2005-04-16 15:20:36 -07:00
/*
2005-07-10 19:58:09 +01:00
* linux / arch / arm / mach - omap1 / time . c
2005-04-16 15:20:36 -07:00
*
* OMAP Timers
*
* Copyright ( C ) 2004 Nokia Corporation
2005-06-29 19:59:48 +01:00
* Partial timer rewrite and additional dynamic tick timer support by
2005-04-16 15:20:36 -07:00
* Tony Lindgen < tony @ atomide . com > and
* Tuukka Tikkanen < tuukka . tikkanen @ elektrobit . com >
*
* MPU timer code based on the older MPU timer code for OMAP
* Copyright ( C ) 2000 RidgeRun , Inc .
* Author : Greg Lonnon < glonnon @ ridgerun . com >
*
* This program is free software ; you can redistribute it and / or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation ; either version 2 of the License , or ( at your
* option ) any later version .
*
* THIS SOFTWARE IS PROVIDED ` ` AS IS ' ' AND ANY EXPRESS OR IMPLIED
* WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT , INDIRECT ,
* INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING , BUT
* NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF
* USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
* ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
*
* You should have received a copy of the GNU General Public License along
* with this program ; if not , write to the Free Software Foundation , Inc . ,
* 675 Mass Ave , Cambridge , MA 0213 9 , USA .
*/
# include <linux/config.h>
# include <linux/kernel.h>
# include <linux/init.h>
# include <linux/delay.h>
# include <linux/interrupt.h>
# include <linux/sched.h>
# include <linux/spinlock.h>
# include <asm/system.h>
# include <asm/hardware.h>
# include <asm/io.h>
# include <asm/leds.h>
# include <asm/irq.h>
# include <asm/mach/irq.h>
# include <asm/mach/time.h>
struct sys_timer omap_timer ;
# ifdef CONFIG_OMAP_MPU_TIMER
/*
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* MPU timer
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
# define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE
# define OMAP_MPU_TIMER_OFFSET 0x100
/* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c,
* converted to use kHz by Kevin Hilman */
/* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation :
* ns = cycles / ( freq / ns_per_sec )
* ns = cycles * ( ns_per_sec / freq )
* ns = cycles * ( 10 ^ 9 / ( cpu_khz * 10 ^ 3 ) )
* ns = cycles * ( 10 ^ 6 / cpu_khz )
*
* Then we use scaling math ( suggested by george at mvista . com ) to get :
* ns = cycles * ( 10 ^ 6 * SC / cpu_khz / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two , we can convert the div
* into a shift .
* - johnstul at us . ibm . com " math is hard, lets go shopping! "
*/
static unsigned long cyc2ns_scale ;
# define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
static inline void set_cyc2ns_scale ( unsigned long cpu_khz )
{
cyc2ns_scale = ( 1000000 < < CYC2NS_SCALE_FACTOR ) / cpu_khz ;
}
static inline unsigned long long cycles_2_ns ( unsigned long long cyc )
{
return ( cyc * cyc2ns_scale ) > > CYC2NS_SCALE_FACTOR ;
}
/*
* MPU_TICKS_PER_SEC must be an even number , otherwise machinecycles_to_usecs
* will break . On P2 , the timer count rate is 6.5 MHz after programming PTV
* with 0. This divides the 13 MHz input by 2 , and is undocumented .
*/
# ifdef CONFIG_MACH_OMAP_PERSEUS2
/* REVISIT: This ifdef construct should be replaced by a query to clock
* framework to see if timer base frequency is 12.0 , 13.0 or 19.2 MHz .
*/
# define MPU_TICKS_PER_SEC (13000000 / 2)
# else
# define MPU_TICKS_PER_SEC (12000000 / 2)
# endif
# define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1)
typedef struct {
u32 cntl ; /* CNTL_TIMER, R/W */
u32 load_tim ; /* LOAD_TIM, W */
u32 read_tim ; /* READ_TIM, R */
} omap_mpu_timer_regs_t ;
# define omap_mpu_timer_base(n) \
( ( volatile omap_mpu_timer_regs_t * ) IO_ADDRESS ( OMAP_MPU_TIMER_BASE + \
( n ) * OMAP_MPU_TIMER_OFFSET ) )
static inline unsigned long omap_mpu_timer_read ( int nr )
{
volatile omap_mpu_timer_regs_t * timer = omap_mpu_timer_base ( nr ) ;
return timer - > read_tim ;
}
static inline void omap_mpu_timer_start ( int nr , unsigned long load_val )
{
volatile omap_mpu_timer_regs_t * timer = omap_mpu_timer_base ( nr ) ;
timer - > cntl = MPU_TIMER_CLOCK_ENABLE ;
udelay ( 1 ) ;
timer - > load_tim = load_val ;
udelay ( 1 ) ;
timer - > cntl = ( MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST ) ;
}
unsigned long omap_mpu_timer_ticks_to_usecs ( unsigned long nr_ticks )
{
unsigned long long nsec ;
nsec = cycles_2_ns ( ( unsigned long long ) nr_ticks ) ;
return ( unsigned long ) nsec / 1000 ;
}
/*
* Last processed system timer interrupt
*/
static unsigned long omap_mpu_timer_last = 0 ;
/*
* Returns elapsed usecs since last system timer interrupt
*/
static unsigned long omap_mpu_timer_gettimeoffset ( void )
{
unsigned long now = 0 - omap_mpu_timer_read ( 0 ) ;
unsigned long elapsed = now - omap_mpu_timer_last ;
return omap_mpu_timer_ticks_to_usecs ( elapsed ) ;
}
/*
* Elapsed time between interrupts is calculated using timer0 .
* Latency during the interrupt is calculated using timer1 .
* Both timer0 and timer1 are counting at 6 MHz ( P2 6.5 MHz ) .
*/
static irqreturn_t omap_mpu_timer_interrupt ( int irq , void * dev_id ,
struct pt_regs * regs )
{
unsigned long now , latency ;
write_seqlock ( & xtime_lock ) ;
now = 0 - omap_mpu_timer_read ( 0 ) ;
latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read ( 1 ) ;
omap_mpu_timer_last = now - latency ;
timer_tick ( regs ) ;
write_sequnlock ( & xtime_lock ) ;
return IRQ_HANDLED ;
}
static struct irqaction omap_mpu_timer_irq = {
. name = " mpu timer " ,
2005-06-26 17:06:36 +01:00
. flags = SA_INTERRUPT | SA_TIMER ,
. handler = omap_mpu_timer_interrupt ,
2005-04-16 15:20:36 -07:00
} ;
static unsigned long omap_mpu_timer1_overflows ;
static irqreturn_t omap_mpu_timer1_interrupt ( int irq , void * dev_id ,
struct pt_regs * regs )
{
omap_mpu_timer1_overflows + + ;
return IRQ_HANDLED ;
}
static struct irqaction omap_mpu_timer1_irq = {
. name = " mpu timer1 overflow " ,
. flags = SA_INTERRUPT ,
2005-06-26 17:06:36 +01:00
. handler = omap_mpu_timer1_interrupt ,
2005-04-16 15:20:36 -07:00
} ;
static __init void omap_init_mpu_timer ( void )
{
set_cyc2ns_scale ( MPU_TICKS_PER_SEC / 1000 ) ;
omap_timer . offset = omap_mpu_timer_gettimeoffset ;
setup_irq ( INT_TIMER1 , & omap_mpu_timer1_irq ) ;
setup_irq ( INT_TIMER2 , & omap_mpu_timer_irq ) ;
omap_mpu_timer_start ( 0 , 0xffffffff ) ;
omap_mpu_timer_start ( 1 , MPU_TIMER_TICK_PERIOD ) ;
}
/*
* Scheduler clock - returns current time in nanosec units .
*/
unsigned long long sched_clock ( void )
{
unsigned long ticks = 0 - omap_mpu_timer_read ( 0 ) ;
unsigned long long ticks64 ;
ticks64 = omap_mpu_timer1_overflows ;
ticks64 < < = 32 ;
ticks64 | = ticks ;
return cycles_2_ns ( ticks64 ) ;
}
# endif /* CONFIG_OMAP_MPU_TIMER */
# ifdef CONFIG_OMAP_32K_TIMER
# ifdef CONFIG_ARCH_OMAP1510
# error OMAP 32KHz timer does not currently work on 1510!
# endif
/*
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* 32 KHz OS timer
*
* This currently works only on 16 xx , as 1510 does not have the continuous
* 32 KHz synchronous timer . The 32 KHz synchronous timer is used to keep track
* of time in addition to the 32 KHz OS timer . Using only the 32 KHz OS timer
* on 1510 would be possible , but the timer would not be as accurate as
* with the 32 KHz synchronized timer .
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
# define OMAP_32K_TIMER_BASE 0xfffb9000
# define OMAP_32K_TIMER_CR 0x08
# define OMAP_32K_TIMER_TVR 0x00
# define OMAP_32K_TIMER_TCR 0x04
# define OMAP_32K_TICKS_PER_HZ (32768 / HZ)
2005-07-10 19:58:09 +01:00
# if (32768 % HZ) != 0
/* We cannot ignore modulo.
* Potential error can be as high as several percent .
*/
# define OMAP_32K_TICK_MODULO (32768 % HZ)
static unsigned modulo_count = 0 ; /* Counts 1/HZ units */
# endif
2005-04-16 15:20:36 -07:00
/*
* TRM says 1 / HZ = ( TVR + 1 ) / 32768 , so TRV = ( 32768 / HZ ) - 1
* so with HZ = 100 , TVR = 327.68 .
*/
# define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1)
# define TIMER_32K_SYNCHRONIZED 0xfffbc410
# define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \
( ( ( nr_jiffies ) * ( clock_rate ) ) / HZ )
static inline void omap_32k_timer_write ( int val , int reg )
{
omap_writew ( val , reg + OMAP_32K_TIMER_BASE ) ;
}
static inline unsigned long omap_32k_timer_read ( int reg )
{
return omap_readl ( reg + OMAP_32K_TIMER_BASE ) & 0xffffff ;
}
/*
* The 32 KHz synchronized timer is an additional timer on 16 xx .
* It is always running .
*/
static inline unsigned long omap_32k_sync_timer_read ( void )
{
return omap_readl ( TIMER_32K_SYNCHRONIZED ) ;
}
static inline void omap_32k_timer_start ( unsigned long load_val )
{
omap_32k_timer_write ( load_val , OMAP_32K_TIMER_TVR ) ;
omap_32k_timer_write ( 0x0f , OMAP_32K_TIMER_CR ) ;
}
static inline void omap_32k_timer_stop ( void )
{
omap_32k_timer_write ( 0x0 , OMAP_32K_TIMER_CR ) ;
}
/*
* Rounds down to nearest usec
*/
static inline unsigned long omap_32k_ticks_to_usecs ( unsigned long ticks_32k )
{
return ( ticks_32k * 5 * 5 * 5 * 5 * 5 * 5 ) > > 9 ;
}
static unsigned long omap_32k_last_tick = 0 ;
/*
* Returns elapsed usecs since last 32 k timer interrupt
*/
static unsigned long omap_32k_timer_gettimeoffset ( void )
{
unsigned long now = omap_32k_sync_timer_read ( ) ;
return omap_32k_ticks_to_usecs ( now - omap_32k_last_tick ) ;
}
/*
* Timer interrupt for 32 KHz timer . When dynamic tick is enabled , this
* function is also called from other interrupts to remove latency
* issues with dynamic tick . In the dynamic tick case , we need to lock
* with irqsave .
*/
static irqreturn_t omap_32k_timer_interrupt ( int irq , void * dev_id ,
struct pt_regs * regs )
{
unsigned long flags ;
unsigned long now ;
write_seqlock_irqsave ( & xtime_lock , flags ) ;
now = omap_32k_sync_timer_read ( ) ;
while ( now - omap_32k_last_tick > = OMAP_32K_TICKS_PER_HZ ) {
2005-07-10 19:58:09 +01:00
# ifdef OMAP_32K_TICK_MODULO
/* Modulo addition may put omap_32k_last_tick ahead of now
* and cause unwanted repetition of the while loop .
*/
if ( unlikely ( now - omap_32k_last_tick = = ~ 0 ) )
break ;
modulo_count + = OMAP_32K_TICK_MODULO ;
if ( modulo_count > HZ ) {
+ + omap_32k_last_tick ;
modulo_count - = HZ ;
}
# endif
2005-04-16 15:20:36 -07:00
omap_32k_last_tick + = OMAP_32K_TICKS_PER_HZ ;
timer_tick ( regs ) ;
}
/* Restart timer so we don't drift off due to modulo or dynamic tick.
* By default we program the next timer to be continuous to avoid
* latencies during high system load . During dynamic tick operation the
* continuous timer can be overridden from pm_idle to be longer .
*/
omap_32k_timer_start ( omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now ) ;
write_sequnlock_irqrestore ( & xtime_lock , flags ) ;
return IRQ_HANDLED ;
}
2005-06-29 19:59:48 +01:00
# ifdef CONFIG_NO_IDLE_HZ
/*
* Programs the next timer interrupt needed . Called when dynamic tick is
* enabled , and to reprogram the ticks to skip from pm_idle . Note that
* we can keep the timer continuous , and don ' t need to set it to run in
* one - shot mode . This is because the timer will get reprogrammed again
* after next interrupt .
*/
void omap_32k_timer_reprogram ( unsigned long next_tick )
{
omap_32k_timer_start ( JIFFIES_TO_HW_TICKS ( next_tick , 32768 ) + 1 ) ;
}
static struct irqaction omap_32k_timer_irq ;
extern struct timer_update_handler timer_update ;
static int omap_32k_timer_enable_dyn_tick ( void )
{
/* No need to reprogram timer, just use the next interrupt */
return 0 ;
}
static int omap_32k_timer_disable_dyn_tick ( void )
{
omap_32k_timer_start ( OMAP_32K_TIMER_TICK_PERIOD ) ;
return 0 ;
}
static struct dyn_tick_timer omap_dyn_tick_timer = {
. enable = omap_32k_timer_enable_dyn_tick ,
. disable = omap_32k_timer_disable_dyn_tick ,
. reprogram = omap_32k_timer_reprogram ,
. handler = omap_32k_timer_interrupt ,
} ;
# endif /* CONFIG_NO_IDLE_HZ */
2005-04-16 15:20:36 -07:00
static struct irqaction omap_32k_timer_irq = {
. name = " 32KHz timer " ,
2005-06-26 17:06:36 +01:00
. flags = SA_INTERRUPT | SA_TIMER ,
. handler = omap_32k_timer_interrupt ,
2005-04-16 15:20:36 -07:00
} ;
static __init void omap_init_32k_timer ( void )
{
2005-06-29 19:59:48 +01:00
# ifdef CONFIG_NO_IDLE_HZ
omap_timer . dyn_tick = & omap_dyn_tick_timer ;
# endif
2005-04-16 15:20:36 -07:00
setup_irq ( INT_OS_TIMER , & omap_32k_timer_irq ) ;
omap_timer . offset = omap_32k_timer_gettimeoffset ;
omap_32k_last_tick = omap_32k_sync_timer_read ( ) ;
omap_32k_timer_start ( OMAP_32K_TIMER_TICK_PERIOD ) ;
}
# endif /* CONFIG_OMAP_32K_TIMER */
/*
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* Timer initialization
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
2005-07-10 19:58:09 +01:00
static void __init omap_timer_init ( void )
2005-04-16 15:20:36 -07:00
{
# if defined(CONFIG_OMAP_MPU_TIMER)
omap_init_mpu_timer ( ) ;
# elif defined(CONFIG_OMAP_32K_TIMER)
omap_init_32k_timer ( ) ;
# else
# error No system timer selected in Kconfig!
# endif
}
struct sys_timer omap_timer = {
. init = omap_timer_init ,
. offset = NULL , /* Initialized later */
} ;