linux/drivers/pci/iov.c

762 lines
18 KiB
C
Raw Normal View History

/*
* drivers/pci/iov.c
*
* Copyright (C) 2009 Intel Corporation, Yu Zhao <yu.zhao@intel.com>
*
* PCI Express I/O Virtualization (IOV) support.
* Single Root IOV 1.0
* Address Translation Service 1.0
*/
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/pci-ats.h>
#include "pci.h"
#define VIRTFN_ID_LEN 16
int pci_iov_virtfn_bus(struct pci_dev *dev, int vf_id)
{
if (!dev->is_physfn)
return -EINVAL;
return dev->bus->number + ((dev->devfn + dev->sriov->offset +
dev->sriov->stride * vf_id) >> 8);
}
int pci_iov_virtfn_devfn(struct pci_dev *dev, int vf_id)
{
if (!dev->is_physfn)
return -EINVAL;
return (dev->devfn + dev->sriov->offset +
dev->sriov->stride * vf_id) & 0xff;
}
/*
* Per SR-IOV spec sec 3.3.10 and 3.3.11, First VF Offset and VF Stride may
* change when NumVFs changes.
*
* Update iov->offset and iov->stride when NumVFs is written.
*/
static inline void pci_iov_set_numvfs(struct pci_dev *dev, int nr_virtfn)
{
struct pci_sriov *iov = dev->sriov;
pci_write_config_word(dev, iov->pos + PCI_SRIOV_NUM_VF, nr_virtfn);
pci_read_config_word(dev, iov->pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
pci_read_config_word(dev, iov->pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
}
/*
* The PF consumes one bus number. NumVFs, First VF Offset, and VF Stride
* determine how many additional bus numbers will be consumed by VFs.
*
* Iterate over all valid NumVFs, validate offset and stride, and calculate
* the maximum number of bus numbers that could ever be required.
*/
static int compute_max_vf_buses(struct pci_dev *dev)
{
struct pci_sriov *iov = dev->sriov;
int nr_virtfn, busnr, rc = 0;
for (nr_virtfn = iov->total_VFs; nr_virtfn; nr_virtfn--) {
pci_iov_set_numvfs(dev, nr_virtfn);
if (!iov->offset || (nr_virtfn > 1 && !iov->stride)) {
rc = -EIO;
goto out;
}
busnr = pci_iov_virtfn_bus(dev, nr_virtfn - 1);
if (busnr > iov->max_VF_buses)
iov->max_VF_buses = busnr;
}
out:
pci_iov_set_numvfs(dev, 0);
return rc;
}
static struct pci_bus *virtfn_add_bus(struct pci_bus *bus, int busnr)
{
struct pci_bus *child;
if (bus->number == busnr)
return bus;
child = pci_find_bus(pci_domain_nr(bus), busnr);
if (child)
return child;
child = pci_add_new_bus(bus, NULL, busnr);
if (!child)
return NULL;
pci_bus_insert_busn_res(child, busnr, busnr);
return child;
}
static void virtfn_remove_bus(struct pci_bus *physbus, struct pci_bus *virtbus)
{
if (physbus != virtbus && list_empty(&virtbus->devices))
pci_remove_bus(virtbus);
}
resource_size_t pci_iov_resource_size(struct pci_dev *dev, int resno)
{
if (!dev->is_physfn)
return 0;
return dev->sriov->barsz[resno - PCI_IOV_RESOURCES];
}
int pci_iov_add_virtfn(struct pci_dev *dev, int id, int reset)
{
int i;
int rc = -ENOMEM;
u64 size;
char buf[VIRTFN_ID_LEN];
struct pci_dev *virtfn;
struct resource *res;
struct pci_sriov *iov = dev->sriov;
struct pci_bus *bus;
mutex_lock(&iov->dev->sriov->lock);
bus = virtfn_add_bus(dev->bus, pci_iov_virtfn_bus(dev, id));
if (!bus)
goto failed;
virtfn = pci_alloc_dev(bus);
if (!virtfn)
goto failed0;
virtfn->devfn = pci_iov_virtfn_devfn(dev, id);
virtfn->vendor = dev->vendor;
pci_read_config_word(dev, iov->pos + PCI_SRIOV_VF_DID, &virtfn->device);
pci_setup_device(virtfn);
virtfn->dev.parent = dev->dev.parent;
virtfn->physfn = pci_dev_get(dev);
virtfn->is_virtfn = 1;
virtfn->multifunction = 0;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->parent)
continue;
virtfn->resource[i].name = pci_name(virtfn);
virtfn->resource[i].flags = res->flags;
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
virtfn->resource[i].start = res->start + size * id;
virtfn->resource[i].end = virtfn->resource[i].start + size - 1;
rc = request_resource(res, &virtfn->resource[i]);
BUG_ON(rc);
}
if (reset)
__pci_reset_function(virtfn);
pci_device_add(virtfn, virtfn->bus);
mutex_unlock(&iov->dev->sriov->lock);
pci_bus_add_device(virtfn);
sprintf(buf, "virtfn%u", id);
rc = sysfs_create_link(&dev->dev.kobj, &virtfn->dev.kobj, buf);
if (rc)
goto failed1;
rc = sysfs_create_link(&virtfn->dev.kobj, &dev->dev.kobj, "physfn");
if (rc)
goto failed2;
kobject_uevent(&virtfn->dev.kobj, KOBJ_CHANGE);
return 0;
failed2:
sysfs_remove_link(&dev->dev.kobj, buf);
failed1:
pci_dev_put(dev);
mutex_lock(&iov->dev->sriov->lock);
pci_stop_and_remove_bus_device(virtfn);
failed0:
virtfn_remove_bus(dev->bus, bus);
failed:
mutex_unlock(&iov->dev->sriov->lock);
return rc;
}
void pci_iov_remove_virtfn(struct pci_dev *dev, int id, int reset)
{
char buf[VIRTFN_ID_LEN];
struct pci_dev *virtfn;
struct pci_sriov *iov = dev->sriov;
virtfn = pci_get_domain_bus_and_slot(pci_domain_nr(dev->bus),
pci_iov_virtfn_bus(dev, id),
pci_iov_virtfn_devfn(dev, id));
if (!virtfn)
return;
if (reset) {
device_release_driver(&virtfn->dev);
__pci_reset_function(virtfn);
}
sprintf(buf, "virtfn%u", id);
sysfs_remove_link(&dev->dev.kobj, buf);
/*
* pci_stop_dev() could have been called for this virtfn already,
* so the directory for the virtfn may have been removed before.
* Double check to avoid spurious sysfs warnings.
*/
if (virtfn->dev.kobj.sd)
sysfs_remove_link(&virtfn->dev.kobj, "physfn");
mutex_lock(&iov->dev->sriov->lock);
pci_stop_and_remove_bus_device(virtfn);
virtfn_remove_bus(dev->bus, virtfn->bus);
mutex_unlock(&iov->dev->sriov->lock);
/* balance pci_get_domain_bus_and_slot() */
pci_dev_put(virtfn);
pci_dev_put(dev);
}
int __weak pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
return 0;
}
int __weak pcibios_sriov_disable(struct pci_dev *pdev)
{
return 0;
}
static int sriov_enable(struct pci_dev *dev, int nr_virtfn)
{
int rc;
int i;
int nres;
u16 initial;
struct resource *res;
struct pci_dev *pdev;
struct pci_sriov *iov = dev->sriov;
int bars = 0;
int bus;
if (!nr_virtfn)
return 0;
if (iov->num_VFs)
return -EINVAL;
pci_read_config_word(dev, iov->pos + PCI_SRIOV_INITIAL_VF, &initial);
if (initial > iov->total_VFs ||
(!(iov->cap & PCI_SRIOV_CAP_VFM) && (initial != iov->total_VFs)))
return -EIO;
if (nr_virtfn < 0 || nr_virtfn > iov->total_VFs ||
(!(iov->cap & PCI_SRIOV_CAP_VFM) && (nr_virtfn > initial)))
return -EINVAL;
nres = 0;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
bars |= (1 << (i + PCI_IOV_RESOURCES));
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (res->parent)
nres++;
}
if (nres != iov->nres) {
dev_err(&dev->dev, "not enough MMIO resources for SR-IOV\n");
return -ENOMEM;
}
bus = pci_iov_virtfn_bus(dev, nr_virtfn - 1);
if (bus > dev->bus->busn_res.end) {
dev_err(&dev->dev, "can't enable %d VFs (bus %02x out of range of %pR)\n",
nr_virtfn, bus, &dev->bus->busn_res);
return -ENOMEM;
}
if (pci_enable_resources(dev, bars)) {
dev_err(&dev->dev, "SR-IOV: IOV BARS not allocated\n");
return -ENOMEM;
}
if (iov->link != dev->devfn) {
pdev = pci_get_slot(dev->bus, iov->link);
if (!pdev)
return -ENODEV;
if (!pdev->is_physfn) {
pci_dev_put(pdev);
return -ENOSYS;
}
rc = sysfs_create_link(&dev->dev.kobj,
&pdev->dev.kobj, "dep_link");
pci_dev_put(pdev);
if (rc)
return rc;
}
pci_iov_set_numvfs(dev, nr_virtfn);
iov->ctrl |= PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE;
pci_cfg_access_lock(dev);
pci_write_config_word(dev, iov->pos + PCI_SRIOV_CTRL, iov->ctrl);
msleep(100);
pci_cfg_access_unlock(dev);
iov->initial_VFs = initial;
if (nr_virtfn < initial)
initial = nr_virtfn;
rc = pcibios_sriov_enable(dev, initial);
if (rc) {
dev_err(&dev->dev, "failure %d from pcibios_sriov_enable()\n", rc);
goto err_pcibios;
}
for (i = 0; i < initial; i++) {
rc = pci_iov_add_virtfn(dev, i, 0);
if (rc)
goto failed;
}
kobject_uevent(&dev->dev.kobj, KOBJ_CHANGE);
iov->num_VFs = nr_virtfn;
return 0;
failed:
while (i--)
pci_iov_remove_virtfn(dev, i, 0);
pcibios_sriov_disable(dev);
err_pcibios:
iov->ctrl &= ~(PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE);
pci_cfg_access_lock(dev);
pci_write_config_word(dev, iov->pos + PCI_SRIOV_CTRL, iov->ctrl);
ssleep(1);
pci_cfg_access_unlock(dev);
if (iov->link != dev->devfn)
sysfs_remove_link(&dev->dev.kobj, "dep_link");
pci_iov_set_numvfs(dev, 0);
return rc;
}
static void sriov_disable(struct pci_dev *dev)
{
int i;
struct pci_sriov *iov = dev->sriov;
if (!iov->num_VFs)
return;
for (i = 0; i < iov->num_VFs; i++)
pci_iov_remove_virtfn(dev, i, 0);
pcibios_sriov_disable(dev);
iov->ctrl &= ~(PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE);
pci_cfg_access_lock(dev);
pci_write_config_word(dev, iov->pos + PCI_SRIOV_CTRL, iov->ctrl);
ssleep(1);
pci_cfg_access_unlock(dev);
if (iov->link != dev->devfn)
sysfs_remove_link(&dev->dev.kobj, "dep_link");
iov->num_VFs = 0;
pci_iov_set_numvfs(dev, 0);
}
static int sriov_init(struct pci_dev *dev, int pos)
{
int i, bar64;
int rc;
int nres;
u32 pgsz;
u16 ctrl, total;
struct pci_sriov *iov;
struct resource *res;
struct pci_dev *pdev;
pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &ctrl);
if (ctrl & PCI_SRIOV_CTRL_VFE) {
pci_write_config_word(dev, pos + PCI_SRIOV_CTRL, 0);
ssleep(1);
}
ctrl = 0;
list_for_each_entry(pdev, &dev->bus->devices, bus_list)
if (pdev->is_physfn)
goto found;
pdev = NULL;
if (pci_ari_enabled(dev->bus))
ctrl |= PCI_SRIOV_CTRL_ARI;
found:
pci_write_config_word(dev, pos + PCI_SRIOV_CTRL, ctrl);
pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &total);
if (!total)
return 0;
pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &pgsz);
i = PAGE_SHIFT > 12 ? PAGE_SHIFT - 12 : 0;
pgsz &= ~((1 << i) - 1);
if (!pgsz)
return -EIO;
pgsz &= ~(pgsz - 1);
pci_write_config_dword(dev, pos + PCI_SRIOV_SYS_PGSIZE, pgsz);
iov = kzalloc(sizeof(*iov), GFP_KERNEL);
if (!iov)
return -ENOMEM;
nres = 0;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
/*
* If it is already FIXED, don't change it, something
* (perhaps EA or header fixups) wants it this way.
*/
if (res->flags & IORESOURCE_PCI_FIXED)
bar64 = (res->flags & IORESOURCE_MEM_64) ? 1 : 0;
else
bar64 = __pci_read_base(dev, pci_bar_unknown, res,
pos + PCI_SRIOV_BAR + i * 4);
if (!res->flags)
continue;
if (resource_size(res) & (PAGE_SIZE - 1)) {
rc = -EIO;
goto failed;
}
iov->barsz[i] = resource_size(res);
res->end = res->start + resource_size(res) * total - 1;
dev_info(&dev->dev, "VF(n) BAR%d space: %pR (contains BAR%d for %d VFs)\n",
i, res, i, total);
i += bar64;
nres++;
}
iov->pos = pos;
iov->nres = nres;
iov->ctrl = ctrl;
iov->total_VFs = total;
iov->pgsz = pgsz;
iov->self = dev;
pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
if (pci_pcie_type(dev) == PCI_EXP_TYPE_RC_END)
iov->link = PCI_DEVFN(PCI_SLOT(dev->devfn), iov->link);
if (pdev)
iov->dev = pci_dev_get(pdev);
else
iov->dev = dev;
mutex_init(&iov->lock);
dev->sriov = iov;
dev->is_physfn = 1;
rc = compute_max_vf_buses(dev);
if (rc)
goto fail_max_buses;
return 0;
fail_max_buses:
dev->sriov = NULL;
dev->is_physfn = 0;
failed:
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
res->flags = 0;
}
kfree(iov);
return rc;
}
static void sriov_release(struct pci_dev *dev)
{
BUG_ON(dev->sriov->num_VFs);
if (dev != dev->sriov->dev)
pci_dev_put(dev->sriov->dev);
mutex_destroy(&dev->sriov->lock);
kfree(dev->sriov);
dev->sriov = NULL;
}
static void sriov_restore_state(struct pci_dev *dev)
{
int i;
u16 ctrl;
struct pci_sriov *iov = dev->sriov;
pci_read_config_word(dev, iov->pos + PCI_SRIOV_CTRL, &ctrl);
if (ctrl & PCI_SRIOV_CTRL_VFE)
return;
for (i = PCI_IOV_RESOURCES; i <= PCI_IOV_RESOURCE_END; i++)
pci_update_resource(dev, i);
pci_write_config_dword(dev, iov->pos + PCI_SRIOV_SYS_PGSIZE, iov->pgsz);
pci_iov_set_numvfs(dev, iov->num_VFs);
pci_write_config_word(dev, iov->pos + PCI_SRIOV_CTRL, iov->ctrl);
if (iov->ctrl & PCI_SRIOV_CTRL_VFE)
msleep(100);
}
/**
* pci_iov_init - initialize the IOV capability
* @dev: the PCI device
*
* Returns 0 on success, or negative on failure.
*/
int pci_iov_init(struct pci_dev *dev)
{
int pos;
if (!pci_is_pcie(dev))
return -ENODEV;
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
if (pos)
return sriov_init(dev, pos);
return -ENODEV;
}
/**
* pci_iov_release - release resources used by the IOV capability
* @dev: the PCI device
*/
void pci_iov_release(struct pci_dev *dev)
{
if (dev->is_physfn)
sriov_release(dev);
}
/**
* pci_iov_resource_bar - get position of the SR-IOV BAR
* @dev: the PCI device
* @resno: the resource number
*
* Returns position of the BAR encapsulated in the SR-IOV capability.
*/
int pci_iov_resource_bar(struct pci_dev *dev, int resno)
{
if (resno < PCI_IOV_RESOURCES || resno > PCI_IOV_RESOURCE_END)
return 0;
BUG_ON(!dev->is_physfn);
return dev->sriov->pos + PCI_SRIOV_BAR +
4 * (resno - PCI_IOV_RESOURCES);
}
resource_size_t __weak pcibios_iov_resource_alignment(struct pci_dev *dev,
int resno)
{
return pci_iov_resource_size(dev, resno);
}
PCI SR-IOV: correct broken resource alignment calculations An SR-IOV capable device includes an SR-IOV PCIe capability which describes the Virtual Function (VF) BAR requirements. A typical SR-IOV device can support multiple VFs whose BARs must be in a contiguous region, effectively an array of VF BARs. The BAR reports the size requirement for a single VF. We calculate the full range needed by simply multiplying the VF BAR size with the number of possible VFs and create a resource spanning the full range. This all seems sane enough except it artificially inflates the alignment requirement for the VF BAR. The VF BAR need only be aligned to the size of a single BAR not the contiguous range of VF BARs. This can cause us to fail to allocate resources for the BAR despite the fact that we actually have enough space. This patch adds a thin PCI specific layer over the generic resource_alignment() function which is aware of the special nature of VF BARs and does sorting and allocation based on the smaller alignment requirement. I recognize that while resource_alignment is generic, it's basically a PCI helper. An alternative to this patch is to add PCI VF BAR specific information to struct resource. I opted for the extra layer rather than adding such PCI specific information to struct resource. This does have the slight downside that we don't cache the BAR size and re-read for each alignment query (happens a small handful of times during boot for each VF BAR). Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Yu Zhao <yu.zhao@intel.com> Cc: stable@kernel.org Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-08-28 13:00:06 -07:00
/**
* pci_sriov_resource_alignment - get resource alignment for VF BAR
* @dev: the PCI device
* @resno: the resource number
*
* Returns the alignment of the VF BAR found in the SR-IOV capability.
* This is not the same as the resource size which is defined as
* the VF BAR size multiplied by the number of VFs. The alignment
* is just the VF BAR size.
*/
resource_size_t pci_sriov_resource_alignment(struct pci_dev *dev, int resno)
PCI SR-IOV: correct broken resource alignment calculations An SR-IOV capable device includes an SR-IOV PCIe capability which describes the Virtual Function (VF) BAR requirements. A typical SR-IOV device can support multiple VFs whose BARs must be in a contiguous region, effectively an array of VF BARs. The BAR reports the size requirement for a single VF. We calculate the full range needed by simply multiplying the VF BAR size with the number of possible VFs and create a resource spanning the full range. This all seems sane enough except it artificially inflates the alignment requirement for the VF BAR. The VF BAR need only be aligned to the size of a single BAR not the contiguous range of VF BARs. This can cause us to fail to allocate resources for the BAR despite the fact that we actually have enough space. This patch adds a thin PCI specific layer over the generic resource_alignment() function which is aware of the special nature of VF BARs and does sorting and allocation based on the smaller alignment requirement. I recognize that while resource_alignment is generic, it's basically a PCI helper. An alternative to this patch is to add PCI VF BAR specific information to struct resource. I opted for the extra layer rather than adding such PCI specific information to struct resource. This does have the slight downside that we don't cache the BAR size and re-read for each alignment query (happens a small handful of times during boot for each VF BAR). Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Yu Zhao <yu.zhao@intel.com> Cc: stable@kernel.org Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-08-28 13:00:06 -07:00
{
return pcibios_iov_resource_alignment(dev, resno);
PCI SR-IOV: correct broken resource alignment calculations An SR-IOV capable device includes an SR-IOV PCIe capability which describes the Virtual Function (VF) BAR requirements. A typical SR-IOV device can support multiple VFs whose BARs must be in a contiguous region, effectively an array of VF BARs. The BAR reports the size requirement for a single VF. We calculate the full range needed by simply multiplying the VF BAR size with the number of possible VFs and create a resource spanning the full range. This all seems sane enough except it artificially inflates the alignment requirement for the VF BAR. The VF BAR need only be aligned to the size of a single BAR not the contiguous range of VF BARs. This can cause us to fail to allocate resources for the BAR despite the fact that we actually have enough space. This patch adds a thin PCI specific layer over the generic resource_alignment() function which is aware of the special nature of VF BARs and does sorting and allocation based on the smaller alignment requirement. I recognize that while resource_alignment is generic, it's basically a PCI helper. An alternative to this patch is to add PCI VF BAR specific information to struct resource. I opted for the extra layer rather than adding such PCI specific information to struct resource. This does have the slight downside that we don't cache the BAR size and re-read for each alignment query (happens a small handful of times during boot for each VF BAR). Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Yu Zhao <yu.zhao@intel.com> Cc: stable@kernel.org Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-08-28 13:00:06 -07:00
}
/**
* pci_restore_iov_state - restore the state of the IOV capability
* @dev: the PCI device
*/
void pci_restore_iov_state(struct pci_dev *dev)
{
if (dev->is_physfn)
sriov_restore_state(dev);
}
/**
* pci_iov_bus_range - find bus range used by Virtual Function
* @bus: the PCI bus
*
* Returns max number of buses (exclude current one) used by Virtual
* Functions.
*/
int pci_iov_bus_range(struct pci_bus *bus)
{
int max = 0;
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
if (!dev->is_physfn)
continue;
if (dev->sriov->max_VF_buses > max)
max = dev->sriov->max_VF_buses;
}
return max ? max - bus->number : 0;
}
/**
* pci_enable_sriov - enable the SR-IOV capability
* @dev: the PCI device
* @nr_virtfn: number of virtual functions to enable
*
* Returns 0 on success, or negative on failure.
*/
int pci_enable_sriov(struct pci_dev *dev, int nr_virtfn)
{
might_sleep();
if (!dev->is_physfn)
return -ENOSYS;
return sriov_enable(dev, nr_virtfn);
}
EXPORT_SYMBOL_GPL(pci_enable_sriov);
/**
* pci_disable_sriov - disable the SR-IOV capability
* @dev: the PCI device
*/
void pci_disable_sriov(struct pci_dev *dev)
{
might_sleep();
if (!dev->is_physfn)
return;
sriov_disable(dev);
}
EXPORT_SYMBOL_GPL(pci_disable_sriov);
/**
* pci_num_vf - return number of VFs associated with a PF device_release_driver
* @dev: the PCI device
*
* Returns number of VFs, or 0 if SR-IOV is not enabled.
*/
int pci_num_vf(struct pci_dev *dev)
{
if (!dev->is_physfn)
return 0;
return dev->sriov->num_VFs;
}
EXPORT_SYMBOL_GPL(pci_num_vf);
/**
* pci_vfs_assigned - returns number of VFs are assigned to a guest
* @dev: the PCI device
*
* Returns number of VFs belonging to this device that are assigned to a guest.
* If device is not a physical function returns 0.
*/
int pci_vfs_assigned(struct pci_dev *dev)
{
struct pci_dev *vfdev;
unsigned int vfs_assigned = 0;
unsigned short dev_id;
/* only search if we are a PF */
if (!dev->is_physfn)
return 0;
/*
* determine the device ID for the VFs, the vendor ID will be the
* same as the PF so there is no need to check for that one
*/
pci_read_config_word(dev, dev->sriov->pos + PCI_SRIOV_VF_DID, &dev_id);
/* loop through all the VFs to see if we own any that are assigned */
vfdev = pci_get_device(dev->vendor, dev_id, NULL);
while (vfdev) {
/*
* It is considered assigned if it is a virtual function with
* our dev as the physical function and the assigned bit is set
*/
if (vfdev->is_virtfn && (vfdev->physfn == dev) &&
pci_is_dev_assigned(vfdev))
vfs_assigned++;
vfdev = pci_get_device(dev->vendor, dev_id, vfdev);
}
return vfs_assigned;
}
EXPORT_SYMBOL_GPL(pci_vfs_assigned);
/**
* pci_sriov_set_totalvfs -- reduce the TotalVFs available
* @dev: the PCI PF device
* @numvfs: number that should be used for TotalVFs supported
*
* Should be called from PF driver's probe routine with
* device's mutex held.
*
* Returns 0 if PF is an SRIOV-capable device and
* value of numvfs valid. If not a PF return -ENOSYS;
* if numvfs is invalid return -EINVAL;
* if VFs already enabled, return -EBUSY.
*/
int pci_sriov_set_totalvfs(struct pci_dev *dev, u16 numvfs)
{
if (!dev->is_physfn)
return -ENOSYS;
if (numvfs > dev->sriov->total_VFs)
return -EINVAL;
/* Shouldn't change if VFs already enabled */
if (dev->sriov->ctrl & PCI_SRIOV_CTRL_VFE)
return -EBUSY;
else
dev->sriov->driver_max_VFs = numvfs;
return 0;
}
EXPORT_SYMBOL_GPL(pci_sriov_set_totalvfs);
/**
* pci_sriov_get_totalvfs -- get total VFs supported on this device
* @dev: the PCI PF device
*
* For a PCIe device with SRIOV support, return the PCIe
* SRIOV capability value of TotalVFs or the value of driver_max_VFs
* if the driver reduced it. Otherwise 0.
*/
int pci_sriov_get_totalvfs(struct pci_dev *dev)
{
if (!dev->is_physfn)
return 0;
if (dev->sriov->driver_max_VFs)
return dev->sriov->driver_max_VFs;
return dev->sriov->total_VFs;
}
EXPORT_SYMBOL_GPL(pci_sriov_get_totalvfs);