp_attr->ah_attr.grh.sgid_index, &sgid);
if (ret)
goto out;
if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw, qp_attr->ah_attr.dmac);
rdma_get_ll_mac((struct in6_addr *)sgid.raw, qp_attr->smac);
qp_attr->vlan_id = rdma_get_vlan_id(&sgid);
} else {
ret = rdma_addr_find_dmac_by_grh(&sgid, &qp_attr->ah_attr.grh.dgid,
qp_attr->ah_attr.dmac, &qp_attr->vlan_id);
if (ret)
goto out;
ret = rdma_addr_find_smac_by_sgid(&sgid, qp_attr->smac, NULL);
if (ret)
goto out;
}
*qp_attr_mask |= IB_QP_SMAC;
if (qp_attr->vlan_id < 0xFFFF)
*qp_attr_mask |= IB_QP_VID;
}
out:
return ret;
}
EXPORT_SYMBOL(ib_resolve_eth_l2_attrs);
int ib_modify_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask)
{
int ret;
ret = ib_resolve_eth_l2_attrs(qp, qp_attr, &qp_attr_mask);
if (ret)
return ret;
return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
}
EXPORT_SYMBOL(ib_modify_qp);
int ib_query_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr)
{
return qp->device->query_qp ?
qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_query_qp);
int ib_close_qp(struct ib_qp *qp)
{
struct ib_qp *real_qp;
unsigned long flags;
real_qp = qp->real_qp;
if (real_qp == qp)
return -EINVAL;
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
list_del(&qp->open_list);
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
atomic_dec(&real_qp->usecnt);
kfree(qp);
return 0;
}
EXPORT_SYMBOL(ib_close_qp);
static int __ib_destroy_shared_qp(struct ib_qp *qp)
{
struct ib_xrcd *xrcd;
struct ib_qp *real_qp;
int ret;
real_qp = qp->real_qp;
xrcd = real_qp->xrcd;
mutex_lock(&xrcd->tgt_qp_mutex);
ib_close_qp(qp);
if (atomic_read(&real_qp->usecnt) == 0)
list_del(&real_qp->xrcd_list);
else
real_qp = NULL;
mutex_unlock(&xrcd->tgt_qp_mutex);
if (real_qp) {
ret = ib_destroy_qp(real_qp);
if (!ret)
atomic_dec(&xrcd->usecnt);
else
__ib_insert_xrcd_qp(xrcd, real_qp);
}
return 0;
}
int ib_destroy_qp(struct ib_qp *qp)
{
struct ib_pd *pd;
struct ib_cq *scq, *rcq;
struct ib_srq *srq;
int ret;
if (atomic_read(&qp->usecnt))
return -EBUSY;
if (qp->real_qp != qp)
return __ib_destroy_shared_qp(qp);
pd = qp->pd;
scq = qp->send_cq;
rcq = qp->recv_cq;
srq = qp->srq;
ret = qp->device->destroy_qp(qp);
if (!ret) {
if (pd)
atomic_dec(&pd->usecnt);
if (scq)
atomic_dec(&scq->usecnt);
if (rcq)
atomic_dec(&rcq->usecnt);
if (srq)
atomic_dec(&srq->usecnt);
}
return ret;
}
EXPORT_SYMBOL(ib_destroy_qp);
/* Completion queues */
struct ib_cq *ib_create_cq(struct ib_device *device,
ib_comp_handler comp_handler,
void (*event_handler)(struct ib_event *, void *),
void *cq_context, int cqe, int comp_vector)
{
struct ib_cq *cq;
cq = device->create_cq(device, cqe, comp_vector, NULL, NULL);
if (!IS_ERR(cq)) {
cq->device = device;
cq->uobject = NULL;
cq->comp_handler = comp_handler;
cq->event_handler = event_handler;
cq->cq_context = cq_context;
atomic_set(&cq->usecnt, 0);
}
return cq;
}
EXPORT_SYMBOL(ib_create_cq);
int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
{
return cq->device->modify_cq ?
cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
}
EXPORT_SYMBOL(ib_modify_cq);
int ib_destroy_cq(struct ib_cq *cq)
{
if (atomic_read(&cq->usecnt))
return -EBUSY;
return cq->device->destroy_cq(cq);
}
EXPORT_SYMBOL(ib_destroy_cq);
int ib_resize_cq(struct ib_cq *cq, int cqe)
{
return cq->device->resize_cq ?
cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
}
EXPORT_SYMBOL(ib_resize_cq);
/* Memory regions */
struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
{
struct ib_mr *mr;
int err;
err = ib_check_mr_access(mr_access_flags);
if (err)
return ERR_PTR(err);
mr = pd->device->get_dma_mr(pd, mr_access_flags);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_get_dma_mr);
struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start)
{
struct ib_mr *mr;
int err;
err = ib_check_mr_access(mr_access_flags);
if (err)
return ERR_PTR(err);
if (!pd->device->reg_phys_mr)
return ERR_PTR(-ENOSYS);
mr = pd->device->reg_phys_mr(pd, phys_buf_array, num_phys_buf,
mr_access_flags, iova_start);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_reg_phys_mr);
int ib_rereg_phys_mr(struct ib_mr *mr,
int mr_rereg_mask,
struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start)
{
struct ib_pd *old_pd;
int ret;
ret = ib_check_mr_access(mr_access_flags);
if (ret)
return ret;
if (!mr->device->rereg_phys_mr)
return -ENOSYS;
if (atomic_read(&mr->usecnt))
return -EBUSY;
old_pd = mr->pd;
ret = mr->device->rereg_phys_mr(mr, mr_rereg_mask, pd,
phys_buf_array, num_phys_buf,
mr_access_flags, iova_start);
if (!ret && (mr_rereg_mask & IB_MR_REREG_PD)) {
atomic_dec(&old_pd->usecnt);
atomic_inc(&pd->usecnt);
}
return ret;
}
EXPORT_SYMBOL(ib_rereg_phys_mr);
int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr)
{
return mr->device->query_mr ?
mr->device->query_mr(mr, mr_attr) : -ENOSYS;
}
EXPORT_SYMBOL(ib_query_mr);
int ib_dereg_mr(struct ib_mr *mr)
{
struct ib_pd *pd;
int ret;
if (atomic_read(&mr->usecnt))
return -EBUSY;
pd = mr->pd;
ret = mr->device->dereg_mr(mr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dereg_mr);
struct ib_mr *ib_create_mr(struct ib_pd *pd,
struct ib_mr_init_attr *mr_init_attr)
{
struct ib_mr *mr;
if (!pd->device->create_mr)
return ERR_PTR(-ENOSYS);
mr = pd->device->create_mr(pd, mr_init_attr);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_create_mr);
int ib_destroy_mr(struct ib_mr *mr)
{
struct ib_pd *pd;
int ret;
if (atomic_read(&mr->usecnt))
return -EBUSY;
pd = mr->pd;
ret = mr->device->destroy_mr(mr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_destroy_mr);
RDMA/core: Add memory management extensions support This patch adds support for the IB "base memory management extension" (BMME) and the equivalent iWARP operations (which the iWARP verbs mandates all devices must implement). The new operations are: - Allocate an ib_mr for use in fast register work requests. - Allocate/free a physical buffer lists for use in fast register work requests. This allows device drivers to allocate this memory as needed for use in posting send requests (eg via dma_alloc_coherent). - New send queue work requests: * send with remote invalidate * fast register memory region * local invalidate memory region * RDMA read with invalidate local memory region (iWARP only) Consumer interface details: - A new device capability flag IB_DEVICE_MEM_MGT_EXTENSIONS is added to indicate device support for these features. - New send work request opcodes IB_WR_FAST_REG_MR, IB_WR_LOCAL_INV, IB_WR_RDMA_READ_WITH_INV are added. - A new consumer API function, ib_alloc_mr() is added to allocate fast register memory regions. - New consumer API functions, ib_alloc_fast_reg_page_list() and ib_free_fast_reg_page_list() are added to allocate and free device-specific memory for fast registration page lists. - A new consumer API function, ib_update_fast_reg_key(), is added to allow the key portion of the R_Key and L_Key of a fast registration MR to be updated. Consumers call this if desired before posting a IB_WR_FAST_REG_MR work request. Consumers can use this as follows: - MR is allocated with ib_alloc_mr(). - Page list memory is allocated with ib_alloc_fast_reg_page_list(). - MR R_Key/L_Key "key" field is updated with ib_update_fast_reg_key(). - MR made VALID and bound to a specific page list via ib_post_send(IB_WR_FAST_REG_MR) - MR made INVALID via ib_post_send(IB_WR_LOCAL_INV), ib_post_send(IB_WR_RDMA_READ_WITH_INV) or an incoming send with invalidate operation. - MR is deallocated with ib_dereg_mr() - page lists dealloced via ib_free_fast_reg_page_list(). Applications can allocate a fast register MR once, and then can repeatedly bind the MR to different physical block lists (PBLs) via posting work requests to a send queue (SQ). For each outstanding MR-to-PBL binding in the SQ pipe, a fast_reg_page_list needs to be allocated (the fast_reg_page_list is owned by the low-level driver from the consumer posting a work request until the request completes). Thus pipelining can be achieved while still allowing device-specific page_list processing. The 32-bit fast register memory key/STag is composed of a 24-bit index and an 8-bit key. The application can change the key each time it fast registers thus allowing more control over the peer's use of the key/STag (ie it can effectively be changed each time the rkey is rebound to a page list). Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-07-14 23:48:45 -07:00
struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len)
{
struct ib_mr *mr;
if (!pd->device->alloc_fast_reg_mr)
return ERR_PTR(-ENOSYS);
mr = pd->device->alloc_fast_reg_mr(pd, max_page_list_len);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_alloc_fast_reg_mr);
struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(struct ib_device *device,
int max_page_list_len)
{
struct ib_fast_reg_page_list *page_list;
if (!device->alloc_fast_reg_page_list)
return ERR_PTR(-ENOSYS);
page_list = device->alloc_fast_reg_page_list(device, max_page_list_len);
if (!IS_ERR(page_list)) {
page_list->device = device;
page_list->max_page_list_len = max_page_list_len;
}
return page_list;
}
EXPORT_SYMBOL(ib_alloc_fast_reg_page_list);
void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list)
{
page_list->device->free_fast_reg_page_list(page_list);
}
EXPORT_SYMBOL(ib_free_fast_reg_page_list);
/* Memory windows */
IB/core: Add "type 2" memory windows support This patch enhances the IB core support for Memory Windows (MWs). MWs allow an application to have better/flexible control over remote access to memory. Two types of MWs are supported, with the second type having two flavors: Type 1 - associated with PD only Type 2A - associated with QPN only Type 2B - associated with PD and QPN Applications can allocate a MW once, and then repeatedly bind the MW to different ranges in MRs that are associated to the same PD. Type 1 windows are bound through a verb, while type 2 windows are bound by posting a work request. The 32-bit memory key is composed of a 24-bit index and an 8-bit key. The key is changed with each bind, thus allowing more control over the peer's use of the memory key. The changes introduced are the following: * add memory window type enum and a corresponding parameter to ib_alloc_mw. * type 2 memory window bind work request support. * create a struct that contains the common part of the bind verb struct ibv_mw_bind and the bind work request into a single struct. * add the ib_inc_rkey helper function to advance the tag part of an rkey. Consumer interface details: * new device capability flags IB_DEVICE_MEM_WINDOW_TYPE_2A and IB_DEVICE_MEM_WINDOW_TYPE_2B are added to indicate device support for these features. Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B memory windows. It can set neither to indicate it doesn't support type 2 windows at all. * modify existing provides and consumers code to the new param of ib_alloc_mw and the ib_mw_bind_info structure Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Shani Michaeli <shanim@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-02-06 16:19:12 +00:00
struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
{
struct ib_mw *mw;
if (!pd->device->alloc_mw)
return ERR_PTR(-ENOSYS);
IB/core: Add "type 2" memory windows support This patch enhances the IB core support for Memory Windows (MWs). MWs allow an application to have better/flexible control over remote access to memory. Two types of MWs are supported, with the second type having two flavors: Type 1 - associated with PD only Type 2A - associated with QPN only Type 2B - associated with PD and QPN Applications can allocate a MW once, and then repeatedly bind the MW to different ranges in MRs that are associated to the same PD. Type 1 windows are bound through a verb, while type 2 windows are bound by posting a work request. The 32-bit memory key is composed of a 24-bit index and an 8-bit key. The key is changed with each bind, thus allowing more control over the peer's use of the memory key. The changes introduced are the following: * add memory window type enum and a corresponding parameter to ib_alloc_mw. * type 2 memory window bind work request support. * create a struct that contains the common part of the bind verb struct ibv_mw_bind and the bind work request into a single struct. * add the ib_inc_rkey helper function to advance the tag part of an rkey. Consumer interface details: * new device capability flags IB_DEVICE_MEM_WINDOW_TYPE_2A and IB_DEVICE_MEM_WINDOW_TYPE_2B are added to indicate device support for these features. Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B memory windows. It can set neither to indicate it doesn't support type 2 windows at all. * modify existing provides and consumers code to the new param of ib_alloc_mw and the ib_mw_bind_info structure Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Shani Michaeli <shanim@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-02-06 16:19:12 +00:00
mw = pd->device->alloc_mw(pd, type);
if (!IS_ERR(mw)) {
mw->device = pd->device;
mw->pd = pd;
mw->uobject = NULL;
IB/core: Add "type 2" memory windows support This patch enhances the IB core support for Memory Windows (MWs). MWs allow an application to have better/flexible control over remote access to memory. Two types of MWs are supported, with the second type having two flavors: Type 1 - associated with PD only Type 2A - associated with QPN only Type 2B - associated with PD and QPN Applications can allocate a MW once, and then repeatedly bind the MW to different ranges in MRs that are associated to the same PD. Type 1 windows are bound through a verb, while type 2 windows are bound by posting a work request. The 32-bit memory key is composed of a 24-bit index and an 8-bit key. The key is changed with each bind, thus allowing more control over the peer's use of the memory key. The changes introduced are the following: * add memory window type enum and a corresponding parameter to ib_alloc_mw. * type 2 memory window bind work request support. * create a struct that contains the common part of the bind verb struct ibv_mw_bind and the bind work request into a single struct. * add the ib_inc_rkey helper function to advance the tag part of an rkey. Consumer interface details: * new device capability flags IB_DEVICE_MEM_WINDOW_TYPE_2A and IB_DEVICE_MEM_WINDOW_TYPE_2B are added to indicate device support for these features. Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B memory windows. It can set neither to indicate it doesn't support type 2 windows at all. * modify existing provides and consumers code to the new param of ib_alloc_mw and the ib_mw_bind_info structure Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Shani Michaeli <shanim@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-02-06 16:19:12 +00:00
mw->type = type;
atomic_inc(&pd->usecnt);
}
return mw;
}
EXPORT_SYMBOL(ib_alloc_mw);
int ib_dealloc_mw(struct ib_mw *mw)
{
struct ib_pd *pd;
int ret;
pd = mw->pd;
ret = mw->device->dealloc_mw(mw);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dealloc_mw);
/* "Fast" memory regions */
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
int mr_access_flags,
struct ib_fmr_attr *fmr_attr)
{
struct ib_fmr *fmr;
if (!pd->device->alloc_fmr)
return ERR_PTR(-ENOSYS);
fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
if (!IS_ERR(fmr)) {
fmr->device = pd->device;
fmr->pd = pd;
atomic_inc(&pd->usecnt);
}
return fmr;
}
EXPORT_SYMBOL(ib_alloc_fmr);
int ib_unmap_fmr(struct list_head *fmr_list)
{
struct ib_fmr *fmr;
if (list_empty(fmr_list))
return 0;
fmr = list_entry(fmr_list->next, struct ib_fmr, list);
return fmr->device->unmap_fmr(fmr_list);
}
EXPORT_SYMBOL(ib_unmap_fmr);
int ib_dealloc_fmr(struct ib_fmr *fmr)
{
struct ib_pd *pd;
int ret;
pd = fmr->pd;
ret = fmr->device->dealloc_fmr(fmr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dealloc_fmr);
/* Multicast groups */
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
int ret;
if (!qp->device->attach_mcast)
return -ENOSYS;
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
return -EINVAL;
ret = qp->device->attach_mcast(qp, gid, lid);
if (!ret)
atomic_inc(&qp->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_attach_mcast);
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
int ret;
if (!qp->device->detach_mcast)
return -ENOSYS;
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
return -EINVAL;
ret = qp->device->detach_mcast(qp, gid, lid);
if (!ret)
atomic_dec(&qp->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_detach_mcast);
struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
{
struct ib_xrcd *xrcd;
if (!device->alloc_xrcd)
return ERR_PTR(-ENOSYS);
xrcd = device->alloc_xrcd(device, NULL, NULL);
if (!IS_ERR(xrcd)) {
xrcd->device = device;
xrcd->inode = NULL;
atomic_set(&xrcd->usecnt, 0);
mutex_init(&xrcd->tgt_qp_mutex);
INIT_LIST_HEAD(&xrcd->tgt_qp_list);
}
return xrcd;
}
EXPORT_SYMBOL(ib_alloc_xrcd);
int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
{
struct ib_qp *qp;
int ret;
if (atomic_read(&xrcd->usecnt))
return -EBUSY;
while (!list_empty(&xrcd->tgt_qp_list)) {
qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
ret = ib_destroy_qp(qp);
if (ret)
return ret;
}
return xrcd->device->dealloc_xrcd(xrcd);
}
EXPORT_SYMBOL(ib_dealloc_xrcd);
IB/core: Add receive flow steering support The RDMA stack allows for applications to create IB_QPT_RAW_PACKET QPs, which receive plain Ethernet packets, specifically packets that don't carry any QPN to be matched by the receiving side. Applications using these QPs must be provided with a method to program some steering rule with the HW so packets arriving at the local port can be routed to them. This patch adds ib_create_flow(), which allow providing a flow specification for a QP. When there's a match between the specification and a received packet, the packet is forwarded to that QP, in a the same way one uses ib_attach_multicast() for IB UD multicast handling. Flow specifications are provided as instances of struct ib_flow_spec_yyy, which describe L2, L3 and L4 headers. Currently specs for Ethernet, IPv4, TCP and UDP are defined. Flow specs are made of values and masks. The input to ib_create_flow() is a struct ib_flow_attr, which contains a few mandatory control elements and optional flow specs. struct ib_flow_attr { enum ib_flow_attr_type type; u16 size; u16 priority; u32 flags; u8 num_of_specs; u8 port; /* Following are the optional layers according to user request * struct ib_flow_spec_yyy * struct ib_flow_spec_zzz */ }; As these specs are eventually coming from user space, they are defined and used in a way which allows adding new spec types without kernel/user ABI change, just with a little API enhancement which defines the newly added spec. The flow spec structures are defined with TLV (Type-Length-Value) entries, which allows calling ib_create_flow() with a list of variable length of optional specs. For the actual processing of ib_flow_attr the driver uses the number of specs and the size mandatory fields along with the TLV nature of the specs. Steering rules processing order is according to the domain over which the rule is set and the rule priority. All rules set by user space applicatations fall into the IB_FLOW_DOMAIN_USER domain, other domains could be used by future IPoIB RFS and Ethetool flow-steering interface implementation. Lower numerical value for the priority field means higher priority. The returned value from ib_create_flow() is a struct ib_flow, which contains a database pointer (handle) provided by the HW driver to be used when calling ib_destroy_flow(). Applications that offload TCP/IP traffic can also be written over IB UD QPs. The ib_create_flow() / ib_destroy_flow() API is designed to support UD QPs too. A HW driver can set IB_DEVICE_MANAGED_FLOW_STEERING to denote support for flow steering. The ib_flow_attr enum type supports usage of flow steering for promiscuous and sniffer purposes: IB_FLOW_ATTR_NORMAL - "regular" rule, steering according to rule specification IB_FLOW_ATTR_ALL_DEFAULT - default unicast and multicast rule, receive all Ethernet traffic which isn't steered to any QP IB_FLOW_ATTR_MC_DEFAULT - same as IB_FLOW_ATTR_ALL_DEFAULT but only for multicast IB_FLOW_ATTR_SNIFFER - sniffer rule, receive all port traffic ALL_DEFAULT and MC_DEFAULT rules options are valid only for Ethernet link type. Signed-off-by: Hadar Hen Zion <hadarh@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-08-07 14:01:59 +03:00
struct ib_flow *ib_create_flow(struct ib_qp *qp,
struct ib_flow_attr *flow_attr,
int domain)
{
struct ib_flow *flow_id;
if (!qp->device->create_flow)
return ERR_PTR(-ENOSYS);
flow_id = qp->device->create_flow(qp, flow_attr, domain);
if (!IS_ERR(flow_id))
atomic_inc(&qp->usecnt);
return flow_id;
}
EXPORT_SYMBOL(ib_create_flow);
int ib_destroy_flow(struct ib_flow *flow_id)
{
int err;
struct ib_qp *qp = flow_id->qp;
err = qp->device->destroy_flow(flow_id);
if (!err)
atomic_dec(&qp->usecnt);
return err;
}
EXPORT_SYMBOL(ib_destroy_flow);
IB/core: Introduce signature verbs API Introduce a verbs interface for signature-related operations. A signature handover operation configures the layouts of data and protection attributes both in memory and wire domains. Signature operations are: - INSERT: Generate and insert protection information when handing over data from input space to output space. - validate and STRIP: Validate protection information and remove it when handing over data from input space to output space. - validate and PASS: Validate protection information and pass it when handing over data from input space to output space. Once the signature handover opration is done, the HCA will offload data integrity generation/validation while performing the actual data transfer. Additions: 1. HCA signature capabilities in device attributes Verbs provider supporting signature handover operations fills relevant fields in device attributes structure returned by ib_query_device. 2. QP creation flag IB_QP_CREATE_SIGNATURE_EN Creating a QP that will carry signature handover operations may require some special preparations from the verbs provider. So we add QP creation flag IB_QP_CREATE_SIGNATURE_EN to declare that the created QP may carry out signature handover operations. Expose signature support to verbs layer (no support for now). 3. New send work request IB_WR_REG_SIG_MR Signature handover work request. This WR will define the signature handover properties of the memory/wire domains as well as the domains layout. The purpose of this work request is to bind all the needed information for the signature operation: - data to be transferred: wr->sg_list (ib_sge). * The raw data, pre-registered to a single MR (normally, before signature, this MR would have been used directly for the data transfer) - data protection guards: sig_handover.prot (ib_sge). * The data protection buffer, pre-registered to a single MR, which contains the data integrity guards of the raw data blocks. Note that it may not always exist, only in cases where the user is interested in storing protection guards in memory. - signature operation attributes: sig_handover.sig_attrs. * Tells the HCA how to validate/generate the protection information. Once the work request is executed, the memory region that will describe the signature transaction will be the sig_mr. The application can now go ahead and send the sig_mr.rkey or use the sig_mr.lkey for data transfer. 4. New Verb ib_check_mr_status check_mr_status verb checks the status of the memory region post transaction. The first check that may be used is IB_MR_CHECK_SIG_STATUS, which will indicate if any signature errors are pending for a specific signature-enabled ib_mr. This verb is a lightwight check and is allowed to be taken from interrupt context. An application must call this verb after it is known that the actual data transfer has finished. Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-02-23 14:19:05 +02:00
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
struct ib_mr_status *mr_status)
{
return mr->device->check_mr_status ?
mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
}
EXPORT_SYMBOL(ib_check_mr_status);