linux/fs/fuse/inode.c

1326 lines
30 KiB
C
Raw Normal View History

[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
/*
FUSE: Filesystem in Userspace
Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
This program can be distributed under the terms of the GNU GPL.
See the file COPYING.
*/
#include "fuse_i.h"
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
#include <linux/parser.h>
#include <linux/statfs.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <linux/exportfs.h>
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
MODULE_AUTHOR("Miklos Szeredi <miklos@szeredi.hu>");
MODULE_DESCRIPTION("Filesystem in Userspace");
MODULE_LICENSE("GPL");
static struct kmem_cache *fuse_inode_cachep;
struct list_head fuse_conn_list;
DEFINE_MUTEX(fuse_mutex);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
static int set_global_limit(const char *val, struct kernel_param *kp);
unsigned max_user_bgreq;
module_param_call(max_user_bgreq, set_global_limit, param_get_uint,
&max_user_bgreq, 0644);
__MODULE_PARM_TYPE(max_user_bgreq, "uint");
MODULE_PARM_DESC(max_user_bgreq,
"Global limit for the maximum number of backgrounded requests an "
"unprivileged user can set");
unsigned max_user_congthresh;
module_param_call(max_user_congthresh, set_global_limit, param_get_uint,
&max_user_congthresh, 0644);
__MODULE_PARM_TYPE(max_user_congthresh, "uint");
MODULE_PARM_DESC(max_user_congthresh,
"Global limit for the maximum congestion threshold an "
"unprivileged user can set");
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
#define FUSE_SUPER_MAGIC 0x65735546
#define FUSE_DEFAULT_BLKSIZE 512
/** Maximum number of outstanding background requests */
#define FUSE_DEFAULT_MAX_BACKGROUND 12
/** Congestion starts at 75% of maximum */
#define FUSE_DEFAULT_CONGESTION_THRESHOLD (FUSE_DEFAULT_MAX_BACKGROUND * 3 / 4)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
struct fuse_mount_data {
int fd;
unsigned rootmode;
userns: Support fuse interacting with multiple user namespaces Use kuid_t and kgid_t in struct fuse_conn and struct fuse_mount_data. The connection between between a fuse filesystem and a fuse daemon is established when a fuse filesystem is mounted and provided with a file descriptor the fuse daemon created by opening /dev/fuse. For now restrict the communication of uids and gids between the fuse filesystem and the fuse daemon to the initial user namespace. Enforce this by verifying the file descriptor passed to the mount of fuse was opened in the initial user namespace. Ensuring the mount happens in the initial user namespace is not necessary as mounts from non-initial user namespaces are not yet allowed. In fuse_req_init_context convert the currrent fsuid and fsgid into the initial user namespace for the request that will be sent to the fuse daemon. In fuse_fill_attr convert the uid and gid passed from the fuse daemon from the initial user namespace into kuids and kgids. In iattr_to_fattr called from fuse_setattr convert kuids and kgids into the uids and gids in the initial user namespace before passing them to the fuse filesystem. In fuse_change_attributes_common called from fuse_dentry_revalidate, fuse_permission, fuse_geattr, and fuse_setattr, and fuse_iget convert the uid and gid from the fuse daemon into a kuid and a kgid to store on the fuse inode. By default fuse mounts are restricted to task whose uid, suid, and euid matches the fuse user_id and whose gid, sgid, and egid matches the fuse group id. Convert the user_id and group_id mount options into kuids and kgids at mount time, and use uid_eq and gid_eq to compare the in fuse_allow_task. Cc: Miklos Szeredi <miklos@szeredi.hu> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-02-08 04:26:03 +04:00
kuid_t user_id;
kgid_t group_id;
unsigned fd_present:1;
unsigned rootmode_present:1;
unsigned user_id_present:1;
unsigned group_id_present:1;
unsigned flags;
unsigned max_read;
unsigned blksize;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
};
struct fuse_forget_link *fuse_alloc_forget(void)
{
return kzalloc(sizeof(struct fuse_forget_link), GFP_KERNEL);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
static struct inode *fuse_alloc_inode(struct super_block *sb)
{
struct inode *inode;
struct fuse_inode *fi;
inode = kmem_cache_alloc(fuse_inode_cachep, GFP_KERNEL);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
if (!inode)
return NULL;
fi = get_fuse_inode(inode);
fi->i_time = 0;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
fi->nodeid = 0;
fi->nlookup = 0;
fi->attr_version = 0;
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
fi->writectr = 0;
fi->orig_ino = 0;
fi->state = 0;
INIT_LIST_HEAD(&fi->write_files);
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
INIT_LIST_HEAD(&fi->queued_writes);
INIT_LIST_HEAD(&fi->writepages);
init_waitqueue_head(&fi->page_waitq);
fi->forget = fuse_alloc_forget();
if (!fi->forget) {
kmem_cache_free(fuse_inode_cachep, inode);
return NULL;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return inode;
}
2011-01-07 09:49:49 +03:00
static void fuse_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(fuse_inode_cachep, inode);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
static void fuse_destroy_inode(struct inode *inode)
{
struct fuse_inode *fi = get_fuse_inode(inode);
BUG_ON(!list_empty(&fi->write_files));
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
BUG_ON(!list_empty(&fi->queued_writes));
kfree(fi->forget);
2011-01-07 09:49:49 +03:00
call_rcu(&inode->i_rcu, fuse_i_callback);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
static void fuse_evict_inode(struct inode *inode)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:49 +04:00
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
if (inode->i_sb->s_flags & MS_ACTIVE) {
struct fuse_conn *fc = get_fuse_conn(inode);
struct fuse_inode *fi = get_fuse_inode(inode);
fuse_queue_forget(fc, fi->forget, fi->nodeid, fi->nlookup);
fi->forget = NULL;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
static int fuse_remount_fs(struct super_block *sb, int *flags, char *data)
{
fs: push sync_filesystem() down to the file system's remount_fs() Previously, the no-op "mount -o mount /dev/xxx" operation when the file system is already mounted read-write causes an implied, unconditional syncfs(). This seems pretty stupid, and it's certainly documented or guaraunteed to do this, nor is it particularly useful, except in the case where the file system was mounted rw and is getting remounted read-only. However, it's possible that there might be some file systems that are actually depending on this behavior. In most file systems, it's probably fine to only call sync_filesystem() when transitioning from read-write to read-only, and there are some file systems where this is not needed at all (for example, for a pseudo-filesystem or something like romfs). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: linux-fsdevel@vger.kernel.org Cc: Christoph Hellwig <hch@infradead.org> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Evgeniy Dushistov <dushistov@mail.ru> Cc: Jan Kara <jack@suse.cz> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Anders Larsen <al@alarsen.net> Cc: Phillip Lougher <phillip@squashfs.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: xfs@oss.sgi.com Cc: linux-btrfs@vger.kernel.org Cc: linux-cifs@vger.kernel.org Cc: samba-technical@lists.samba.org Cc: codalist@coda.cs.cmu.edu Cc: linux-ext4@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: fuse-devel@lists.sourceforge.net Cc: cluster-devel@redhat.com Cc: linux-mtd@lists.infradead.org Cc: jfs-discussion@lists.sourceforge.net Cc: linux-nfs@vger.kernel.org Cc: linux-nilfs@vger.kernel.org Cc: linux-ntfs-dev@lists.sourceforge.net Cc: ocfs2-devel@oss.oracle.com Cc: reiserfs-devel@vger.kernel.org
2014-03-13 18:14:33 +04:00
sync_filesystem(sb);
if (*flags & MS_MANDLOCK)
return -EINVAL;
return 0;
}
/*
* ino_t is 32-bits on 32-bit arch. We have to squash the 64-bit value down
* so that it will fit.
*/
static ino_t fuse_squash_ino(u64 ino64)
{
ino_t ino = (ino_t) ino64;
if (sizeof(ino_t) < sizeof(u64))
ino ^= ino64 >> (sizeof(u64) - sizeof(ino_t)) * 8;
return ino;
}
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
void fuse_change_attributes_common(struct inode *inode, struct fuse_attr *attr,
u64 attr_valid)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
struct fuse_conn *fc = get_fuse_conn(inode);
struct fuse_inode *fi = get_fuse_inode(inode);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
fi->attr_version = ++fc->attr_version;
fi->i_time = attr_valid;
inode->i_ino = fuse_squash_ino(attr->ino);
inode->i_mode = (inode->i_mode & S_IFMT) | (attr->mode & 07777);
set_nlink(inode, attr->nlink);
userns: Support fuse interacting with multiple user namespaces Use kuid_t and kgid_t in struct fuse_conn and struct fuse_mount_data. The connection between between a fuse filesystem and a fuse daemon is established when a fuse filesystem is mounted and provided with a file descriptor the fuse daemon created by opening /dev/fuse. For now restrict the communication of uids and gids between the fuse filesystem and the fuse daemon to the initial user namespace. Enforce this by verifying the file descriptor passed to the mount of fuse was opened in the initial user namespace. Ensuring the mount happens in the initial user namespace is not necessary as mounts from non-initial user namespaces are not yet allowed. In fuse_req_init_context convert the currrent fsuid and fsgid into the initial user namespace for the request that will be sent to the fuse daemon. In fuse_fill_attr convert the uid and gid passed from the fuse daemon from the initial user namespace into kuids and kgids. In iattr_to_fattr called from fuse_setattr convert kuids and kgids into the uids and gids in the initial user namespace before passing them to the fuse filesystem. In fuse_change_attributes_common called from fuse_dentry_revalidate, fuse_permission, fuse_geattr, and fuse_setattr, and fuse_iget convert the uid and gid from the fuse daemon into a kuid and a kgid to store on the fuse inode. By default fuse mounts are restricted to task whose uid, suid, and euid matches the fuse user_id and whose gid, sgid, and egid matches the fuse group id. Convert the user_id and group_id mount options into kuids and kgids at mount time, and use uid_eq and gid_eq to compare the in fuse_allow_task. Cc: Miklos Szeredi <miklos@szeredi.hu> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-02-08 04:26:03 +04:00
inode->i_uid = make_kuid(&init_user_ns, attr->uid);
inode->i_gid = make_kgid(&init_user_ns, attr->gid);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
inode->i_blocks = attr->blocks;
inode->i_atime.tv_sec = attr->atime;
inode->i_atime.tv_nsec = attr->atimensec;
/* mtime from server may be stale due to local buffered write */
if (!fc->writeback_cache || !S_ISREG(inode->i_mode)) {
inode->i_mtime.tv_sec = attr->mtime;
inode->i_mtime.tv_nsec = attr->mtimensec;
inode->i_ctime.tv_sec = attr->ctime;
inode->i_ctime.tv_nsec = attr->ctimensec;
}
if (attr->blksize != 0)
inode->i_blkbits = ilog2(attr->blksize);
else
inode->i_blkbits = inode->i_sb->s_blocksize_bits;
/*
* Don't set the sticky bit in i_mode, unless we want the VFS
* to check permissions. This prevents failures due to the
* check in may_delete().
*/
fi->orig_i_mode = inode->i_mode;
if (!(fc->flags & FUSE_DEFAULT_PERMISSIONS))
inode->i_mode &= ~S_ISVTX;
fi->orig_ino = attr->ino;
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
}
void fuse_change_attributes(struct inode *inode, struct fuse_attr *attr,
u64 attr_valid, u64 attr_version)
{
struct fuse_conn *fc = get_fuse_conn(inode);
struct fuse_inode *fi = get_fuse_inode(inode);
bool is_wb = fc->writeback_cache;
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
loff_t oldsize;
struct timespec old_mtime;
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
spin_lock(&fc->lock);
fuse: hotfix truncate_pagecache() issue The way how fuse calls truncate_pagecache() from fuse_change_attributes() is completely wrong. Because, w/o i_mutex held, we never sure whether 'oldsize' and 'attr->size' are valid by the time of execution of truncate_pagecache(inode, oldsize, attr->size). In fact, as soon as we released fc->lock in the middle of fuse_change_attributes(), we completely loose control of actions which may happen with given inode until we reach truncate_pagecache. The list of potentially dangerous actions includes mmap-ed reads and writes, ftruncate(2) and write(2) extending file size. The typical outcome of doing truncate_pagecache() with outdated arguments is data corruption from user point of view. This is (in some sense) acceptable in cases when the issue is triggered by a change of the file on the server (i.e. externally wrt fuse operation), but it is absolutely intolerable in scenarios when a single fuse client modifies a file without any external intervention. A real life case I discovered by fsx-linux looked like this: 1. Shrinking ftruncate(2) comes to fuse_do_setattr(). The latter sends FUSE_SETATTR to the server synchronously, but before getting fc->lock ... 2. fuse_dentry_revalidate() is asynchronously called. It sends FUSE_LOOKUP to the server synchronously, then calls fuse_change_attributes(). The latter updates i_size, releases fc->lock, but before comparing oldsize vs attr->size.. 3. fuse_do_setattr() from the first step proceeds by acquiring fc->lock and updating attributes and i_size, but now oldsize is equal to outarg.attr.size because i_size has just been updated (step 2). Hence, fuse_do_setattr() returns w/o calling truncate_pagecache(). 4. As soon as ftruncate(2) completes, the user extends file size by write(2) making a hole in the middle of file, then reads data from the hole either by read(2) or mmap-ed read. The user expects to get zero data from the hole, but gets stale data because truncate_pagecache() is not executed yet. The scenario above illustrates one side of the problem: not truncating the page cache even though we should. Another side corresponds to truncating page cache too late, when the state of inode changed significantly. Theoretically, the following is possible: 1. As in the previous scenario fuse_dentry_revalidate() discovered that i_size changed (due to our own fuse_do_setattr()) and is going to call truncate_pagecache() for some 'new_size' it believes valid right now. But by the time that particular truncate_pagecache() is called ... 2. fuse_do_setattr() returns (either having called truncate_pagecache() or not -- it doesn't matter). 3. The file is extended either by write(2) or ftruncate(2) or fallocate(2). 4. mmap-ed write makes a page in the extended region dirty. The result will be the lost of data user wrote on the fourth step. The patch is a hotfix resolving the issue in a simplistic way: let's skip dangerous i_size update and truncate_pagecache if an operation changing file size is in progress. This simplistic approach looks correct for the cases w/o external changes. And to handle them properly, more sophisticated and intrusive techniques (e.g. NFS-like one) would be required. I'd like to postpone it until the issue is well discussed on the mailing list(s). Changed in v2: - improved patch description to cover both sides of the issue. Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: stable@vger.kernel.org
2013-08-30 17:06:04 +04:00
if ((attr_version != 0 && fi->attr_version > attr_version) ||
test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
spin_unlock(&fc->lock);
return;
}
old_mtime = inode->i_mtime;
fuse: support writable mmap Quoting Linus (3 years ago, FUSE inclusion discussions): "User-space filesystems are hard to get right. I'd claim that they are almost impossible, unless you limit them somehow (shared writable mappings are the nastiest part - if you don't have those, you can reasonably limit your problems by limiting the number of dirty pages you accept through normal "write()" calls)." Instead of attempting the impossible, I've just waited for the dirty page accounting infrastructure to materialize (thanks to Peter Zijlstra and others). This nicely solved the biggest problem: limiting the number of pages used for write caching. Some small details remained, however, which this largish patch attempts to address. It provides a page writeback implementation for fuse, which is completely safe against VM related deadlocks. Performance may not be very good for certain usage patterns, but generally it should be acceptable. It has been tested extensively with fsx-linux and bash-shared-mapping. Fuse page writeback design -------------------------- fuse_writepage() allocates a new temporary page with GFP_NOFS|__GFP_HIGHMEM. It copies the contents of the original page, and queues a WRITE request to the userspace filesystem using this temp page. The writeback is finished instantly from the MM's point of view: the page is removed from the radix trees, and the PageDirty and PageWriteback flags are cleared. For the duration of the actual write, the NR_WRITEBACK_TEMP counter is incremented. The per-bdi writeback count is not decremented until the actual write completes. On dirtying the page, fuse waits for a previous write to finish before proceeding. This makes sure, there can only be one temporary page used at a time for one cached page. This approach is wasteful in both memory and CPU bandwidth, so why is this complication needed? The basic problem is that there can be no guarantee about the time in which the userspace filesystem will complete a write. It may be buggy or even malicious, and fail to complete WRITE requests. We don't want unrelated parts of the system to grind to a halt in such cases. Also a filesystem may need additional resources (particularly memory) to complete a WRITE request. There's a great danger of a deadlock if that allocation may wait for the writepage to finish. Currently there are several cases where the kernel can block on page writeback: - allocation order is larger than PAGE_ALLOC_COSTLY_ORDER - page migration - throttle_vm_writeout (through NR_WRITEBACK) - sync(2) Of course in some cases (fsync, msync) we explicitly want to allow blocking. So for these cases new code has to be added to fuse, since the VM is not tracking writeback pages for us any more. As an extra safetly measure, the maximum dirty ratio allocated to a single fuse filesystem is set to 1% by default. This way one (or several) buggy or malicious fuse filesystems cannot slow down the rest of the system by hogging dirty memory. With appropriate privileges, this limit can be raised through '/sys/class/bdi/<bdi>/max_ratio'. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 11:54:41 +04:00
fuse_change_attributes_common(inode, attr, attr_valid);
oldsize = inode->i_size;
/*
* In case of writeback_cache enabled, the cached writes beyond EOF
* extend local i_size without keeping userspace server in sync. So,
* attr->size coming from server can be stale. We cannot trust it.
*/
if (!is_wb || !S_ISREG(inode->i_mode))
i_size_write(inode, attr->size);
spin_unlock(&fc->lock);
if (!is_wb && S_ISREG(inode->i_mode)) {
bool inval = false;
if (oldsize != attr->size) {
truncate_pagecache(inode, attr->size);
inval = true;
} else if (fc->auto_inval_data) {
struct timespec new_mtime = {
.tv_sec = attr->mtime,
.tv_nsec = attr->mtimensec,
};
/*
* Auto inval mode also checks and invalidates if mtime
* has changed.
*/
if (!timespec_equal(&old_mtime, &new_mtime))
inval = true;
}
if (inval)
invalidate_inode_pages2(inode->i_mapping);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
static void fuse_init_inode(struct inode *inode, struct fuse_attr *attr)
{
inode->i_mode = attr->mode & S_IFMT;
inode->i_size = attr->size;
inode->i_mtime.tv_sec = attr->mtime;
inode->i_mtime.tv_nsec = attr->mtimensec;
inode->i_ctime.tv_sec = attr->ctime;
inode->i_ctime.tv_nsec = attr->ctimensec;
if (S_ISREG(inode->i_mode)) {
fuse_init_common(inode);
fuse_init_file_inode(inode);
} else if (S_ISDIR(inode->i_mode))
fuse_init_dir(inode);
else if (S_ISLNK(inode->i_mode))
fuse_init_symlink(inode);
else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
fuse_init_common(inode);
init_special_inode(inode, inode->i_mode,
new_decode_dev(attr->rdev));
} else
BUG();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
int fuse_inode_eq(struct inode *inode, void *_nodeidp)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
u64 nodeid = *(u64 *) _nodeidp;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
if (get_node_id(inode) == nodeid)
return 1;
else
return 0;
}
static int fuse_inode_set(struct inode *inode, void *_nodeidp)
{
u64 nodeid = *(u64 *) _nodeidp;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
get_fuse_inode(inode)->nodeid = nodeid;
return 0;
}
struct inode *fuse_iget(struct super_block *sb, u64 nodeid,
int generation, struct fuse_attr *attr,
u64 attr_valid, u64 attr_version)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
struct inode *inode;
struct fuse_inode *fi;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
struct fuse_conn *fc = get_fuse_conn_super(sb);
retry:
inode = iget5_locked(sb, nodeid, fuse_inode_eq, fuse_inode_set, &nodeid);
if (!inode)
return NULL;
if ((inode->i_state & I_NEW)) {
inode->i_flags |= S_NOATIME;
if (!fc->writeback_cache || !S_ISREG(attr->mode))
inode->i_flags |= S_NOCMTIME;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
inode->i_generation = generation;
inode->i_data.backing_dev_info = &fc->bdi;
fuse_init_inode(inode, attr);
unlock_new_inode(inode);
} else if ((inode->i_mode ^ attr->mode) & S_IFMT) {
/* Inode has changed type, any I/O on the old should fail */
make_bad_inode(inode);
iput(inode);
goto retry;
}
fi = get_fuse_inode(inode);
spin_lock(&fc->lock);
fi->nlookup++;
spin_unlock(&fc->lock);
fuse_change_attributes(inode, attr, attr_valid, attr_version);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return inode;
}
int fuse_reverse_inval_inode(struct super_block *sb, u64 nodeid,
loff_t offset, loff_t len)
{
struct inode *inode;
pgoff_t pg_start;
pgoff_t pg_end;
inode = ilookup5(sb, nodeid, fuse_inode_eq, &nodeid);
if (!inode)
return -ENOENT;
fuse_invalidate_attr(inode);
if (offset >= 0) {
pg_start = offset >> PAGE_CACHE_SHIFT;
if (len <= 0)
pg_end = -1;
else
pg_end = (offset + len - 1) >> PAGE_CACHE_SHIFT;
invalidate_inode_pages2_range(inode->i_mapping,
pg_start, pg_end);
}
iput(inode);
return 0;
}
static void fuse_umount_begin(struct super_block *sb)
{
fuse_abort_conn(get_fuse_conn_super(sb));
}
static void fuse_send_destroy(struct fuse_conn *fc)
{
struct fuse_req *req = fc->destroy_req;
if (req && fc->conn_init) {
fc->destroy_req = NULL;
req->in.h.opcode = FUSE_DESTROY;
req->force = 1;
req->background = 0;
fuse_request_send(fc, req);
fuse_put_request(fc, req);
}
}
static void fuse_bdi_destroy(struct fuse_conn *fc)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
if (fc->bdi_initialized)
bdi_destroy(&fc->bdi);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
static void fuse_put_super(struct super_block *sb)
{
struct fuse_conn *fc = get_fuse_conn_super(sb);
fuse_send_destroy(fc);
fuse_abort_conn(fc);
mutex_lock(&fuse_mutex);
list_del(&fc->entry);
fuse_ctl_remove_conn(fc);
mutex_unlock(&fuse_mutex);
fuse_bdi_destroy(fc);
fuse_conn_put(fc);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
static void convert_fuse_statfs(struct kstatfs *stbuf, struct fuse_kstatfs *attr)
{
stbuf->f_type = FUSE_SUPER_MAGIC;
stbuf->f_bsize = attr->bsize;
stbuf->f_frsize = attr->frsize;
stbuf->f_blocks = attr->blocks;
stbuf->f_bfree = attr->bfree;
stbuf->f_bavail = attr->bavail;
stbuf->f_files = attr->files;
stbuf->f_ffree = attr->ffree;
stbuf->f_namelen = attr->namelen;
/* fsid is left zero */
}
static int fuse_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct fuse_conn *fc = get_fuse_conn_super(sb);
FUSE_ARGS(args);
struct fuse_statfs_out outarg;
int err;
if (!fuse_allow_current_process(fc)) {
buf->f_type = FUSE_SUPER_MAGIC;
return 0;
}
memset(&outarg, 0, sizeof(outarg));
args.in.numargs = 0;
args.in.h.opcode = FUSE_STATFS;
args.in.h.nodeid = get_node_id(dentry->d_inode);
args.out.numargs = 1;
args.out.args[0].size =
fc->minor < 4 ? FUSE_COMPAT_STATFS_SIZE : sizeof(outarg);
args.out.args[0].value = &outarg;
err = fuse_simple_request(fc, &args);
if (!err)
convert_fuse_statfs(buf, &outarg.st);
return err;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
enum {
OPT_FD,
OPT_ROOTMODE,
OPT_USER_ID,
OPT_GROUP_ID,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
OPT_DEFAULT_PERMISSIONS,
OPT_ALLOW_OTHER,
OPT_MAX_READ,
OPT_BLKSIZE,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
OPT_ERR
};
static const match_table_t tokens = {
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{OPT_FD, "fd=%u"},
{OPT_ROOTMODE, "rootmode=%o"},
{OPT_USER_ID, "user_id=%u"},
{OPT_GROUP_ID, "group_id=%u"},
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{OPT_DEFAULT_PERMISSIONS, "default_permissions"},
{OPT_ALLOW_OTHER, "allow_other"},
{OPT_MAX_READ, "max_read=%u"},
{OPT_BLKSIZE, "blksize=%u"},
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{OPT_ERR, NULL}
};
static int fuse_match_uint(substring_t *s, unsigned int *res)
{
int err = -ENOMEM;
char *buf = match_strdup(s);
if (buf) {
err = kstrtouint(buf, 10, res);
kfree(buf);
}
return err;
}
static int parse_fuse_opt(char *opt, struct fuse_mount_data *d, int is_bdev)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
char *p;
memset(d, 0, sizeof(struct fuse_mount_data));
d->max_read = ~0;
d->blksize = FUSE_DEFAULT_BLKSIZE;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
while ((p = strsep(&opt, ",")) != NULL) {
int token;
int value;
unsigned uv;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
substring_t args[MAX_OPT_ARGS];
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case OPT_FD:
if (match_int(&args[0], &value))
return 0;
d->fd = value;
d->fd_present = 1;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
break;
case OPT_ROOTMODE:
if (match_octal(&args[0], &value))
return 0;
if (!fuse_valid_type(value))
return 0;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
d->rootmode = value;
d->rootmode_present = 1;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
break;
case OPT_USER_ID:
if (fuse_match_uint(&args[0], &uv))
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return 0;
d->user_id = make_kuid(current_user_ns(), uv);
userns: Support fuse interacting with multiple user namespaces Use kuid_t and kgid_t in struct fuse_conn and struct fuse_mount_data. The connection between between a fuse filesystem and a fuse daemon is established when a fuse filesystem is mounted and provided with a file descriptor the fuse daemon created by opening /dev/fuse. For now restrict the communication of uids and gids between the fuse filesystem and the fuse daemon to the initial user namespace. Enforce this by verifying the file descriptor passed to the mount of fuse was opened in the initial user namespace. Ensuring the mount happens in the initial user namespace is not necessary as mounts from non-initial user namespaces are not yet allowed. In fuse_req_init_context convert the currrent fsuid and fsgid into the initial user namespace for the request that will be sent to the fuse daemon. In fuse_fill_attr convert the uid and gid passed from the fuse daemon from the initial user namespace into kuids and kgids. In iattr_to_fattr called from fuse_setattr convert kuids and kgids into the uids and gids in the initial user namespace before passing them to the fuse filesystem. In fuse_change_attributes_common called from fuse_dentry_revalidate, fuse_permission, fuse_geattr, and fuse_setattr, and fuse_iget convert the uid and gid from the fuse daemon into a kuid and a kgid to store on the fuse inode. By default fuse mounts are restricted to task whose uid, suid, and euid matches the fuse user_id and whose gid, sgid, and egid matches the fuse group id. Convert the user_id and group_id mount options into kuids and kgids at mount time, and use uid_eq and gid_eq to compare the in fuse_allow_task. Cc: Miklos Szeredi <miklos@szeredi.hu> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-02-08 04:26:03 +04:00
if (!uid_valid(d->user_id))
return 0;
d->user_id_present = 1;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
break;
case OPT_GROUP_ID:
if (fuse_match_uint(&args[0], &uv))
return 0;
d->group_id = make_kgid(current_user_ns(), uv);
userns: Support fuse interacting with multiple user namespaces Use kuid_t and kgid_t in struct fuse_conn and struct fuse_mount_data. The connection between between a fuse filesystem and a fuse daemon is established when a fuse filesystem is mounted and provided with a file descriptor the fuse daemon created by opening /dev/fuse. For now restrict the communication of uids and gids between the fuse filesystem and the fuse daemon to the initial user namespace. Enforce this by verifying the file descriptor passed to the mount of fuse was opened in the initial user namespace. Ensuring the mount happens in the initial user namespace is not necessary as mounts from non-initial user namespaces are not yet allowed. In fuse_req_init_context convert the currrent fsuid and fsgid into the initial user namespace for the request that will be sent to the fuse daemon. In fuse_fill_attr convert the uid and gid passed from the fuse daemon from the initial user namespace into kuids and kgids. In iattr_to_fattr called from fuse_setattr convert kuids and kgids into the uids and gids in the initial user namespace before passing them to the fuse filesystem. In fuse_change_attributes_common called from fuse_dentry_revalidate, fuse_permission, fuse_geattr, and fuse_setattr, and fuse_iget convert the uid and gid from the fuse daemon into a kuid and a kgid to store on the fuse inode. By default fuse mounts are restricted to task whose uid, suid, and euid matches the fuse user_id and whose gid, sgid, and egid matches the fuse group id. Convert the user_id and group_id mount options into kuids and kgids at mount time, and use uid_eq and gid_eq to compare the in fuse_allow_task. Cc: Miklos Szeredi <miklos@szeredi.hu> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-02-08 04:26:03 +04:00
if (!gid_valid(d->group_id))
return 0;
d->group_id_present = 1;
break;
case OPT_DEFAULT_PERMISSIONS:
d->flags |= FUSE_DEFAULT_PERMISSIONS;
break;
case OPT_ALLOW_OTHER:
d->flags |= FUSE_ALLOW_OTHER;
break;
case OPT_MAX_READ:
if (match_int(&args[0], &value))
return 0;
d->max_read = value;
break;
case OPT_BLKSIZE:
if (!is_bdev || match_int(&args[0], &value))
return 0;
d->blksize = value;
break;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
default:
return 0;
}
}
if (!d->fd_present || !d->rootmode_present ||
!d->user_id_present || !d->group_id_present)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return 0;
return 1;
}
static int fuse_show_options(struct seq_file *m, struct dentry *root)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
struct super_block *sb = root->d_sb;
struct fuse_conn *fc = get_fuse_conn_super(sb);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
userns: Support fuse interacting with multiple user namespaces Use kuid_t and kgid_t in struct fuse_conn and struct fuse_mount_data. The connection between between a fuse filesystem and a fuse daemon is established when a fuse filesystem is mounted and provided with a file descriptor the fuse daemon created by opening /dev/fuse. For now restrict the communication of uids and gids between the fuse filesystem and the fuse daemon to the initial user namespace. Enforce this by verifying the file descriptor passed to the mount of fuse was opened in the initial user namespace. Ensuring the mount happens in the initial user namespace is not necessary as mounts from non-initial user namespaces are not yet allowed. In fuse_req_init_context convert the currrent fsuid and fsgid into the initial user namespace for the request that will be sent to the fuse daemon. In fuse_fill_attr convert the uid and gid passed from the fuse daemon from the initial user namespace into kuids and kgids. In iattr_to_fattr called from fuse_setattr convert kuids and kgids into the uids and gids in the initial user namespace before passing them to the fuse filesystem. In fuse_change_attributes_common called from fuse_dentry_revalidate, fuse_permission, fuse_geattr, and fuse_setattr, and fuse_iget convert the uid and gid from the fuse daemon into a kuid and a kgid to store on the fuse inode. By default fuse mounts are restricted to task whose uid, suid, and euid matches the fuse user_id and whose gid, sgid, and egid matches the fuse group id. Convert the user_id and group_id mount options into kuids and kgids at mount time, and use uid_eq and gid_eq to compare the in fuse_allow_task. Cc: Miklos Szeredi <miklos@szeredi.hu> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-02-08 04:26:03 +04:00
seq_printf(m, ",user_id=%u", from_kuid_munged(&init_user_ns, fc->user_id));
seq_printf(m, ",group_id=%u", from_kgid_munged(&init_user_ns, fc->group_id));
if (fc->flags & FUSE_DEFAULT_PERMISSIONS)
seq_puts(m, ",default_permissions");
if (fc->flags & FUSE_ALLOW_OTHER)
seq_puts(m, ",allow_other");
if (fc->max_read != ~0)
seq_printf(m, ",max_read=%u", fc->max_read);
if (sb->s_bdev && sb->s_blocksize != FUSE_DEFAULT_BLKSIZE)
seq_printf(m, ",blksize=%lu", sb->s_blocksize);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return 0;
}
void fuse_conn_init(struct fuse_conn *fc)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
memset(fc, 0, sizeof(*fc));
spin_lock_init(&fc->lock);
init_rwsem(&fc->killsb);
atomic_set(&fc->count, 1);
init_waitqueue_head(&fc->waitq);
init_waitqueue_head(&fc->blocked_waitq);
init_waitqueue_head(&fc->reserved_req_waitq);
INIT_LIST_HEAD(&fc->pending);
INIT_LIST_HEAD(&fc->processing);
INIT_LIST_HEAD(&fc->io);
INIT_LIST_HEAD(&fc->interrupts);
INIT_LIST_HEAD(&fc->bg_queue);
INIT_LIST_HEAD(&fc->entry);
fc->forget_list_tail = &fc->forget_list_head;
atomic_set(&fc->num_waiting, 0);
fc->max_background = FUSE_DEFAULT_MAX_BACKGROUND;
fc->congestion_threshold = FUSE_DEFAULT_CONGESTION_THRESHOLD;
fc->khctr = 0;
fc->polled_files = RB_ROOT;
fc->reqctr = 0;
fc->blocked = 0;
fc->initialized = 0;
fc->attr_version = 1;
get_random_bytes(&fc->scramble_key, sizeof(fc->scramble_key));
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
EXPORT_SYMBOL_GPL(fuse_conn_init);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
void fuse_conn_put(struct fuse_conn *fc)
{
if (atomic_dec_and_test(&fc->count)) {
if (fc->destroy_req)
fuse_request_free(fc->destroy_req);
fc->release(fc);
}
}
EXPORT_SYMBOL_GPL(fuse_conn_put);
struct fuse_conn *fuse_conn_get(struct fuse_conn *fc)
{
atomic_inc(&fc->count);
return fc;
}
EXPORT_SYMBOL_GPL(fuse_conn_get);
static struct inode *fuse_get_root_inode(struct super_block *sb, unsigned mode)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
struct fuse_attr attr;
memset(&attr, 0, sizeof(attr));
attr.mode = mode;
attr.ino = FUSE_ROOT_ID;
attr.nlink = 1;
return fuse_iget(sb, 1, 0, &attr, 0, 0);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
struct fuse_inode_handle {
u64 nodeid;
u32 generation;
};
static struct dentry *fuse_get_dentry(struct super_block *sb,
struct fuse_inode_handle *handle)
{
struct fuse_conn *fc = get_fuse_conn_super(sb);
struct inode *inode;
struct dentry *entry;
int err = -ESTALE;
if (handle->nodeid == 0)
goto out_err;
inode = ilookup5(sb, handle->nodeid, fuse_inode_eq, &handle->nodeid);
if (!inode) {
struct fuse_entry_out outarg;
struct qstr name;
if (!fc->export_support)
goto out_err;
name.len = 1;
name.name = ".";
err = fuse_lookup_name(sb, handle->nodeid, &name, &outarg,
&inode);
if (err && err != -ENOENT)
goto out_err;
if (err || !inode) {
err = -ESTALE;
goto out_err;
}
err = -EIO;
if (get_node_id(inode) != handle->nodeid)
goto out_iput;
}
err = -ESTALE;
if (inode->i_generation != handle->generation)
goto out_iput;
entry = d_obtain_alias(inode);
if (!IS_ERR(entry) && get_node_id(inode) != FUSE_ROOT_ID)
fuse_invalidate_entry_cache(entry);
return entry;
out_iput:
iput(inode);
out_err:
return ERR_PTR(err);
}
static int fuse_encode_fh(struct inode *inode, u32 *fh, int *max_len,
struct inode *parent)
{
int len = parent ? 6 : 3;
u64 nodeid;
u32 generation;
if (*max_len < len) {
*max_len = len;
return FILEID_INVALID;
}
nodeid = get_fuse_inode(inode)->nodeid;
generation = inode->i_generation;
fh[0] = (u32)(nodeid >> 32);
fh[1] = (u32)(nodeid & 0xffffffff);
fh[2] = generation;
if (parent) {
nodeid = get_fuse_inode(parent)->nodeid;
generation = parent->i_generation;
fh[3] = (u32)(nodeid >> 32);
fh[4] = (u32)(nodeid & 0xffffffff);
fh[5] = generation;
}
*max_len = len;
return parent ? 0x82 : 0x81;
}
static struct dentry *fuse_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type)
{
struct fuse_inode_handle handle;
if ((fh_type != 0x81 && fh_type != 0x82) || fh_len < 3)
return NULL;
handle.nodeid = (u64) fid->raw[0] << 32;
handle.nodeid |= (u64) fid->raw[1];
handle.generation = fid->raw[2];
return fuse_get_dentry(sb, &handle);
}
static struct dentry *fuse_fh_to_parent(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type)
{
struct fuse_inode_handle parent;
if (fh_type != 0x82 || fh_len < 6)
return NULL;
parent.nodeid = (u64) fid->raw[3] << 32;
parent.nodeid |= (u64) fid->raw[4];
parent.generation = fid->raw[5];
return fuse_get_dentry(sb, &parent);
}
static struct dentry *fuse_get_parent(struct dentry *child)
{
struct inode *child_inode = child->d_inode;
struct fuse_conn *fc = get_fuse_conn(child_inode);
struct inode *inode;
struct dentry *parent;
struct fuse_entry_out outarg;
struct qstr name;
int err;
if (!fc->export_support)
return ERR_PTR(-ESTALE);
name.len = 2;
name.name = "..";
err = fuse_lookup_name(child_inode->i_sb, get_node_id(child_inode),
&name, &outarg, &inode);
if (err) {
if (err == -ENOENT)
return ERR_PTR(-ESTALE);
return ERR_PTR(err);
}
parent = d_obtain_alias(inode);
if (!IS_ERR(parent) && get_node_id(inode) != FUSE_ROOT_ID)
fuse_invalidate_entry_cache(parent);
return parent;
}
static const struct export_operations fuse_export_operations = {
.fh_to_dentry = fuse_fh_to_dentry,
.fh_to_parent = fuse_fh_to_parent,
.encode_fh = fuse_encode_fh,
.get_parent = fuse_get_parent,
};
static const struct super_operations fuse_super_operations = {
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
.alloc_inode = fuse_alloc_inode,
.destroy_inode = fuse_destroy_inode,
.evict_inode = fuse_evict_inode,
.write_inode = fuse_write_inode,
.drop_inode = generic_delete_inode,
.remount_fs = fuse_remount_fs,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
.put_super = fuse_put_super,
.umount_begin = fuse_umount_begin,
.statfs = fuse_statfs,
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
.show_options = fuse_show_options,
};
static void sanitize_global_limit(unsigned *limit)
{
if (*limit == 0)
*limit = ((totalram_pages << PAGE_SHIFT) >> 13) /
sizeof(struct fuse_req);
if (*limit >= 1 << 16)
*limit = (1 << 16) - 1;
}
static int set_global_limit(const char *val, struct kernel_param *kp)
{
int rv;
rv = param_set_uint(val, kp);
if (rv)
return rv;
sanitize_global_limit((unsigned *)kp->arg);
return 0;
}
static void process_init_limits(struct fuse_conn *fc, struct fuse_init_out *arg)
{
int cap_sys_admin = capable(CAP_SYS_ADMIN);
if (arg->minor < 13)
return;
sanitize_global_limit(&max_user_bgreq);
sanitize_global_limit(&max_user_congthresh);
if (arg->max_background) {
fc->max_background = arg->max_background;
if (!cap_sys_admin && fc->max_background > max_user_bgreq)
fc->max_background = max_user_bgreq;
}
if (arg->congestion_threshold) {
fc->congestion_threshold = arg->congestion_threshold;
if (!cap_sys_admin &&
fc->congestion_threshold > max_user_congthresh)
fc->congestion_threshold = max_user_congthresh;
}
}
static void process_init_reply(struct fuse_conn *fc, struct fuse_req *req)
{
struct fuse_init_out *arg = &req->misc.init_out;
if (req->out.h.error || arg->major != FUSE_KERNEL_VERSION)
fc->conn_error = 1;
else {
unsigned long ra_pages;
process_init_limits(fc, arg);
if (arg->minor >= 6) {
ra_pages = arg->max_readahead / PAGE_CACHE_SIZE;
if (arg->flags & FUSE_ASYNC_READ)
fc->async_read = 1;
if (!(arg->flags & FUSE_POSIX_LOCKS))
fc->no_lock = 1;
if (arg->minor >= 17) {
if (!(arg->flags & FUSE_FLOCK_LOCKS))
fc->no_flock = 1;
} else {
if (!(arg->flags & FUSE_POSIX_LOCKS))
fc->no_flock = 1;
}
if (arg->flags & FUSE_ATOMIC_O_TRUNC)
fc->atomic_o_trunc = 1;
if (arg->minor >= 9) {
/* LOOKUP has dependency on proto version */
if (arg->flags & FUSE_EXPORT_SUPPORT)
fc->export_support = 1;
}
if (arg->flags & FUSE_BIG_WRITES)
fc->big_writes = 1;
if (arg->flags & FUSE_DONT_MASK)
fc->dont_mask = 1;
if (arg->flags & FUSE_AUTO_INVAL_DATA)
fc->auto_inval_data = 1;
if (arg->flags & FUSE_DO_READDIRPLUS) {
fc->do_readdirplus = 1;
if (arg->flags & FUSE_READDIRPLUS_AUTO)
fc->readdirplus_auto = 1;
}
if (arg->flags & FUSE_ASYNC_DIO)
fc->async_dio = 1;
if (arg->flags & FUSE_WRITEBACK_CACHE)
fc->writeback_cache = 1;
if (arg->time_gran && arg->time_gran <= 1000000000)
fc->sb->s_time_gran = arg->time_gran;
} else {
ra_pages = fc->max_read / PAGE_CACHE_SIZE;
fc->no_lock = 1;
fc->no_flock = 1;
}
fc->bdi.ra_pages = min(fc->bdi.ra_pages, ra_pages);
fc->minor = arg->minor;
fc->max_write = arg->minor < 5 ? 4096 : arg->max_write;
fc->max_write = max_t(unsigned, 4096, fc->max_write);
fc->conn_init = 1;
}
fc->initialized = 1;
wake_up_all(&fc->blocked_waitq);
}
static void fuse_send_init(struct fuse_conn *fc, struct fuse_req *req)
{
struct fuse_init_in *arg = &req->misc.init_in;
arg->major = FUSE_KERNEL_VERSION;
arg->minor = FUSE_KERNEL_MINOR_VERSION;
arg->max_readahead = fc->bdi.ra_pages * PAGE_CACHE_SIZE;
arg->flags |= FUSE_ASYNC_READ | FUSE_POSIX_LOCKS | FUSE_ATOMIC_O_TRUNC |
FUSE_EXPORT_SUPPORT | FUSE_BIG_WRITES | FUSE_DONT_MASK |
FUSE_SPLICE_WRITE | FUSE_SPLICE_MOVE | FUSE_SPLICE_READ |
FUSE_FLOCK_LOCKS | FUSE_IOCTL_DIR | FUSE_AUTO_INVAL_DATA |
FUSE_DO_READDIRPLUS | FUSE_READDIRPLUS_AUTO | FUSE_ASYNC_DIO |
FUSE_WRITEBACK_CACHE | FUSE_NO_OPEN_SUPPORT;
req->in.h.opcode = FUSE_INIT;
req->in.numargs = 1;
req->in.args[0].size = sizeof(*arg);
req->in.args[0].value = arg;
req->out.numargs = 1;
/* Variable length argument used for backward compatibility
with interface version < 7.5. Rest of init_out is zeroed
by do_get_request(), so a short reply is not a problem */
req->out.argvar = 1;
req->out.args[0].size = sizeof(struct fuse_init_out);
req->out.args[0].value = &req->misc.init_out;
req->end = process_init_reply;
fuse_request_send_background(fc, req);
}
static void fuse_free_conn(struct fuse_conn *fc)
{
kfree_rcu(fc, rcu);
}
static int fuse_bdi_init(struct fuse_conn *fc, struct super_block *sb)
{
int err;
fc->bdi.name = "fuse";
fc->bdi.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
/* fuse does it's own writeback accounting */
mm/page-writeback.c: add strictlimit feature The feature prevents mistrusted filesystems (ie: FUSE mounts created by unprivileged users) to grow a large number of dirty pages before throttling. For such filesystems balance_dirty_pages always check bdi counters against bdi limits. I.e. even if global "nr_dirty" is under "freerun", it's not allowed to skip bdi checks. The only use case for now is fuse: it sets bdi max_ratio to 1% by default and system administrators are supposed to expect that this limit won't be exceeded. The feature is on if a BDI is marked by BDI_CAP_STRICTLIMIT flag. A filesystem may set the flag when it initializes its BDI. The problematic scenario comes from the fact that nobody pays attention to the NR_WRITEBACK_TEMP counter (i.e. number of pages under fuse writeback). The implementation of fuse writeback releases original page (by calling end_page_writeback) almost immediately. A fuse request queued for real processing bears a copy of original page. Hence, if userspace fuse daemon doesn't finalize write requests in timely manner, an aggressive mmap writer can pollute virtually all memory by those temporary fuse page copies. They are carefully accounted in NR_WRITEBACK_TEMP, but nobody cares. To make further explanations shorter, let me use "NR_WRITEBACK_TEMP problem" as a shortcut for "a possibility of uncontrolled grow of amount of RAM consumed by temporary pages allocated by kernel fuse to process writeback". The problem was very easy to reproduce. There is a trivial example filesystem implementation in fuse userspace distribution: fusexmp_fh.c. I added "sleep(1);" to the write methods, then recompiled and mounted it. Then created a huge file on the mount point and run a simple program which mmap-ed the file to a memory region, then wrote a data to the region. An hour later I observed almost all RAM consumed by fuse writeback. Since then some unrelated changes in kernel fuse made it more difficult to reproduce, but it is still possible now. Putting this theoretical happens-in-the-lab thing aside, there is another thing that really hurts real world (FUSE) users. This is write-through page cache policy FUSE currently uses. I.e. handling write(2), kernel fuse populates page cache and flushes user data to the server synchronously. This is excessively suboptimal. Pavel Emelyanov's patches ("writeback cache policy") solve the problem, but they also make resolving NR_WRITEBACK_TEMP problem absolutely necessary. Otherwise, simply copying a huge file to a fuse mount would result in memory starvation. Miklos, the maintainer of FUSE, believes strictlimit feature the way to go. And eventually putting FUSE topics aside, there is one more use-case for strictlimit feature. Using a slow USB stick (mass storage) in a machine with huge amount of RAM installed is a well-known pain. Let's make simple computations. Assuming 64GB of RAM installed, existing implementation of balance_dirty_pages will start throttling only after 9.6GB of RAM becomes dirty (freerun == 15% of total RAM). So, the command "cp 9GB_file /media/my-usb-storage/" may return in a few seconds, but subsequent "umount /media/my-usb-storage/" will take more than two hours if effective throughput of the storage is, to say, 1MB/sec. After inclusion of strictlimit feature, it will be trivial to add a knob (e.g. /sys/devices/virtual/bdi/x:y/strictlimit) to enable it on demand. Manually or via udev rule. May be I'm wrong, but it seems to be quite a natural desire to limit the amount of dirty memory for some devices we are not fully trust (in the sense of sustainable throughput). [akpm@linux-foundation.org: fix warning in page-writeback.c] Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com> Cc: Jan Kara <jack@suse.cz> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:22:46 +04:00
fc->bdi.capabilities = BDI_CAP_NO_ACCT_WB | BDI_CAP_STRICTLIMIT;
err = bdi_init(&fc->bdi);
if (err)
return err;
fc->bdi_initialized = 1;
if (sb->s_bdev) {
err = bdi_register(&fc->bdi, NULL, "%u:%u-fuseblk",
MAJOR(fc->dev), MINOR(fc->dev));
} else {
err = bdi_register_dev(&fc->bdi, fc->dev);
}
if (err)
return err;
/*
* For a single fuse filesystem use max 1% of dirty +
* writeback threshold.
*
* This gives about 1M of write buffer for memory maps on a
* machine with 1G and 10% dirty_ratio, which should be more
* than enough.
*
* Privileged users can raise it by writing to
*
* /sys/class/bdi/<bdi>/max_ratio
*/
bdi_set_max_ratio(&fc->bdi, 1);
return 0;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
static int fuse_fill_super(struct super_block *sb, void *data, int silent)
{
struct fuse_conn *fc;
struct inode *root;
struct fuse_mount_data d;
struct file *file;
struct dentry *root_dentry;
struct fuse_req *init_req;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
int err;
int is_bdev = sb->s_bdev != NULL;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
err = -EINVAL;
if (sb->s_flags & MS_MANDLOCK)
goto err;
sb->s_flags &= ~(MS_NOSEC | MS_I_VERSION);
if (!parse_fuse_opt(data, &d, is_bdev))
goto err;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
if (is_bdev) {
#ifdef CONFIG_BLOCK
err = -EINVAL;
if (!sb_set_blocksize(sb, d.blksize))
goto err;
#endif
} else {
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
sb->s_magic = FUSE_SUPER_MAGIC;
sb->s_op = &fuse_super_operations;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_time_gran = 1;
sb->s_export_op = &fuse_export_operations;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
file = fget(d.fd);
err = -EINVAL;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
if (!file)
goto err;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
userns: Support fuse interacting with multiple user namespaces Use kuid_t and kgid_t in struct fuse_conn and struct fuse_mount_data. The connection between between a fuse filesystem and a fuse daemon is established when a fuse filesystem is mounted and provided with a file descriptor the fuse daemon created by opening /dev/fuse. For now restrict the communication of uids and gids between the fuse filesystem and the fuse daemon to the initial user namespace. Enforce this by verifying the file descriptor passed to the mount of fuse was opened in the initial user namespace. Ensuring the mount happens in the initial user namespace is not necessary as mounts from non-initial user namespaces are not yet allowed. In fuse_req_init_context convert the currrent fsuid and fsgid into the initial user namespace for the request that will be sent to the fuse daemon. In fuse_fill_attr convert the uid and gid passed from the fuse daemon from the initial user namespace into kuids and kgids. In iattr_to_fattr called from fuse_setattr convert kuids and kgids into the uids and gids in the initial user namespace before passing them to the fuse filesystem. In fuse_change_attributes_common called from fuse_dentry_revalidate, fuse_permission, fuse_geattr, and fuse_setattr, and fuse_iget convert the uid and gid from the fuse daemon into a kuid and a kgid to store on the fuse inode. By default fuse mounts are restricted to task whose uid, suid, and euid matches the fuse user_id and whose gid, sgid, and egid matches the fuse group id. Convert the user_id and group_id mount options into kuids and kgids at mount time, and use uid_eq and gid_eq to compare the in fuse_allow_task. Cc: Miklos Szeredi <miklos@szeredi.hu> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-02-08 04:26:03 +04:00
if ((file->f_op != &fuse_dev_operations) ||
(file->f_cred->user_ns != &init_user_ns))
goto err_fput;
fc = kmalloc(sizeof(*fc), GFP_KERNEL);
err = -ENOMEM;
if (!fc)
goto err_fput;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
fuse_conn_init(fc);
fc->dev = sb->s_dev;
fc->sb = sb;
err = fuse_bdi_init(fc, sb);
if (err)
goto err_put_conn;
sb->s_bdi = &fc->bdi;
/* Handle umasking inside the fuse code */
if (sb->s_flags & MS_POSIXACL)
fc->dont_mask = 1;
sb->s_flags |= MS_POSIXACL;
fc->release = fuse_free_conn;
fc->flags = d.flags;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
fc->user_id = d.user_id;
fc->group_id = d.group_id;
fc->max_read = max_t(unsigned, 4096, d.max_read);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
/* Used by get_root_inode() */
sb->s_fs_info = fc;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
err = -ENOMEM;
root = fuse_get_root_inode(sb, d.rootmode);
root_dentry = d_make_root(root);
if (!root_dentry)
goto err_put_conn;
/* only now - we want root dentry with NULL ->d_op */
sb->s_d_op = &fuse_dentry_operations;
init_req = fuse_request_alloc(0);
if (!init_req)
goto err_put_root;
init_req->background = 1;
if (is_bdev) {
fc->destroy_req = fuse_request_alloc(0);
if (!fc->destroy_req)
goto err_free_init_req;
}
mutex_lock(&fuse_mutex);
err = -EINVAL;
if (file->private_data)
goto err_unlock;
err = fuse_ctl_add_conn(fc);
if (err)
goto err_unlock;
list_add_tail(&fc->entry, &fuse_conn_list);
sb->s_root = root_dentry;
fc->connected = 1;
file->private_data = fuse_conn_get(fc);
mutex_unlock(&fuse_mutex);
/*
* atomic_dec_and_test() in fput() provides the necessary
* memory barrier for file->private_data to be visible on all
* CPUs after this
*/
fput(file);
fuse_send_init(fc, init_req);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return 0;
err_unlock:
mutex_unlock(&fuse_mutex);
err_free_init_req:
fuse_request_free(init_req);
err_put_root:
dput(root_dentry);
err_put_conn:
fuse_bdi_destroy(fc);
fuse_conn_put(fc);
err_fput:
fput(file);
err:
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return err;
}
static struct dentry *fuse_mount(struct file_system_type *fs_type,
[PATCH] VFS: Permit filesystem to override root dentry on mount Extend the get_sb() filesystem operation to take an extra argument that permits the VFS to pass in the target vfsmount that defines the mountpoint. The filesystem is then required to manually set the superblock and root dentry pointers. For most filesystems, this should be done with simple_set_mnt() which will set the superblock pointer and then set the root dentry to the superblock's s_root (as per the old default behaviour). The get_sb() op now returns an integer as there's now no need to return the superblock pointer. This patch permits a superblock to be implicitly shared amongst several mount points, such as can be done with NFS to avoid potential inode aliasing. In such a case, simple_set_mnt() would not be called, and instead the mnt_root and mnt_sb would be set directly. The patch also makes the following changes: (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount pointer argument and return an integer, so most filesystems have to change very little. (*) If one of the convenience function is not used, then get_sb() should normally call simple_set_mnt() to instantiate the vfsmount. This will always return 0, and so can be tail-called from get_sb(). (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the dcache upon superblock destruction rather than shrink_dcache_anon(). This is required because the superblock may now have multiple trees that aren't actually bound to s_root, but that still need to be cleaned up. The currently called functions assume that the whole tree is rooted at s_root, and that anonymous dentries are not the roots of trees which results in dentries being left unculled. However, with the way NFS superblock sharing are currently set to be implemented, these assumptions are violated: the root of the filesystem is simply a dummy dentry and inode (the real inode for '/' may well be inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries with child trees. [*] Anonymous until discovered from another tree. (*) The documentation has been adjusted, including the additional bit of changing ext2_* into foo_* in the documentation. [akpm@osdl.org: convert ipath_fs, do other stuff] Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Nathan Scott <nathans@sgi.com> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 13:02:57 +04:00
int flags, const char *dev_name,
void *raw_data)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
return mount_nodev(fs_type, flags, raw_data, fuse_fill_super);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
static void fuse_kill_sb_anon(struct super_block *sb)
{
struct fuse_conn *fc = get_fuse_conn_super(sb);
if (fc) {
down_write(&fc->killsb);
fc->sb = NULL;
up_write(&fc->killsb);
}
kill_anon_super(sb);
}
static struct file_system_type fuse_fs_type = {
.owner = THIS_MODULE,
.name = "fuse",
.fs_flags = FS_HAS_SUBTYPE,
.mount = fuse_mount,
.kill_sb = fuse_kill_sb_anon,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 07:39:14 +04:00
MODULE_ALIAS_FS("fuse");
#ifdef CONFIG_BLOCK
static struct dentry *fuse_mount_blk(struct file_system_type *fs_type,
int flags, const char *dev_name,
void *raw_data)
{
return mount_bdev(fs_type, flags, dev_name, raw_data, fuse_fill_super);
}
static void fuse_kill_sb_blk(struct super_block *sb)
{
struct fuse_conn *fc = get_fuse_conn_super(sb);
if (fc) {
down_write(&fc->killsb);
fc->sb = NULL;
up_write(&fc->killsb);
}
kill_block_super(sb);
}
static struct file_system_type fuseblk_fs_type = {
.owner = THIS_MODULE,
.name = "fuseblk",
.mount = fuse_mount_blk,
.kill_sb = fuse_kill_sb_blk,
.fs_flags = FS_REQUIRES_DEV | FS_HAS_SUBTYPE,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 07:39:14 +04:00
MODULE_ALIAS_FS("fuseblk");
static inline int register_fuseblk(void)
{
return register_filesystem(&fuseblk_fs_type);
}
static inline void unregister_fuseblk(void)
{
unregister_filesystem(&fuseblk_fs_type);
}
#else
static inline int register_fuseblk(void)
{
return 0;
}
static inline void unregister_fuseblk(void)
{
}
#endif
static void fuse_inode_init_once(void *foo)
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
{
struct inode *inode = foo;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
inode_init_once(inode);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
static int __init fuse_fs_init(void)
{
int err;
fuse_inode_cachep = kmem_cache_create("fuse_inode",
sizeof(struct fuse_inode),
0, SLAB_HWCACHE_ALIGN,
fuse_inode_init_once);
err = -ENOMEM;
if (!fuse_inode_cachep)
goto out;
err = register_fuseblk();
if (err)
goto out2;
err = register_filesystem(&fuse_fs_type);
if (err)
goto out3;
return 0;
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
out3:
unregister_fuseblk();
out2:
kmem_cache_destroy(fuse_inode_cachep);
out:
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return err;
}
static void fuse_fs_cleanup(void)
{
unregister_filesystem(&fuse_fs_type);
unregister_fuseblk();
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
kmem_cache_destroy(fuse_inode_cachep);
}
static struct kobject *fuse_kobj;
static struct kobject *connections_kobj;
static int fuse_sysfs_init(void)
{
int err;
fuse_kobj = kobject_create_and_add("fuse", fs_kobj);
if (!fuse_kobj) {
err = -ENOMEM;
goto out_err;
}
connections_kobj = kobject_create_and_add("connections", fuse_kobj);
if (!connections_kobj) {
err = -ENOMEM;
goto out_fuse_unregister;
}
return 0;
out_fuse_unregister:
kobject_put(fuse_kobj);
out_err:
return err;
}
static void fuse_sysfs_cleanup(void)
{
kobject_put(connections_kobj);
kobject_put(fuse_kobj);
}
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
static int __init fuse_init(void)
{
int res;
printk(KERN_INFO "fuse init (API version %i.%i)\n",
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
FUSE_KERNEL_VERSION, FUSE_KERNEL_MINOR_VERSION);
INIT_LIST_HEAD(&fuse_conn_list);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
res = fuse_fs_init();
if (res)
goto err;
res = fuse_dev_init();
if (res)
goto err_fs_cleanup;
res = fuse_sysfs_init();
if (res)
goto err_dev_cleanup;
res = fuse_ctl_init();
if (res)
goto err_sysfs_cleanup;
sanitize_global_limit(&max_user_bgreq);
sanitize_global_limit(&max_user_congthresh);
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
return 0;
err_sysfs_cleanup:
fuse_sysfs_cleanup();
err_dev_cleanup:
fuse_dev_cleanup();
err_fs_cleanup:
fuse_fs_cleanup();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
err:
return res;
}
static void __exit fuse_exit(void)
{
printk(KERN_DEBUG "fuse exit\n");
fuse_ctl_cleanup();
fuse_sysfs_cleanup();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
fuse_fs_cleanup();
fuse_dev_cleanup();
[PATCH] FUSE - core This patch adds FUSE core. This contains the following files: o inode.c - superblock operations (alloc_inode, destroy_inode, read_inode, clear_inode, put_super, show_options) - registers FUSE filesystem o fuse_i.h - private header file Requirements ============ The most important difference between orinary filesystems and FUSE is the fact, that the filesystem data/metadata is provided by a userspace process run with the privileges of the mount "owner" instead of the kernel, or some remote entity usually running with elevated privileges. The security implication of this is that a non-privileged user must not be able to use this capability to compromise the system. Obvious requirements arising from this are: - mount owner should not be able to get elevated privileges with the help of the mounted filesystem - mount owner should not be able to induce undesired behavior in other users' or the super user's processes - mount owner should not get illegitimate access to information from other users' and the super user's processes These are currently ensured with the following constraints: 1) mount is only allowed to directory or file which the mount owner can modify without limitation (write access + no sticky bit for directories) 2) nosuid,nodev mount options are forced 3) any process running with fsuid different from the owner is denied all access to the filesystem 1) and 2) are ensured by the "fusermount" mount utility which is a setuid root application doing the actual mount operation. 3) is ensured by a check in the permission() method in kernel I started thinking about doing 3) in a different way because Christoph H. made a big deal out of it, saying that FUSE is unacceptable into mainline in this form. The suggested use of private namespaces would be OK, but in their current form have many limitations that make their use impractical (as discussed in this thread). Suggested improvements that would address these limitations: - implement shared subtrees - allow a process to join an existing namespace (make namespaces first-class objects) - implement the namespace creation/joining in a PAM module With all that in place the check of owner against current->fsuid may be removed from the FUSE kernel module, without compromising the security requirements. Suid programs still interesting questions, since they get access even to the private namespace causing some information leak (exact order/timing of filesystem operations performed), giving some ptrace-like capabilities to unprivileged users. BTW this problem is not strictly limited to the namespace approach, since suid programs setting fsuid and accessing users' files will succeed with the current approach too. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 00:10:26 +04:00
}
module_init(fuse_init);
module_exit(fuse_exit);