2022-11-29 16:29:31 -04:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES.
*
* The iopt_pages is the center of the storage and motion of PFNs . Each
* iopt_pages represents a logical linear array of full PFNs . The array is 0
* based and has npages in it . Accessors use ' index ' to refer to the entry in
* this logical array , regardless of its storage location .
*
* PFNs are stored in a tiered scheme :
* 1 ) iopt_pages : : pinned_pfns xarray
* 2 ) An iommu_domain
* 3 ) The origin of the PFNs , i . e . the userspace pointer
*
* PFN have to be copied between all combinations of tiers , depending on the
* configuration .
*
* When a PFN is taken out of the userspace pointer it is pinned exactly once .
* The storage locations of the PFN ' s index are tracked in the two interval
* trees . If no interval includes the index then it is not pinned .
*
* If access_itree includes the PFN ' s index then an in - kernel access has
* requested the page . The PFN is stored in the xarray so other requestors can
* continue to find it .
*
* If the domains_itree includes the PFN ' s index then an iommu_domain is storing
* the PFN and it can be read back using iommu_iova_to_phys ( ) . To avoid
* duplicating storage the xarray is not used if only iommu_domains are using
* the PFN ' s index .
*
* As a general principle this is designed so that destroy never fails . This
* means removing an iommu_domain or releasing a in - kernel access will not fail
* due to insufficient memory . In practice this means some cases have to hold
* PFNs in the xarray even though they are also being stored in an iommu_domain .
*
* While the iopt_pages can use an iommu_domain as storage , it does not have an
* IOVA itself . Instead the iopt_area represents a range of IOVA and uses the
* iopt_pages as the PFN provider . Multiple iopt_areas can share the iopt_pages
* and reference their own slice of the PFN array , with sub page granularity .
*
* In this file the term ' last ' indicates an inclusive and closed interval , eg
* [ 0 , 0 ] refers to a single PFN . ' end ' means an open range , eg [ 0 , 0 ) refers to
* no PFNs .
*
* Be cautious of overflow . An IOVA can go all the way up to U64_MAX , so
* last_iova + 1 can overflow . An iopt_pages index will always be much less than
* ULONG_MAX so last_index + 1 cannot overflow .
*/
# include <linux/overflow.h>
# include <linux/slab.h>
# include <linux/iommu.h>
# include <linux/sched/mm.h>
# include <linux/highmem.h>
# include <linux/kthread.h>
# include <linux/iommufd.h>
# include "io_pagetable.h"
# include "double_span.h"
2022-11-29 16:29:39 -04:00
# ifndef CONFIG_IOMMUFD_TEST
2022-11-29 16:29:31 -04:00
# define TEMP_MEMORY_LIMIT 65536
2022-11-29 16:29:39 -04:00
# else
# define TEMP_MEMORY_LIMIT iommufd_test_memory_limit
# endif
2022-11-29 16:29:31 -04:00
# define BATCH_BACKUP_SIZE 32
/*
* More memory makes pin_user_pages ( ) and the batching more efficient , but as
* this is only a performance optimization don ' t try too hard to get it . A 64 k
* allocation can hold about 26 M of 4 k pages and 13 G of 2 M pages in an
* pfn_batch . Various destroy paths cannot fail and provide a small amount of
* stack memory as a backup contingency . If backup_len is given this cannot
* fail .
*/
static void * temp_kmalloc ( size_t * size , void * backup , size_t backup_len )
{
void * res ;
if ( WARN_ON ( * size = = 0 ) )
return NULL ;
if ( * size < backup_len )
return backup ;
2022-11-29 16:29:40 -04:00
if ( ! backup & & iommufd_should_fail ( ) )
return NULL ;
2022-11-29 16:29:31 -04:00
* size = min_t ( size_t , * size , TEMP_MEMORY_LIMIT ) ;
res = kmalloc ( * size , GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY ) ;
if ( res )
return res ;
* size = PAGE_SIZE ;
if ( backup_len ) {
res = kmalloc ( * size , GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY ) ;
if ( res )
return res ;
* size = backup_len ;
return backup ;
}
return kmalloc ( * size , GFP_KERNEL ) ;
}
void interval_tree_double_span_iter_update (
struct interval_tree_double_span_iter * iter )
{
unsigned long last_hole = ULONG_MAX ;
unsigned int i ;
for ( i = 0 ; i ! = ARRAY_SIZE ( iter - > spans ) ; i + + ) {
if ( interval_tree_span_iter_done ( & iter - > spans [ i ] ) ) {
iter - > is_used = - 1 ;
return ;
}
if ( iter - > spans [ i ] . is_hole ) {
last_hole = min ( last_hole , iter - > spans [ i ] . last_hole ) ;
continue ;
}
iter - > is_used = i + 1 ;
iter - > start_used = iter - > spans [ i ] . start_used ;
iter - > last_used = min ( iter - > spans [ i ] . last_used , last_hole ) ;
return ;
}
iter - > is_used = 0 ;
iter - > start_hole = iter - > spans [ 0 ] . start_hole ;
iter - > last_hole =
min ( iter - > spans [ 0 ] . last_hole , iter - > spans [ 1 ] . last_hole ) ;
}
void interval_tree_double_span_iter_first (
struct interval_tree_double_span_iter * iter ,
struct rb_root_cached * itree1 , struct rb_root_cached * itree2 ,
unsigned long first_index , unsigned long last_index )
{
unsigned int i ;
iter - > itrees [ 0 ] = itree1 ;
iter - > itrees [ 1 ] = itree2 ;
for ( i = 0 ; i ! = ARRAY_SIZE ( iter - > spans ) ; i + + )
interval_tree_span_iter_first ( & iter - > spans [ i ] , iter - > itrees [ i ] ,
first_index , last_index ) ;
interval_tree_double_span_iter_update ( iter ) ;
}
void interval_tree_double_span_iter_next (
struct interval_tree_double_span_iter * iter )
{
unsigned int i ;
if ( iter - > is_used = = - 1 | |
iter - > last_hole = = iter - > spans [ 0 ] . last_index ) {
iter - > is_used = - 1 ;
return ;
}
for ( i = 0 ; i ! = ARRAY_SIZE ( iter - > spans ) ; i + + )
interval_tree_span_iter_advance (
& iter - > spans [ i ] , iter - > itrees [ i ] , iter - > last_hole + 1 ) ;
interval_tree_double_span_iter_update ( iter ) ;
}
static void iopt_pages_add_npinned ( struct iopt_pages * pages , size_t npages )
{
2022-11-29 16:29:41 -04:00
int rc ;
rc = check_add_overflow ( pages - > npinned , npages , & pages - > npinned ) ;
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( rc | | pages - > npinned > pages - > npages ) ;
2022-11-29 16:29:31 -04:00
}
static void iopt_pages_sub_npinned ( struct iopt_pages * pages , size_t npages )
{
2022-11-29 16:29:41 -04:00
int rc ;
rc = check_sub_overflow ( pages - > npinned , npages , & pages - > npinned ) ;
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( rc | | pages - > npinned > pages - > npages ) ;
2022-11-29 16:29:31 -04:00
}
static void iopt_pages_err_unpin ( struct iopt_pages * pages ,
unsigned long start_index ,
unsigned long last_index ,
struct page * * page_list )
{
unsigned long npages = last_index - start_index + 1 ;
unpin_user_pages ( page_list , npages ) ;
iopt_pages_sub_npinned ( pages , npages ) ;
}
/*
* index is the number of PAGE_SIZE units from the start of the area ' s
* iopt_pages . If the iova is sub page - size then the area has an iova that
* covers a portion of the first and last pages in the range .
*/
static unsigned long iopt_area_index_to_iova ( struct iopt_area * area ,
unsigned long index )
{
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( index < iopt_area_index ( area ) | |
index > iopt_area_last_index ( area ) ) ;
2022-11-29 16:29:31 -04:00
index - = iopt_area_index ( area ) ;
if ( index = = 0 )
return iopt_area_iova ( area ) ;
return iopt_area_iova ( area ) - area - > page_offset + index * PAGE_SIZE ;
}
static unsigned long iopt_area_index_to_iova_last ( struct iopt_area * area ,
unsigned long index )
{
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( index < iopt_area_index ( area ) | |
index > iopt_area_last_index ( area ) ) ;
2022-11-29 16:29:31 -04:00
if ( index = = iopt_area_last_index ( area ) )
return iopt_area_last_iova ( area ) ;
return iopt_area_iova ( area ) - area - > page_offset +
( index - iopt_area_index ( area ) + 1 ) * PAGE_SIZE - 1 ;
}
static void iommu_unmap_nofail ( struct iommu_domain * domain , unsigned long iova ,
size_t size )
{
size_t ret ;
ret = iommu_unmap ( domain , iova , size ) ;
/*
* It is a logic error in this code or a driver bug if the IOMMU unmaps
* something other than exactly as requested . This implies that the
* iommu driver may not fail unmap for reasons beyond bad agruments .
* Particularly , the iommu driver may not do a memory allocation on the
* unmap path .
*/
WARN_ON ( ret ! = size ) ;
}
2022-11-29 16:29:32 -04:00
static void iopt_area_unmap_domain_range ( struct iopt_area * area ,
struct iommu_domain * domain ,
unsigned long start_index ,
unsigned long last_index )
{
unsigned long start_iova = iopt_area_index_to_iova ( area , start_index ) ;
iommu_unmap_nofail ( domain , start_iova ,
iopt_area_index_to_iova_last ( area , last_index ) -
start_iova + 1 ) ;
}
2022-11-29 16:29:31 -04:00
static struct iopt_area * iopt_pages_find_domain_area ( struct iopt_pages * pages ,
unsigned long index )
{
struct interval_tree_node * node ;
node = interval_tree_iter_first ( & pages - > domains_itree , index , index ) ;
if ( ! node )
return NULL ;
return container_of ( node , struct iopt_area , pages_node ) ;
}
/*
* A simple datastructure to hold a vector of PFNs , optimized for contiguous
* PFNs . This is used as a temporary holding memory for shuttling pfns from one
* place to another . Generally everything is made more efficient if operations
* work on the largest possible grouping of pfns . eg fewer lock / unlock cycles ,
* better cache locality , etc
*/
struct pfn_batch {
unsigned long * pfns ;
u32 * npfns ;
unsigned int array_size ;
unsigned int end ;
unsigned int total_pfns ;
} ;
static void batch_clear ( struct pfn_batch * batch )
{
batch - > total_pfns = 0 ;
batch - > end = 0 ;
batch - > pfns [ 0 ] = 0 ;
batch - > npfns [ 0 ] = 0 ;
}
/*
* Carry means we carry a portion of the final hugepage over to the front of the
* batch
*/
static void batch_clear_carry ( struct pfn_batch * batch , unsigned int keep_pfns )
{
if ( ! keep_pfns )
return batch_clear ( batch ) ;
2022-12-07 16:44:42 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( ! batch - > end | |
batch - > npfns [ batch - > end - 1 ] < keep_pfns ) ;
2022-11-29 16:29:31 -04:00
batch - > total_pfns = keep_pfns ;
batch - > pfns [ 0 ] = batch - > pfns [ batch - > end - 1 ] +
( batch - > npfns [ batch - > end - 1 ] - keep_pfns ) ;
2023-03-31 12:32:26 -03:00
batch - > npfns [ 0 ] = keep_pfns ;
2023-07-25 16:05:50 -03:00
batch - > end = 1 ;
2022-11-29 16:29:31 -04:00
}
static void batch_skip_carry ( struct pfn_batch * batch , unsigned int skip_pfns )
{
if ( ! batch - > total_pfns )
return ;
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( batch - > total_pfns ! = batch - > npfns [ 0 ] ) ;
2022-11-29 16:29:31 -04:00
skip_pfns = min ( batch - > total_pfns , skip_pfns ) ;
batch - > pfns [ 0 ] + = skip_pfns ;
batch - > npfns [ 0 ] - = skip_pfns ;
batch - > total_pfns - = skip_pfns ;
}
static int __batch_init ( struct pfn_batch * batch , size_t max_pages , void * backup ,
size_t backup_len )
{
const size_t elmsz = sizeof ( * batch - > pfns ) + sizeof ( * batch - > npfns ) ;
size_t size = max_pages * elmsz ;
batch - > pfns = temp_kmalloc ( & size , backup , backup_len ) ;
if ( ! batch - > pfns )
return - ENOMEM ;
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) & & WARN_ON ( size < elmsz ) )
return - EINVAL ;
2022-11-29 16:29:31 -04:00
batch - > array_size = size / elmsz ;
batch - > npfns = ( u32 * ) ( batch - > pfns + batch - > array_size ) ;
batch_clear ( batch ) ;
return 0 ;
}
static int batch_init ( struct pfn_batch * batch , size_t max_pages )
{
return __batch_init ( batch , max_pages , NULL , 0 ) ;
}
static void batch_init_backup ( struct pfn_batch * batch , size_t max_pages ,
void * backup , size_t backup_len )
{
__batch_init ( batch , max_pages , backup , backup_len ) ;
}
static void batch_destroy ( struct pfn_batch * batch , void * backup )
{
if ( batch - > pfns ! = backup )
kfree ( batch - > pfns ) ;
}
2022-12-07 16:44:41 -04:00
/* true if the pfn was added, false otherwise */
2022-11-29 16:29:31 -04:00
static bool batch_add_pfn ( struct pfn_batch * batch , unsigned long pfn )
{
const unsigned int MAX_NPFNS = type_max ( typeof ( * batch - > npfns ) ) ;
if ( batch - > end & &
pfn = = batch - > pfns [ batch - > end - 1 ] + batch - > npfns [ batch - > end - 1 ] & &
batch - > npfns [ batch - > end - 1 ] ! = MAX_NPFNS ) {
batch - > npfns [ batch - > end - 1 ] + + ;
batch - > total_pfns + + ;
return true ;
}
if ( batch - > end = = batch - > array_size )
return false ;
batch - > total_pfns + + ;
batch - > pfns [ batch - > end ] = pfn ;
batch - > npfns [ batch - > end ] = 1 ;
batch - > end + + ;
return true ;
}
/*
* Fill the batch with pfns from the domain . When the batch is full , or it
* reaches last_index , the function will return . The caller should use
* batch - > total_pfns to determine the starting point for the next iteration .
*/
static void batch_from_domain ( struct pfn_batch * batch ,
struct iommu_domain * domain ,
struct iopt_area * area , unsigned long start_index ,
unsigned long last_index )
{
unsigned int page_offset = 0 ;
unsigned long iova ;
phys_addr_t phys ;
iova = iopt_area_index_to_iova ( area , start_index ) ;
if ( start_index = = iopt_area_index ( area ) )
page_offset = area - > page_offset ;
while ( start_index < = last_index ) {
/*
* This is pretty slow , it would be nice to get the page size
* back from the driver , or have the driver directly fill the
* batch .
*/
phys = iommu_iova_to_phys ( domain , iova ) - page_offset ;
if ( ! batch_add_pfn ( batch , PHYS_PFN ( phys ) ) )
return ;
iova + = PAGE_SIZE - page_offset ;
page_offset = 0 ;
start_index + + ;
}
}
static struct page * * raw_pages_from_domain ( struct iommu_domain * domain ,
struct iopt_area * area ,
unsigned long start_index ,
unsigned long last_index ,
struct page * * out_pages )
{
unsigned int page_offset = 0 ;
unsigned long iova ;
phys_addr_t phys ;
iova = iopt_area_index_to_iova ( area , start_index ) ;
if ( start_index = = iopt_area_index ( area ) )
page_offset = area - > page_offset ;
while ( start_index < = last_index ) {
phys = iommu_iova_to_phys ( domain , iova ) - page_offset ;
* ( out_pages + + ) = pfn_to_page ( PHYS_PFN ( phys ) ) ;
iova + = PAGE_SIZE - page_offset ;
page_offset = 0 ;
start_index + + ;
}
return out_pages ;
}
2022-12-07 16:44:41 -04:00
/* Continues reading a domain until we reach a discontinuity in the pfns. */
2022-11-29 16:29:31 -04:00
static void batch_from_domain_continue ( struct pfn_batch * batch ,
struct iommu_domain * domain ,
struct iopt_area * area ,
unsigned long start_index ,
unsigned long last_index )
{
unsigned int array_size = batch - > array_size ;
batch - > array_size = batch - > end ;
batch_from_domain ( batch , domain , area , start_index , last_index ) ;
batch - > array_size = array_size ;
}
/*
* This is part of the VFIO compatibility support for VFIO_TYPE1_IOMMU . That
* mode permits splitting a mapped area up , and then one of the splits is
* unmapped . Doing this normally would cause us to violate our invariant of
* pairing map / unmap . Thus , to support old VFIO compatibility disable support
* for batching consecutive PFNs . All PFNs mapped into the iommu are done in
* PAGE_SIZE units , not larger or smaller .
*/
static int batch_iommu_map_small ( struct iommu_domain * domain ,
unsigned long iova , phys_addr_t paddr ,
size_t size , int prot )
{
unsigned long start_iova = iova ;
int rc ;
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( paddr % PAGE_SIZE | | iova % PAGE_SIZE | |
size % PAGE_SIZE ) ;
2022-11-29 16:29:31 -04:00
while ( size ) {
2023-01-23 16:35:54 -04:00
rc = iommu_map ( domain , iova , paddr , PAGE_SIZE , prot ,
2023-01-23 16:35:58 -04:00
GFP_KERNEL_ACCOUNT ) ;
2022-11-29 16:29:31 -04:00
if ( rc )
goto err_unmap ;
iova + = PAGE_SIZE ;
paddr + = PAGE_SIZE ;
size - = PAGE_SIZE ;
}
return 0 ;
err_unmap :
if ( start_iova ! = iova )
iommu_unmap_nofail ( domain , start_iova , iova - start_iova ) ;
return rc ;
}
static int batch_to_domain ( struct pfn_batch * batch , struct iommu_domain * domain ,
struct iopt_area * area , unsigned long start_index )
{
bool disable_large_pages = area - > iopt - > disable_large_pages ;
unsigned long last_iova = iopt_area_last_iova ( area ) ;
unsigned int page_offset = 0 ;
unsigned long start_iova ;
unsigned long next_iova ;
unsigned int cur = 0 ;
unsigned long iova ;
int rc ;
/* The first index might be a partial page */
if ( start_index = = iopt_area_index ( area ) )
page_offset = area - > page_offset ;
next_iova = iova = start_iova =
iopt_area_index_to_iova ( area , start_index ) ;
while ( cur < batch - > end ) {
next_iova = min ( last_iova + 1 ,
next_iova + batch - > npfns [ cur ] * PAGE_SIZE -
page_offset ) ;
if ( disable_large_pages )
rc = batch_iommu_map_small (
domain , iova ,
PFN_PHYS ( batch - > pfns [ cur ] ) + page_offset ,
next_iova - iova , area - > iommu_prot ) ;
else
rc = iommu_map ( domain , iova ,
PFN_PHYS ( batch - > pfns [ cur ] ) + page_offset ,
2023-01-23 16:35:54 -04:00
next_iova - iova , area - > iommu_prot ,
2023-01-23 16:35:58 -04:00
GFP_KERNEL_ACCOUNT ) ;
2022-11-29 16:29:31 -04:00
if ( rc )
goto err_unmap ;
iova = next_iova ;
page_offset = 0 ;
cur + + ;
}
return 0 ;
err_unmap :
if ( start_iova ! = iova )
iommu_unmap_nofail ( domain , start_iova , iova - start_iova ) ;
return rc ;
}
static void batch_from_xarray ( struct pfn_batch * batch , struct xarray * xa ,
unsigned long start_index ,
unsigned long last_index )
{
XA_STATE ( xas , xa , start_index ) ;
void * entry ;
rcu_read_lock ( ) ;
while ( true ) {
entry = xas_next ( & xas ) ;
if ( xas_retry ( & xas , entry ) )
continue ;
WARN_ON ( ! xa_is_value ( entry ) ) ;
if ( ! batch_add_pfn ( batch , xa_to_value ( entry ) ) | |
start_index = = last_index )
break ;
start_index + + ;
}
rcu_read_unlock ( ) ;
}
static void batch_from_xarray_clear ( struct pfn_batch * batch , struct xarray * xa ,
unsigned long start_index ,
unsigned long last_index )
{
XA_STATE ( xas , xa , start_index ) ;
void * entry ;
xas_lock ( & xas ) ;
while ( true ) {
entry = xas_next ( & xas ) ;
if ( xas_retry ( & xas , entry ) )
continue ;
WARN_ON ( ! xa_is_value ( entry ) ) ;
if ( ! batch_add_pfn ( batch , xa_to_value ( entry ) ) )
break ;
xas_store ( & xas , NULL ) ;
if ( start_index = = last_index )
break ;
start_index + + ;
}
xas_unlock ( & xas ) ;
}
static void clear_xarray ( struct xarray * xa , unsigned long start_index ,
unsigned long last_index )
{
XA_STATE ( xas , xa , start_index ) ;
void * entry ;
xas_lock ( & xas ) ;
xas_for_each ( & xas , entry , last_index )
xas_store ( & xas , NULL ) ;
xas_unlock ( & xas ) ;
}
static int pages_to_xarray ( struct xarray * xa , unsigned long start_index ,
unsigned long last_index , struct page * * pages )
{
struct page * * end_pages = pages + ( last_index - start_index ) + 1 ;
2022-11-29 16:29:40 -04:00
struct page * * half_pages = pages + ( end_pages - pages ) / 2 ;
2022-11-29 16:29:31 -04:00
XA_STATE ( xas , xa , start_index ) ;
do {
void * old ;
xas_lock ( & xas ) ;
while ( pages ! = end_pages ) {
2022-11-29 16:29:40 -04:00
/* xarray does not participate in fault injection */
if ( pages = = half_pages & & iommufd_should_fail ( ) ) {
xas_set_err ( & xas , - EINVAL ) ;
xas_unlock ( & xas ) ;
/* aka xas_destroy() */
xas_nomem ( & xas , GFP_KERNEL ) ;
goto err_clear ;
}
2022-11-29 16:29:31 -04:00
old = xas_store ( & xas , xa_mk_value ( page_to_pfn ( * pages ) ) ) ;
if ( xas_error ( & xas ) )
break ;
WARN_ON ( old ) ;
pages + + ;
xas_next ( & xas ) ;
}
xas_unlock ( & xas ) ;
} while ( xas_nomem ( & xas , GFP_KERNEL ) ) ;
2022-11-29 16:29:40 -04:00
err_clear :
2022-11-29 16:29:31 -04:00
if ( xas_error ( & xas ) ) {
if ( xas . xa_index ! = start_index )
clear_xarray ( xa , start_index , xas . xa_index - 1 ) ;
return xas_error ( & xas ) ;
}
return 0 ;
}
static void batch_from_pages ( struct pfn_batch * batch , struct page * * pages ,
size_t npages )
{
struct page * * end = pages + npages ;
for ( ; pages ! = end ; pages + + )
if ( ! batch_add_pfn ( batch , page_to_pfn ( * pages ) ) )
break ;
}
static void batch_unpin ( struct pfn_batch * batch , struct iopt_pages * pages ,
unsigned int first_page_off , size_t npages )
{
unsigned int cur = 0 ;
while ( first_page_off ) {
if ( batch - > npfns [ cur ] > first_page_off )
break ;
first_page_off - = batch - > npfns [ cur ] ;
cur + + ;
}
while ( npages ) {
size_t to_unpin = min_t ( size_t , npages ,
batch - > npfns [ cur ] - first_page_off ) ;
unpin_user_page_range_dirty_lock (
pfn_to_page ( batch - > pfns [ cur ] + first_page_off ) ,
to_unpin , pages - > writable ) ;
iopt_pages_sub_npinned ( pages , to_unpin ) ;
cur + + ;
first_page_off = 0 ;
npages - = to_unpin ;
}
}
static void copy_data_page ( struct page * page , void * data , unsigned long offset ,
size_t length , unsigned int flags )
{
void * mem ;
mem = kmap_local_page ( page ) ;
if ( flags & IOMMUFD_ACCESS_RW_WRITE ) {
memcpy ( mem + offset , data , length ) ;
set_page_dirty_lock ( page ) ;
} else {
memcpy ( data , mem + offset , length ) ;
}
kunmap_local ( mem ) ;
}
static unsigned long batch_rw ( struct pfn_batch * batch , void * data ,
unsigned long offset , unsigned long length ,
unsigned int flags )
{
unsigned long copied = 0 ;
unsigned int npage = 0 ;
unsigned int cur = 0 ;
while ( cur < batch - > end ) {
unsigned long bytes = min ( length , PAGE_SIZE - offset ) ;
copy_data_page ( pfn_to_page ( batch - > pfns [ cur ] + npage ) , data ,
offset , bytes , flags ) ;
offset = 0 ;
length - = bytes ;
data + = bytes ;
copied + = bytes ;
npage + + ;
if ( npage = = batch - > npfns [ cur ] ) {
npage = 0 ;
cur + + ;
}
if ( ! length )
break ;
}
return copied ;
}
/* pfn_reader_user is just the pin_user_pages() path */
struct pfn_reader_user {
struct page * * upages ;
size_t upages_len ;
unsigned long upages_start ;
unsigned long upages_end ;
unsigned int gup_flags ;
/*
* 1 means mmget ( ) and mmap_read_lock ( ) , 0 means only mmget ( ) , - 1 is
* neither
*/
int locked ;
} ;
static void pfn_reader_user_init ( struct pfn_reader_user * user ,
struct iopt_pages * pages )
{
user - > upages = NULL ;
user - > upages_start = 0 ;
user - > upages_end = 0 ;
user - > locked = - 1 ;
iommufd for 6.2
iommufd is the user API to control the IOMMU subsystem as it relates to
managing IO page tables that point at user space memory.
It takes over from drivers/vfio/vfio_iommu_type1.c (aka the VFIO
container) which is the VFIO specific interface for a similar idea.
We see a broad need for extended features, some being highly IOMMU device
specific:
- Binding iommu_domain's to PASID/SSID
- Userspace IO page tables, for ARM, x86 and S390
- Kernel bypassed invalidation of user page tables
- Re-use of the KVM page table in the IOMMU
- Dirty page tracking in the IOMMU
- Runtime Increase/Decrease of IOPTE size
- PRI support with faults resolved in userspace
Many of these HW features exist to support VM use cases - for instance the
combination of PASID, PRI and Userspace IO Page Tables allows an
implementation of DMA Shared Virtual Addressing (vSVA) within a
guest. Dirty tracking enables VM live migration with SRIOV devices and
PASID support allow creating "scalable IOV" devices, among other things.
As these features are fundamental to a VM platform they need to be
uniformly exposed to all the driver families that do DMA into VMs, which
is currently VFIO and VDPA.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRRRCHOFoQz/8F5bUaFwuHvBreFYQUCY5ct7wAKCRCFwuHvBreF
YZZ5AQDciXfcgXLt0UBEmWupNb0f/asT6tk717pdsKm8kAZMNAEAsIyLiKT5HqGl
s7fAu+CQ1pr9+9NKGevD+frw8Solsw4=
=jJkd
-----END PGP SIGNATURE-----
Merge tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd
Pull iommufd implementation from Jason Gunthorpe:
"iommufd is the user API to control the IOMMU subsystem as it relates
to managing IO page tables that point at user space memory.
It takes over from drivers/vfio/vfio_iommu_type1.c (aka the VFIO
container) which is the VFIO specific interface for a similar idea.
We see a broad need for extended features, some being highly IOMMU
device specific:
- Binding iommu_domain's to PASID/SSID
- Userspace IO page tables, for ARM, x86 and S390
- Kernel bypassed invalidation of user page tables
- Re-use of the KVM page table in the IOMMU
- Dirty page tracking in the IOMMU
- Runtime Increase/Decrease of IOPTE size
- PRI support with faults resolved in userspace
Many of these HW features exist to support VM use cases - for instance
the combination of PASID, PRI and Userspace IO Page Tables allows an
implementation of DMA Shared Virtual Addressing (vSVA) within a guest.
Dirty tracking enables VM live migration with SRIOV devices and PASID
support allow creating "scalable IOV" devices, among other things.
As these features are fundamental to a VM platform they need to be
uniformly exposed to all the driver families that do DMA into VMs,
which is currently VFIO and VDPA"
For more background, see the extended explanations in Jason's pull request:
https://lore.kernel.org/lkml/Y5dzTU8dlmXTbzoJ@nvidia.com/
* tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd: (62 commits)
iommufd: Change the order of MSI setup
iommufd: Improve a few unclear bits of code
iommufd: Fix comment typos
vfio: Move vfio group specific code into group.c
vfio: Refactor dma APIs for emulated devices
vfio: Wrap vfio group module init/clean code into helpers
vfio: Refactor vfio_device open and close
vfio: Make vfio_device_open() truly device specific
vfio: Swap order of vfio_device_container_register() and open_device()
vfio: Set device->group in helper function
vfio: Create wrappers for group register/unregister
vfio: Move the sanity check of the group to vfio_create_group()
vfio: Simplify vfio_create_group()
iommufd: Allow iommufd to supply /dev/vfio/vfio
vfio: Make vfio_container optionally compiled
vfio: Move container related MODULE_ALIAS statements into container.c
vfio-iommufd: Support iommufd for emulated VFIO devices
vfio-iommufd: Support iommufd for physical VFIO devices
vfio-iommufd: Allow iommufd to be used in place of a container fd
vfio: Use IOMMU_CAP_ENFORCE_CACHE_COHERENCY for vfio_file_enforced_coherent()
...
2022-12-14 09:15:43 -08:00
user - > gup_flags = FOLL_LONGTERM ;
if ( pages - > writable )
user - > gup_flags | = FOLL_WRITE ;
2022-11-29 16:29:31 -04:00
}
static void pfn_reader_user_destroy ( struct pfn_reader_user * user ,
struct iopt_pages * pages )
{
if ( user - > locked ! = - 1 ) {
if ( user - > locked )
mmap_read_unlock ( pages - > source_mm ) ;
if ( pages - > source_mm ! = current - > mm )
mmput ( pages - > source_mm ) ;
2022-12-07 16:44:42 -04:00
user - > locked = - 1 ;
2022-11-29 16:29:31 -04:00
}
kfree ( user - > upages ) ;
user - > upages = NULL ;
}
static int pfn_reader_user_pin ( struct pfn_reader_user * user ,
struct iopt_pages * pages ,
unsigned long start_index ,
unsigned long last_index )
{
bool remote_mm = pages - > source_mm ! = current - > mm ;
unsigned long npages ;
uintptr_t uptr ;
long rc ;
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) & &
WARN_ON ( last_index < start_index ) )
return - EINVAL ;
2022-11-29 16:29:31 -04:00
if ( ! user - > upages ) {
/* All undone in pfn_reader_destroy() */
user - > upages_len =
( last_index - start_index + 1 ) * sizeof ( * user - > upages ) ;
user - > upages = temp_kmalloc ( & user - > upages_len , NULL , 0 ) ;
if ( ! user - > upages )
return - ENOMEM ;
}
if ( user - > locked = = - 1 ) {
/*
* The majority of usages will run the map task within the mm
* providing the pages , so we can optimize into
* get_user_pages_fast ( )
*/
if ( remote_mm ) {
if ( ! mmget_not_zero ( pages - > source_mm ) )
return - EFAULT ;
}
user - > locked = 0 ;
}
npages = min_t ( unsigned long , last_index - start_index + 1 ,
user - > upages_len / sizeof ( * user - > upages ) ) ;
2022-11-29 16:29:40 -04:00
if ( iommufd_should_fail ( ) )
return - EFAULT ;
2022-11-29 16:29:31 -04:00
uptr = ( uintptr_t ) ( pages - > uptr + start_index * PAGE_SIZE ) ;
if ( ! remote_mm )
rc = pin_user_pages_fast ( uptr , npages , user - > gup_flags ,
user - > upages ) ;
else {
if ( ! user - > locked ) {
mmap_read_lock ( pages - > source_mm ) ;
user - > locked = 1 ;
}
rc = pin_user_pages_remote ( pages - > source_mm , uptr , npages ,
2023-05-17 20:25:36 +01:00
user - > gup_flags , user - > upages ,
iommufd for 6.2
iommufd is the user API to control the IOMMU subsystem as it relates to
managing IO page tables that point at user space memory.
It takes over from drivers/vfio/vfio_iommu_type1.c (aka the VFIO
container) which is the VFIO specific interface for a similar idea.
We see a broad need for extended features, some being highly IOMMU device
specific:
- Binding iommu_domain's to PASID/SSID
- Userspace IO page tables, for ARM, x86 and S390
- Kernel bypassed invalidation of user page tables
- Re-use of the KVM page table in the IOMMU
- Dirty page tracking in the IOMMU
- Runtime Increase/Decrease of IOPTE size
- PRI support with faults resolved in userspace
Many of these HW features exist to support VM use cases - for instance the
combination of PASID, PRI and Userspace IO Page Tables allows an
implementation of DMA Shared Virtual Addressing (vSVA) within a
guest. Dirty tracking enables VM live migration with SRIOV devices and
PASID support allow creating "scalable IOV" devices, among other things.
As these features are fundamental to a VM platform they need to be
uniformly exposed to all the driver families that do DMA into VMs, which
is currently VFIO and VDPA.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRRRCHOFoQz/8F5bUaFwuHvBreFYQUCY5ct7wAKCRCFwuHvBreF
YZZ5AQDciXfcgXLt0UBEmWupNb0f/asT6tk717pdsKm8kAZMNAEAsIyLiKT5HqGl
s7fAu+CQ1pr9+9NKGevD+frw8Solsw4=
=jJkd
-----END PGP SIGNATURE-----
Merge tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd
Pull iommufd implementation from Jason Gunthorpe:
"iommufd is the user API to control the IOMMU subsystem as it relates
to managing IO page tables that point at user space memory.
It takes over from drivers/vfio/vfio_iommu_type1.c (aka the VFIO
container) which is the VFIO specific interface for a similar idea.
We see a broad need for extended features, some being highly IOMMU
device specific:
- Binding iommu_domain's to PASID/SSID
- Userspace IO page tables, for ARM, x86 and S390
- Kernel bypassed invalidation of user page tables
- Re-use of the KVM page table in the IOMMU
- Dirty page tracking in the IOMMU
- Runtime Increase/Decrease of IOPTE size
- PRI support with faults resolved in userspace
Many of these HW features exist to support VM use cases - for instance
the combination of PASID, PRI and Userspace IO Page Tables allows an
implementation of DMA Shared Virtual Addressing (vSVA) within a guest.
Dirty tracking enables VM live migration with SRIOV devices and PASID
support allow creating "scalable IOV" devices, among other things.
As these features are fundamental to a VM platform they need to be
uniformly exposed to all the driver families that do DMA into VMs,
which is currently VFIO and VDPA"
For more background, see the extended explanations in Jason's pull request:
https://lore.kernel.org/lkml/Y5dzTU8dlmXTbzoJ@nvidia.com/
* tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd: (62 commits)
iommufd: Change the order of MSI setup
iommufd: Improve a few unclear bits of code
iommufd: Fix comment typos
vfio: Move vfio group specific code into group.c
vfio: Refactor dma APIs for emulated devices
vfio: Wrap vfio group module init/clean code into helpers
vfio: Refactor vfio_device open and close
vfio: Make vfio_device_open() truly device specific
vfio: Swap order of vfio_device_container_register() and open_device()
vfio: Set device->group in helper function
vfio: Create wrappers for group register/unregister
vfio: Move the sanity check of the group to vfio_create_group()
vfio: Simplify vfio_create_group()
iommufd: Allow iommufd to supply /dev/vfio/vfio
vfio: Make vfio_container optionally compiled
vfio: Move container related MODULE_ALIAS statements into container.c
vfio-iommufd: Support iommufd for emulated VFIO devices
vfio-iommufd: Support iommufd for physical VFIO devices
vfio-iommufd: Allow iommufd to be used in place of a container fd
vfio: Use IOMMU_CAP_ENFORCE_CACHE_COHERENCY for vfio_file_enforced_coherent()
...
2022-12-14 09:15:43 -08:00
& user - > locked ) ;
2022-11-29 16:29:31 -04:00
}
if ( rc < = 0 ) {
if ( WARN_ON ( ! rc ) )
return - EFAULT ;
return rc ;
}
iopt_pages_add_npinned ( pages , rc ) ;
user - > upages_start = start_index ;
user - > upages_end = start_index + rc ;
return 0 ;
}
/* This is the "modern" and faster accounting method used by io_uring */
static int incr_user_locked_vm ( struct iopt_pages * pages , unsigned long npages )
{
unsigned long lock_limit ;
unsigned long cur_pages ;
unsigned long new_pages ;
lock_limit = task_rlimit ( pages - > source_task , RLIMIT_MEMLOCK ) > >
PAGE_SHIFT ;
do {
cur_pages = atomic_long_read ( & pages - > source_user - > locked_vm ) ;
new_pages = cur_pages + npages ;
if ( new_pages > lock_limit )
return - ENOMEM ;
} while ( atomic_long_cmpxchg ( & pages - > source_user - > locked_vm , cur_pages ,
new_pages ) ! = cur_pages ) ;
return 0 ;
}
static void decr_user_locked_vm ( struct iopt_pages * pages , unsigned long npages )
{
if ( WARN_ON ( atomic_long_read ( & pages - > source_user - > locked_vm ) < npages ) )
return ;
atomic_long_sub ( npages , & pages - > source_user - > locked_vm ) ;
}
/* This is the accounting method used for compatibility with VFIO */
static int update_mm_locked_vm ( struct iopt_pages * pages , unsigned long npages ,
bool inc , struct pfn_reader_user * user )
{
bool do_put = false ;
int rc ;
if ( user & & user - > locked ) {
mmap_read_unlock ( pages - > source_mm ) ;
user - > locked = 0 ;
/* If we had the lock then we also have a get */
} else if ( ( ! user | | ! user - > upages ) & &
pages - > source_mm ! = current - > mm ) {
if ( ! mmget_not_zero ( pages - > source_mm ) )
return - EINVAL ;
do_put = true ;
}
mmap_write_lock ( pages - > source_mm ) ;
rc = __account_locked_vm ( pages - > source_mm , npages , inc ,
pages - > source_task , false ) ;
mmap_write_unlock ( pages - > source_mm ) ;
if ( do_put )
mmput ( pages - > source_mm ) ;
return rc ;
}
static int do_update_pinned ( struct iopt_pages * pages , unsigned long npages ,
bool inc , struct pfn_reader_user * user )
{
int rc = 0 ;
switch ( pages - > account_mode ) {
case IOPT_PAGES_ACCOUNT_NONE :
break ;
case IOPT_PAGES_ACCOUNT_USER :
if ( inc )
rc = incr_user_locked_vm ( pages , npages ) ;
else
decr_user_locked_vm ( pages , npages ) ;
break ;
case IOPT_PAGES_ACCOUNT_MM :
rc = update_mm_locked_vm ( pages , npages , inc , user ) ;
break ;
}
if ( rc )
return rc ;
pages - > last_npinned = pages - > npinned ;
if ( inc )
atomic64_add ( npages , & pages - > source_mm - > pinned_vm ) ;
else
atomic64_sub ( npages , & pages - > source_mm - > pinned_vm ) ;
return 0 ;
}
static void update_unpinned ( struct iopt_pages * pages )
{
if ( WARN_ON ( pages - > npinned > pages - > last_npinned ) )
return ;
if ( pages - > npinned = = pages - > last_npinned )
return ;
do_update_pinned ( pages , pages - > last_npinned - pages - > npinned , false ,
NULL ) ;
}
/*
* Changes in the number of pages pinned is done after the pages have been read
* and processed . If the user lacked the limit then the error unwind will unpin
* everything that was just pinned . This is because it is expensive to calculate
* how many pages we have already pinned within a range to generate an accurate
* prediction in advance of doing the work to actually pin them .
*/
static int pfn_reader_user_update_pinned ( struct pfn_reader_user * user ,
struct iopt_pages * pages )
{
unsigned long npages ;
bool inc ;
lockdep_assert_held ( & pages - > mutex ) ;
if ( pages - > npinned = = pages - > last_npinned )
return 0 ;
if ( pages - > npinned < pages - > last_npinned ) {
npages = pages - > last_npinned - pages - > npinned ;
inc = false ;
} else {
2022-11-29 16:29:40 -04:00
if ( iommufd_should_fail ( ) )
return - ENOMEM ;
2022-11-29 16:29:31 -04:00
npages = pages - > npinned - pages - > last_npinned ;
inc = true ;
}
return do_update_pinned ( pages , npages , inc , user ) ;
}
/*
* PFNs are stored in three places , in order of preference :
* - The iopt_pages xarray . This is only populated if there is a
* iopt_pages_access
* - The iommu_domain under an area
* - The original PFN source , ie pages - > source_mm
*
* This iterator reads the pfns optimizing to load according to the
* above order .
*/
struct pfn_reader {
struct iopt_pages * pages ;
struct interval_tree_double_span_iter span ;
struct pfn_batch batch ;
unsigned long batch_start_index ;
unsigned long batch_end_index ;
unsigned long last_index ;
struct pfn_reader_user user ;
} ;
static int pfn_reader_update_pinned ( struct pfn_reader * pfns )
{
return pfn_reader_user_update_pinned ( & pfns - > user , pfns - > pages ) ;
}
/*
* The batch can contain a mixture of pages that are still in use and pages that
* need to be unpinned . Unpin only pages that are not held anywhere else .
*/
static void pfn_reader_unpin ( struct pfn_reader * pfns )
{
unsigned long last = pfns - > batch_end_index - 1 ;
unsigned long start = pfns - > batch_start_index ;
struct interval_tree_double_span_iter span ;
struct iopt_pages * pages = pfns - > pages ;
lockdep_assert_held ( & pages - > mutex ) ;
interval_tree_for_each_double_span ( & span , & pages - > access_itree ,
& pages - > domains_itree , start , last ) {
if ( span . is_used )
continue ;
batch_unpin ( & pfns - > batch , pages , span . start_hole - start ,
span . last_hole - span . start_hole + 1 ) ;
}
}
/* Process a single span to load it from the proper storage */
static int pfn_reader_fill_span ( struct pfn_reader * pfns )
{
struct interval_tree_double_span_iter * span = & pfns - > span ;
unsigned long start_index = pfns - > batch_end_index ;
struct iopt_area * area ;
int rc ;
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) & &
WARN_ON ( span - > last_used < start_index ) )
return - EINVAL ;
2022-11-29 16:29:31 -04:00
if ( span - > is_used = = 1 ) {
batch_from_xarray ( & pfns - > batch , & pfns - > pages - > pinned_pfns ,
start_index , span - > last_used ) ;
return 0 ;
}
if ( span - > is_used = = 2 ) {
/*
* Pull as many pages from the first domain we find in the
* target span . If it is too small then we will be called again
* and we ' ll find another area .
*/
area = iopt_pages_find_domain_area ( pfns - > pages , start_index ) ;
if ( WARN_ON ( ! area ) )
return - EINVAL ;
/* The storage_domain cannot change without the pages mutex */
batch_from_domain (
& pfns - > batch , area - > storage_domain , area , start_index ,
min ( iopt_area_last_index ( area ) , span - > last_used ) ) ;
return 0 ;
}
if ( start_index > = pfns - > user . upages_end ) {
rc = pfn_reader_user_pin ( & pfns - > user , pfns - > pages , start_index ,
span - > last_hole ) ;
if ( rc )
return rc ;
}
batch_from_pages ( & pfns - > batch ,
pfns - > user . upages +
( start_index - pfns - > user . upages_start ) ,
pfns - > user . upages_end - start_index ) ;
return 0 ;
}
static bool pfn_reader_done ( struct pfn_reader * pfns )
{
return pfns - > batch_start_index = = pfns - > last_index + 1 ;
}
static int pfn_reader_next ( struct pfn_reader * pfns )
{
int rc ;
batch_clear ( & pfns - > batch ) ;
pfns - > batch_start_index = pfns - > batch_end_index ;
while ( pfns - > batch_end_index ! = pfns - > last_index + 1 ) {
unsigned int npfns = pfns - > batch . total_pfns ;
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) & &
WARN_ON ( interval_tree_double_span_iter_done ( & pfns - > span ) ) )
return - EINVAL ;
2022-11-29 16:29:31 -04:00
rc = pfn_reader_fill_span ( pfns ) ;
if ( rc )
return rc ;
if ( WARN_ON ( ! pfns - > batch . total_pfns ) )
return - EINVAL ;
pfns - > batch_end_index =
pfns - > batch_start_index + pfns - > batch . total_pfns ;
if ( pfns - > batch_end_index = = pfns - > span . last_used + 1 )
interval_tree_double_span_iter_next ( & pfns - > span ) ;
/* Batch is full */
if ( npfns = = pfns - > batch . total_pfns )
return 0 ;
}
return 0 ;
}
static int pfn_reader_init ( struct pfn_reader * pfns , struct iopt_pages * pages ,
unsigned long start_index , unsigned long last_index )
{
int rc ;
lockdep_assert_held ( & pages - > mutex ) ;
pfns - > pages = pages ;
pfns - > batch_start_index = start_index ;
pfns - > batch_end_index = start_index ;
pfns - > last_index = last_index ;
pfn_reader_user_init ( & pfns - > user , pages ) ;
rc = batch_init ( & pfns - > batch , last_index - start_index + 1 ) ;
if ( rc )
return rc ;
interval_tree_double_span_iter_first ( & pfns - > span , & pages - > access_itree ,
& pages - > domains_itree , start_index ,
last_index ) ;
return 0 ;
}
/*
* There are many assertions regarding the state of pages - > npinned vs
* pages - > last_pinned , for instance something like unmapping a domain must only
* decrement the npinned , and pfn_reader_destroy ( ) must be called only after all
* the pins are updated . This is fine for success flows , but error flows
* sometimes need to release the pins held inside the pfn_reader before going on
* to complete unmapping and releasing pins held in domains .
*/
static void pfn_reader_release_pins ( struct pfn_reader * pfns )
{
struct iopt_pages * pages = pfns - > pages ;
if ( pfns - > user . upages_end > pfns - > batch_end_index ) {
size_t npages = pfns - > user . upages_end - pfns - > batch_end_index ;
/* Any pages not transferred to the batch are just unpinned */
unpin_user_pages ( pfns - > user . upages + ( pfns - > batch_end_index -
pfns - > user . upages_start ) ,
npages ) ;
iopt_pages_sub_npinned ( pages , npages ) ;
pfns - > user . upages_end = pfns - > batch_end_index ;
}
if ( pfns - > batch_start_index ! = pfns - > batch_end_index ) {
pfn_reader_unpin ( pfns ) ;
pfns - > batch_start_index = pfns - > batch_end_index ;
}
}
static void pfn_reader_destroy ( struct pfn_reader * pfns )
{
struct iopt_pages * pages = pfns - > pages ;
pfn_reader_release_pins ( pfns ) ;
pfn_reader_user_destroy ( & pfns - > user , pfns - > pages ) ;
batch_destroy ( & pfns - > batch , NULL ) ;
WARN_ON ( pages - > last_npinned ! = pages - > npinned ) ;
}
static int pfn_reader_first ( struct pfn_reader * pfns , struct iopt_pages * pages ,
unsigned long start_index , unsigned long last_index )
{
int rc ;
2022-11-29 16:29:41 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) & &
WARN_ON ( last_index < start_index ) )
return - EINVAL ;
2022-11-29 16:29:31 -04:00
rc = pfn_reader_init ( pfns , pages , start_index , last_index ) ;
if ( rc )
return rc ;
rc = pfn_reader_next ( pfns ) ;
if ( rc ) {
pfn_reader_destroy ( pfns ) ;
return rc ;
}
return 0 ;
}
2022-11-29 16:29:32 -04:00
struct iopt_pages * iopt_alloc_pages ( void __user * uptr , unsigned long length ,
bool writable )
{
struct iopt_pages * pages ;
2023-03-31 12:32:24 -03:00
unsigned long end ;
2022-11-29 16:29:32 -04:00
/*
* The iommu API uses size_t as the length , and protect the DIV_ROUND_UP
* below from overflow
*/
if ( length > SIZE_MAX - PAGE_SIZE | | length = = 0 )
return ERR_PTR ( - EINVAL ) ;
2023-03-31 12:32:24 -03:00
if ( check_add_overflow ( ( unsigned long ) uptr , length , & end ) )
return ERR_PTR ( - EOVERFLOW ) ;
2022-11-29 16:29:32 -04:00
pages = kzalloc ( sizeof ( * pages ) , GFP_KERNEL_ACCOUNT ) ;
if ( ! pages )
return ERR_PTR ( - ENOMEM ) ;
kref_init ( & pages - > kref ) ;
xa_init_flags ( & pages - > pinned_pfns , XA_FLAGS_ACCOUNT ) ;
mutex_init ( & pages - > mutex ) ;
pages - > source_mm = current - > mm ;
mmgrab ( pages - > source_mm ) ;
pages - > uptr = ( void __user * ) ALIGN_DOWN ( ( uintptr_t ) uptr , PAGE_SIZE ) ;
pages - > npages = DIV_ROUND_UP ( length + ( uptr - pages - > uptr ) , PAGE_SIZE ) ;
pages - > access_itree = RB_ROOT_CACHED ;
pages - > domains_itree = RB_ROOT_CACHED ;
pages - > writable = writable ;
if ( capable ( CAP_IPC_LOCK ) )
pages - > account_mode = IOPT_PAGES_ACCOUNT_NONE ;
else
pages - > account_mode = IOPT_PAGES_ACCOUNT_USER ;
pages - > source_task = current - > group_leader ;
get_task_struct ( current - > group_leader ) ;
pages - > source_user = get_uid ( current_user ( ) ) ;
return pages ;
}
void iopt_release_pages ( struct kref * kref )
{
struct iopt_pages * pages = container_of ( kref , struct iopt_pages , kref ) ;
WARN_ON ( ! RB_EMPTY_ROOT ( & pages - > access_itree . rb_root ) ) ;
WARN_ON ( ! RB_EMPTY_ROOT ( & pages - > domains_itree . rb_root ) ) ;
WARN_ON ( pages - > npinned ) ;
WARN_ON ( ! xa_empty ( & pages - > pinned_pfns ) ) ;
mmdrop ( pages - > source_mm ) ;
mutex_destroy ( & pages - > mutex ) ;
put_task_struct ( pages - > source_task ) ;
free_uid ( pages - > source_user ) ;
kfree ( pages ) ;
}
static void
iopt_area_unpin_domain ( struct pfn_batch * batch , struct iopt_area * area ,
struct iopt_pages * pages , struct iommu_domain * domain ,
unsigned long start_index , unsigned long last_index ,
unsigned long * unmapped_end_index ,
unsigned long real_last_index )
{
while ( start_index < = last_index ) {
unsigned long batch_last_index ;
if ( * unmapped_end_index < = last_index ) {
unsigned long start =
max ( start_index , * unmapped_end_index ) ;
2023-03-31 12:32:25 -03:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) & &
batch - > total_pfns )
WARN_ON ( * unmapped_end_index -
batch - > total_pfns ! =
start_index ) ;
2022-11-29 16:29:32 -04:00
batch_from_domain ( batch , domain , area , start ,
last_index ) ;
2023-03-31 12:32:25 -03:00
batch_last_index = start_index + batch - > total_pfns - 1 ;
2022-11-29 16:29:32 -04:00
} else {
batch_last_index = last_index ;
}
2023-03-31 12:32:25 -03:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) )
WARN_ON ( batch_last_index > real_last_index ) ;
2022-11-29 16:29:32 -04:00
/*
* unmaps must always ' cut ' at a place where the pfns are not
* contiguous to pair with the maps that always install
* contiguous pages . Thus , if we have to stop unpinning in the
* middle of the domains we need to keep reading pfns until we
* find a cut point to do the unmap . The pfns we read are
* carried over and either skipped or integrated into the next
* batch .
*/
if ( batch_last_index = = last_index & &
last_index ! = real_last_index )
batch_from_domain_continue ( batch , domain , area ,
last_index + 1 ,
real_last_index ) ;
if ( * unmapped_end_index < = batch_last_index ) {
iopt_area_unmap_domain_range (
area , domain , * unmapped_end_index ,
start_index + batch - > total_pfns - 1 ) ;
* unmapped_end_index = start_index + batch - > total_pfns ;
}
/* unpin must follow unmap */
batch_unpin ( batch , pages , 0 ,
batch_last_index - start_index + 1 ) ;
start_index = batch_last_index + 1 ;
batch_clear_carry ( batch ,
* unmapped_end_index - batch_last_index - 1 ) ;
}
}
static void __iopt_area_unfill_domain ( struct iopt_area * area ,
struct iopt_pages * pages ,
struct iommu_domain * domain ,
unsigned long last_index )
{
struct interval_tree_double_span_iter span ;
unsigned long start_index = iopt_area_index ( area ) ;
unsigned long unmapped_end_index = start_index ;
u64 backup [ BATCH_BACKUP_SIZE ] ;
struct pfn_batch batch ;
lockdep_assert_held ( & pages - > mutex ) ;
/*
* For security we must not unpin something that is still DMA mapped ,
* so this must unmap any IOVA before we go ahead and unpin the pages .
* This creates a complexity where we need to skip over unpinning pages
* held in the xarray , but continue to unmap from the domain .
*
* The domain unmap cannot stop in the middle of a contiguous range of
* PFNs . To solve this problem the unpinning step will read ahead to the
* end of any contiguous span , unmap that whole span , and then only
* unpin the leading part that does not have any accesses . The residual
* PFNs that were unmapped but not unpinned are called a " carry " in the
* batch as they are moved to the front of the PFN list and continue on
* to the next iteration ( s ) .
*/
batch_init_backup ( & batch , last_index + 1 , backup , sizeof ( backup ) ) ;
interval_tree_for_each_double_span ( & span , & pages - > domains_itree ,
& pages - > access_itree , start_index ,
last_index ) {
if ( span . is_used ) {
batch_skip_carry ( & batch ,
span . last_used - span . start_used + 1 ) ;
continue ;
}
iopt_area_unpin_domain ( & batch , area , pages , domain ,
span . start_hole , span . last_hole ,
& unmapped_end_index , last_index ) ;
}
/*
* If the range ends in a access then we do the residual unmap without
* any unpins .
*/
if ( unmapped_end_index ! = last_index + 1 )
iopt_area_unmap_domain_range ( area , domain , unmapped_end_index ,
last_index ) ;
WARN_ON ( batch . total_pfns ) ;
batch_destroy ( & batch , backup ) ;
update_unpinned ( pages ) ;
}
static void iopt_area_unfill_partial_domain ( struct iopt_area * area ,
struct iopt_pages * pages ,
struct iommu_domain * domain ,
unsigned long end_index )
{
if ( end_index ! = iopt_area_index ( area ) )
__iopt_area_unfill_domain ( area , pages , domain , end_index - 1 ) ;
}
/**
* iopt_area_unmap_domain ( ) - Unmap without unpinning PFNs in a domain
* @ area : The IOVA range to unmap
* @ domain : The domain to unmap
*
* The caller must know that unpinning is not required , usually because there
* are other domains in the iopt .
*/
void iopt_area_unmap_domain ( struct iopt_area * area , struct iommu_domain * domain )
{
iommu_unmap_nofail ( domain , iopt_area_iova ( area ) ,
iopt_area_length ( area ) ) ;
}
/**
* iopt_area_unfill_domain ( ) - Unmap and unpin PFNs in a domain
* @ area : IOVA area to use
* @ pages : page supplier for the area ( area - > pages is NULL )
* @ domain : Domain to unmap from
*
* The domain should be removed from the domains_itree before calling . The
* domain will always be unmapped , but the PFNs may not be unpinned if there are
* still accesses .
*/
void iopt_area_unfill_domain ( struct iopt_area * area , struct iopt_pages * pages ,
struct iommu_domain * domain )
{
__iopt_area_unfill_domain ( area , pages , domain ,
iopt_area_last_index ( area ) ) ;
}
/**
* iopt_area_fill_domain ( ) - Map PFNs from the area into a domain
* @ area : IOVA area to use
* @ domain : Domain to load PFNs into
*
* Read the pfns from the area ' s underlying iopt_pages and map them into the
* given domain . Called when attaching a new domain to an io_pagetable .
*/
int iopt_area_fill_domain ( struct iopt_area * area , struct iommu_domain * domain )
{
unsigned long done_end_index ;
struct pfn_reader pfns ;
int rc ;
lockdep_assert_held ( & area - > pages - > mutex ) ;
rc = pfn_reader_first ( & pfns , area - > pages , iopt_area_index ( area ) ,
iopt_area_last_index ( area ) ) ;
if ( rc )
return rc ;
while ( ! pfn_reader_done ( & pfns ) ) {
done_end_index = pfns . batch_start_index ;
rc = batch_to_domain ( & pfns . batch , domain , area ,
pfns . batch_start_index ) ;
if ( rc )
goto out_unmap ;
done_end_index = pfns . batch_end_index ;
rc = pfn_reader_next ( & pfns ) ;
if ( rc )
goto out_unmap ;
}
rc = pfn_reader_update_pinned ( & pfns ) ;
if ( rc )
goto out_unmap ;
goto out_destroy ;
out_unmap :
pfn_reader_release_pins ( & pfns ) ;
iopt_area_unfill_partial_domain ( area , area - > pages , domain ,
done_end_index ) ;
out_destroy :
pfn_reader_destroy ( & pfns ) ;
return rc ;
}
/**
* iopt_area_fill_domains ( ) - Install PFNs into the area ' s domains
* @ area : The area to act on
* @ pages : The pages associated with the area ( area - > pages is NULL )
*
* Called during area creation . The area is freshly created and not inserted in
* the domains_itree yet . PFNs are read and loaded into every domain held in the
* area ' s io_pagetable and the area is installed in the domains_itree .
*
* On failure all domains are left unchanged .
*/
int iopt_area_fill_domains ( struct iopt_area * area , struct iopt_pages * pages )
{
unsigned long done_first_end_index ;
unsigned long done_all_end_index ;
struct iommu_domain * domain ;
unsigned long unmap_index ;
struct pfn_reader pfns ;
unsigned long index ;
int rc ;
lockdep_assert_held ( & area - > iopt - > domains_rwsem ) ;
if ( xa_empty ( & area - > iopt - > domains ) )
return 0 ;
mutex_lock ( & pages - > mutex ) ;
rc = pfn_reader_first ( & pfns , pages , iopt_area_index ( area ) ,
iopt_area_last_index ( area ) ) ;
if ( rc )
goto out_unlock ;
while ( ! pfn_reader_done ( & pfns ) ) {
done_first_end_index = pfns . batch_end_index ;
done_all_end_index = pfns . batch_start_index ;
xa_for_each ( & area - > iopt - > domains , index , domain ) {
rc = batch_to_domain ( & pfns . batch , domain , area ,
pfns . batch_start_index ) ;
if ( rc )
goto out_unmap ;
}
done_all_end_index = done_first_end_index ;
rc = pfn_reader_next ( & pfns ) ;
if ( rc )
goto out_unmap ;
}
rc = pfn_reader_update_pinned ( & pfns ) ;
if ( rc )
goto out_unmap ;
area - > storage_domain = xa_load ( & area - > iopt - > domains , 0 ) ;
interval_tree_insert ( & area - > pages_node , & pages - > domains_itree ) ;
goto out_destroy ;
out_unmap :
pfn_reader_release_pins ( & pfns ) ;
xa_for_each ( & area - > iopt - > domains , unmap_index , domain ) {
unsigned long end_index ;
if ( unmap_index < index )
end_index = done_first_end_index ;
else
end_index = done_all_end_index ;
/*
* The area is not yet part of the domains_itree so we have to
* manage the unpinning specially . The last domain does the
* unpin , every other domain is just unmapped .
*/
if ( unmap_index ! = area - > iopt - > next_domain_id - 1 ) {
if ( end_index ! = iopt_area_index ( area ) )
iopt_area_unmap_domain_range (
area , domain , iopt_area_index ( area ) ,
end_index - 1 ) ;
} else {
iopt_area_unfill_partial_domain ( area , pages , domain ,
end_index ) ;
}
}
out_destroy :
pfn_reader_destroy ( & pfns ) ;
out_unlock :
mutex_unlock ( & pages - > mutex ) ;
return rc ;
}
/**
* iopt_area_unfill_domains ( ) - unmap PFNs from the area ' s domains
* @ area : The area to act on
* @ pages : The pages associated with the area ( area - > pages is NULL )
*
* Called during area destruction . This unmaps the iova ' s covered by all the
* area ' s domains and releases the PFNs .
*/
void iopt_area_unfill_domains ( struct iopt_area * area , struct iopt_pages * pages )
{
struct io_pagetable * iopt = area - > iopt ;
struct iommu_domain * domain ;
unsigned long index ;
lockdep_assert_held ( & iopt - > domains_rwsem ) ;
mutex_lock ( & pages - > mutex ) ;
if ( ! area - > storage_domain )
goto out_unlock ;
xa_for_each ( & iopt - > domains , index , domain )
if ( domain ! = area - > storage_domain )
iopt_area_unmap_domain_range (
area , domain , iopt_area_index ( area ) ,
iopt_area_last_index ( area ) ) ;
interval_tree_remove ( & area - > pages_node , & pages - > domains_itree ) ;
iopt_area_unfill_domain ( area , pages , area - > storage_domain ) ;
area - > storage_domain = NULL ;
out_unlock :
mutex_unlock ( & pages - > mutex ) ;
}
static void iopt_pages_unpin_xarray ( struct pfn_batch * batch ,
struct iopt_pages * pages ,
unsigned long start_index ,
unsigned long end_index )
{
while ( start_index < = end_index ) {
batch_from_xarray_clear ( batch , & pages - > pinned_pfns , start_index ,
end_index ) ;
batch_unpin ( batch , pages , 0 , batch - > total_pfns ) ;
start_index + = batch - > total_pfns ;
batch_clear ( batch ) ;
}
}
/**
* iopt_pages_unfill_xarray ( ) - Update the xarry after removing an access
* @ pages : The pages to act on
* @ start_index : Starting PFN index
* @ last_index : Last PFN index
*
* Called when an iopt_pages_access is removed , removes pages from the itree .
* The access should already be removed from the access_itree .
*/
void iopt_pages_unfill_xarray ( struct iopt_pages * pages ,
unsigned long start_index ,
unsigned long last_index )
{
struct interval_tree_double_span_iter span ;
u64 backup [ BATCH_BACKUP_SIZE ] ;
struct pfn_batch batch ;
bool batch_inited = false ;
lockdep_assert_held ( & pages - > mutex ) ;
interval_tree_for_each_double_span ( & span , & pages - > access_itree ,
& pages - > domains_itree , start_index ,
last_index ) {
if ( ! span . is_used ) {
if ( ! batch_inited ) {
batch_init_backup ( & batch ,
last_index - start_index + 1 ,
backup , sizeof ( backup ) ) ;
batch_inited = true ;
}
iopt_pages_unpin_xarray ( & batch , pages , span . start_hole ,
span . last_hole ) ;
} else if ( span . is_used = = 2 ) {
/* Covered by a domain */
clear_xarray ( & pages - > pinned_pfns , span . start_used ,
span . last_used ) ;
}
/* Otherwise covered by an existing access */
}
if ( batch_inited )
batch_destroy ( & batch , backup ) ;
update_unpinned ( pages ) ;
}
/**
* iopt_pages_fill_from_xarray ( ) - Fast path for reading PFNs
* @ pages : The pages to act on
* @ start_index : The first page index in the range
* @ last_index : The last page index in the range
* @ out_pages : The output array to return the pages
*
* This can be called if the caller is holding a refcount on an
* iopt_pages_access that is known to have already been filled . It quickly reads
* the pages directly from the xarray .
*
* This is part of the SW iommu interface to read pages for in - kernel use .
*/
void iopt_pages_fill_from_xarray ( struct iopt_pages * pages ,
unsigned long start_index ,
unsigned long last_index ,
struct page * * out_pages )
{
XA_STATE ( xas , & pages - > pinned_pfns , start_index ) ;
void * entry ;
rcu_read_lock ( ) ;
while ( start_index < = last_index ) {
entry = xas_next ( & xas ) ;
if ( xas_retry ( & xas , entry ) )
continue ;
WARN_ON ( ! xa_is_value ( entry ) ) ;
* ( out_pages + + ) = pfn_to_page ( xa_to_value ( entry ) ) ;
start_index + + ;
}
rcu_read_unlock ( ) ;
}
static int iopt_pages_fill_from_domain ( struct iopt_pages * pages ,
unsigned long start_index ,
unsigned long last_index ,
struct page * * out_pages )
{
while ( start_index ! = last_index + 1 ) {
unsigned long domain_last ;
struct iopt_area * area ;
area = iopt_pages_find_domain_area ( pages , start_index ) ;
if ( WARN_ON ( ! area ) )
return - EINVAL ;
domain_last = min ( iopt_area_last_index ( area ) , last_index ) ;
out_pages = raw_pages_from_domain ( area - > storage_domain , area ,
start_index , domain_last ,
out_pages ) ;
start_index = domain_last + 1 ;
}
return 0 ;
}
static int iopt_pages_fill_from_mm ( struct iopt_pages * pages ,
struct pfn_reader_user * user ,
unsigned long start_index ,
unsigned long last_index ,
struct page * * out_pages )
{
unsigned long cur_index = start_index ;
int rc ;
while ( cur_index ! = last_index + 1 ) {
user - > upages = out_pages + ( cur_index - start_index ) ;
rc = pfn_reader_user_pin ( user , pages , cur_index , last_index ) ;
if ( rc )
goto out_unpin ;
cur_index = user - > upages_end ;
}
return 0 ;
out_unpin :
if ( start_index ! = cur_index )
iopt_pages_err_unpin ( pages , start_index , cur_index - 1 ,
out_pages ) ;
return rc ;
}
/**
* iopt_pages_fill_xarray ( ) - Read PFNs
* @ pages : The pages to act on
* @ start_index : The first page index in the range
* @ last_index : The last page index in the range
* @ out_pages : The output array to return the pages , may be NULL
*
* This populates the xarray and returns the pages in out_pages . As the slow
* path this is able to copy pages from other storage tiers into the xarray .
*
* On failure the xarray is left unchanged .
*
* This is part of the SW iommu interface to read pages for in - kernel use .
*/
int iopt_pages_fill_xarray ( struct iopt_pages * pages , unsigned long start_index ,
unsigned long last_index , struct page * * out_pages )
{
struct interval_tree_double_span_iter span ;
unsigned long xa_end = start_index ;
struct pfn_reader_user user ;
int rc ;
lockdep_assert_held ( & pages - > mutex ) ;
pfn_reader_user_init ( & user , pages ) ;
user . upages_len = ( last_index - start_index + 1 ) * sizeof ( * out_pages ) ;
interval_tree_for_each_double_span ( & span , & pages - > access_itree ,
& pages - > domains_itree , start_index ,
last_index ) {
struct page * * cur_pages ;
if ( span . is_used = = 1 ) {
cur_pages = out_pages + ( span . start_used - start_index ) ;
iopt_pages_fill_from_xarray ( pages , span . start_used ,
span . last_used , cur_pages ) ;
continue ;
}
if ( span . is_used = = 2 ) {
cur_pages = out_pages + ( span . start_used - start_index ) ;
iopt_pages_fill_from_domain ( pages , span . start_used ,
span . last_used , cur_pages ) ;
rc = pages_to_xarray ( & pages - > pinned_pfns ,
span . start_used , span . last_used ,
cur_pages ) ;
if ( rc )
goto out_clean_xa ;
xa_end = span . last_used + 1 ;
continue ;
}
/* hole */
cur_pages = out_pages + ( span . start_hole - start_index ) ;
rc = iopt_pages_fill_from_mm ( pages , & user , span . start_hole ,
span . last_hole , cur_pages ) ;
if ( rc )
goto out_clean_xa ;
rc = pages_to_xarray ( & pages - > pinned_pfns , span . start_hole ,
span . last_hole , cur_pages ) ;
if ( rc ) {
iopt_pages_err_unpin ( pages , span . start_hole ,
span . last_hole , cur_pages ) ;
goto out_clean_xa ;
}
xa_end = span . last_hole + 1 ;
}
rc = pfn_reader_user_update_pinned ( & user , pages ) ;
if ( rc )
goto out_clean_xa ;
user . upages = NULL ;
pfn_reader_user_destroy ( & user , pages ) ;
return 0 ;
out_clean_xa :
if ( start_index ! = xa_end )
iopt_pages_unfill_xarray ( pages , start_index , xa_end - 1 ) ;
user . upages = NULL ;
pfn_reader_user_destroy ( & user , pages ) ;
return rc ;
}
/*
* This uses the pfn_reader instead of taking a shortcut by using the mm . It can
* do every scenario and is fully consistent with what an iommu_domain would
* see .
*/
static int iopt_pages_rw_slow ( struct iopt_pages * pages ,
unsigned long start_index ,
unsigned long last_index , unsigned long offset ,
void * data , unsigned long length ,
unsigned int flags )
{
struct pfn_reader pfns ;
int rc ;
mutex_lock ( & pages - > mutex ) ;
rc = pfn_reader_first ( & pfns , pages , start_index , last_index ) ;
if ( rc )
goto out_unlock ;
while ( ! pfn_reader_done ( & pfns ) ) {
unsigned long done ;
done = batch_rw ( & pfns . batch , data , offset , length , flags ) ;
data + = done ;
length - = done ;
offset = 0 ;
pfn_reader_unpin ( & pfns ) ;
rc = pfn_reader_next ( & pfns ) ;
if ( rc )
goto out_destroy ;
}
if ( WARN_ON ( length ! = 0 ) )
rc = - EINVAL ;
out_destroy :
pfn_reader_destroy ( & pfns ) ;
out_unlock :
mutex_unlock ( & pages - > mutex ) ;
return rc ;
}
/*
* A medium speed path that still allows DMA inconsistencies , but doesn ' t do any
* memory allocations or interval tree searches .
*/
static int iopt_pages_rw_page ( struct iopt_pages * pages , unsigned long index ,
unsigned long offset , void * data ,
unsigned long length , unsigned int flags )
{
struct page * page = NULL ;
int rc ;
if ( ! mmget_not_zero ( pages - > source_mm ) )
return iopt_pages_rw_slow ( pages , index , index , offset , data ,
length , flags ) ;
2022-11-29 16:29:40 -04:00
if ( iommufd_should_fail ( ) ) {
rc = - EINVAL ;
goto out_mmput ;
}
2022-11-29 16:29:32 -04:00
mmap_read_lock ( pages - > source_mm ) ;
rc = pin_user_pages_remote (
pages - > source_mm , ( uintptr_t ) ( pages - > uptr + index * PAGE_SIZE ) ,
1 , ( flags & IOMMUFD_ACCESS_RW_WRITE ) ? FOLL_WRITE : 0 , & page ,
2023-05-17 20:25:36 +01:00
NULL ) ;
2022-11-29 16:29:32 -04:00
mmap_read_unlock ( pages - > source_mm ) ;
if ( rc ! = 1 ) {
if ( WARN_ON ( rc > = 0 ) )
rc = - EINVAL ;
goto out_mmput ;
}
copy_data_page ( page , data , offset , length , flags ) ;
unpin_user_page ( page ) ;
rc = 0 ;
out_mmput :
mmput ( pages - > source_mm ) ;
return rc ;
}
/**
* iopt_pages_rw_access - Copy to / from a linear slice of the pages
* @ pages : pages to act on
* @ start_byte : First byte of pages to copy to / from
* @ data : Kernel buffer to get / put the data
* @ length : Number of bytes to copy
* @ flags : IOMMUFD_ACCESS_RW_ * flags
*
* This will find each page in the range , kmap it and then memcpy to / from
* the given kernel buffer .
*/
int iopt_pages_rw_access ( struct iopt_pages * pages , unsigned long start_byte ,
void * data , unsigned long length , unsigned int flags )
{
unsigned long start_index = start_byte / PAGE_SIZE ;
unsigned long last_index = ( start_byte + length - 1 ) / PAGE_SIZE ;
bool change_mm = current - > mm ! = pages - > source_mm ;
int rc = 0 ;
2022-11-29 16:29:39 -04:00
if ( IS_ENABLED ( CONFIG_IOMMUFD_TEST ) & &
( flags & __IOMMUFD_ACCESS_RW_SLOW_PATH ) )
change_mm = true ;
2022-11-29 16:29:32 -04:00
if ( ( flags & IOMMUFD_ACCESS_RW_WRITE ) & & ! pages - > writable )
return - EPERM ;
if ( ! ( flags & IOMMUFD_ACCESS_RW_KTHREAD ) & & change_mm ) {
if ( start_index = = last_index )
return iopt_pages_rw_page ( pages , start_index ,
start_byte % PAGE_SIZE , data ,
length , flags ) ;
return iopt_pages_rw_slow ( pages , start_index , last_index ,
start_byte % PAGE_SIZE , data , length ,
flags ) ;
}
/*
* Try to copy using copy_to_user ( ) . We do this as a fast path and
* ignore any pinning inconsistencies , unlike a real DMA path .
*/
if ( change_mm ) {
if ( ! mmget_not_zero ( pages - > source_mm ) )
return iopt_pages_rw_slow ( pages , start_index ,
last_index ,
start_byte % PAGE_SIZE , data ,
length , flags ) ;
kthread_use_mm ( pages - > source_mm ) ;
}
if ( flags & IOMMUFD_ACCESS_RW_WRITE ) {
if ( copy_to_user ( pages - > uptr + start_byte , data , length ) )
rc = - EFAULT ;
} else {
if ( copy_from_user ( data , pages - > uptr + start_byte , length ) )
rc = - EFAULT ;
}
if ( change_mm ) {
kthread_unuse_mm ( pages - > source_mm ) ;
mmput ( pages - > source_mm ) ;
}
return rc ;
}
static struct iopt_pages_access *
iopt_pages_get_exact_access ( struct iopt_pages * pages , unsigned long index ,
unsigned long last )
{
struct interval_tree_node * node ;
lockdep_assert_held ( & pages - > mutex ) ;
/* There can be overlapping ranges in this interval tree */
for ( node = interval_tree_iter_first ( & pages - > access_itree , index , last ) ;
node ; node = interval_tree_iter_next ( node , index , last ) )
if ( node - > start = = index & & node - > last = = last )
return container_of ( node , struct iopt_pages_access ,
node ) ;
return NULL ;
}
/**
* iopt_area_add_access ( ) - Record an in - knerel access for PFNs
* @ area : The source of PFNs
* @ start_index : First page index
* @ last_index : Inclusive last page index
* @ out_pages : Output list of struct page ' s representing the PFNs
* @ flags : IOMMUFD_ACCESS_RW_ * flags
*
* Record that an in - kernel access will be accessing the pages , ensure they are
* pinned , and return the PFNs as a simple list of ' struct page * ' .
*
* This should be undone through a matching call to iopt_area_remove_access ( )
*/
int iopt_area_add_access ( struct iopt_area * area , unsigned long start_index ,
unsigned long last_index , struct page * * out_pages ,
unsigned int flags )
{
struct iopt_pages * pages = area - > pages ;
struct iopt_pages_access * access ;
int rc ;
if ( ( flags & IOMMUFD_ACCESS_RW_WRITE ) & & ! pages - > writable )
return - EPERM ;
mutex_lock ( & pages - > mutex ) ;
access = iopt_pages_get_exact_access ( pages , start_index , last_index ) ;
if ( access ) {
area - > num_accesses + + ;
access - > users + + ;
iopt_pages_fill_from_xarray ( pages , start_index , last_index ,
out_pages ) ;
mutex_unlock ( & pages - > mutex ) ;
return 0 ;
}
access = kzalloc ( sizeof ( * access ) , GFP_KERNEL_ACCOUNT ) ;
if ( ! access ) {
rc = - ENOMEM ;
goto err_unlock ;
}
rc = iopt_pages_fill_xarray ( pages , start_index , last_index , out_pages ) ;
if ( rc )
goto err_free ;
access - > node . start = start_index ;
access - > node . last = last_index ;
access - > users = 1 ;
area - > num_accesses + + ;
interval_tree_insert ( & access - > node , & pages - > access_itree ) ;
mutex_unlock ( & pages - > mutex ) ;
return 0 ;
err_free :
kfree ( access ) ;
err_unlock :
mutex_unlock ( & pages - > mutex ) ;
return rc ;
}
/**
* iopt_area_remove_access ( ) - Release an in - kernel access for PFNs
* @ area : The source of PFNs
* @ start_index : First page index
* @ last_index : Inclusive last page index
*
* Undo iopt_area_add_access ( ) and unpin the pages if necessary . The caller
* must stop using the PFNs before calling this .
*/
void iopt_area_remove_access ( struct iopt_area * area , unsigned long start_index ,
unsigned long last_index )
{
struct iopt_pages * pages = area - > pages ;
struct iopt_pages_access * access ;
mutex_lock ( & pages - > mutex ) ;
access = iopt_pages_get_exact_access ( pages , start_index , last_index ) ;
if ( WARN_ON ( ! access ) )
goto out_unlock ;
WARN_ON ( area - > num_accesses = = 0 | | access - > users = = 0 ) ;
area - > num_accesses - - ;
access - > users - - ;
if ( access - > users )
goto out_unlock ;
interval_tree_remove ( & access - > node , & pages - > access_itree ) ;
iopt_pages_unfill_xarray ( pages , start_index , last_index ) ;
kfree ( access ) ;
out_unlock :
mutex_unlock ( & pages - > mutex ) ;
}