2013-12-10 23:26:21 +04:00
/*
* Freescale i . MX23 / i . MX28 Data Co - Processor driver
*
* Copyright ( C ) 2013 Marek Vasut < marex @ denx . de >
*
* The code contained herein is licensed under the GNU General Public
* License . You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations :
*
* http : //www.opensource.org/licenses/gpl-license.html
* http : //www.gnu.org/copyleft/gpl.html
*/
# include <linux/crypto.h>
# include <linux/dma-mapping.h>
# include <linux/interrupt.h>
# include <linux/io.h>
# include <linux/kernel.h>
# include <linux/kthread.h>
# include <linux/module.h>
# include <linux/of.h>
# include <linux/platform_device.h>
# include <linux/stmp_device.h>
# include <crypto/aes.h>
# include <crypto/sha.h>
# include <crypto/internal/hash.h>
# define DCP_MAX_CHANS 4
# define DCP_BUF_SZ PAGE_SIZE
/* DCP DMA descriptor. */
struct dcp_dma_desc {
uint32_t next_cmd_addr ;
uint32_t control0 ;
uint32_t control1 ;
uint32_t source ;
uint32_t destination ;
uint32_t size ;
uint32_t payload ;
uint32_t status ;
} ;
/* Coherent aligned block for bounce buffering. */
struct dcp_coherent_block {
uint8_t aes_in_buf [ DCP_BUF_SZ ] ;
uint8_t aes_out_buf [ DCP_BUF_SZ ] ;
uint8_t sha_in_buf [ DCP_BUF_SZ ] ;
uint8_t aes_key [ 2 * AES_KEYSIZE_128 ] ;
uint8_t sha_digest [ SHA256_DIGEST_SIZE ] ;
struct dcp_dma_desc desc [ DCP_MAX_CHANS ] ;
} ;
struct dcp {
struct device * dev ;
void __iomem * base ;
uint32_t caps ;
struct dcp_coherent_block * coh ;
struct completion completion [ DCP_MAX_CHANS ] ;
struct mutex mutex [ DCP_MAX_CHANS ] ;
struct task_struct * thread [ DCP_MAX_CHANS ] ;
struct crypto_queue queue [ DCP_MAX_CHANS ] ;
} ;
enum dcp_chan {
DCP_CHAN_HASH_SHA = 0 ,
DCP_CHAN_CRYPTO = 2 ,
} ;
struct dcp_async_ctx {
/* Common context */
enum dcp_chan chan ;
uint32_t fill ;
/* SHA Hash-specific context */
struct mutex mutex ;
uint32_t alg ;
unsigned int hot : 1 ;
/* Crypto-specific context */
unsigned int enc : 1 ;
unsigned int ecb : 1 ;
struct crypto_ablkcipher * fallback ;
unsigned int key_len ;
uint8_t key [ AES_KEYSIZE_128 ] ;
} ;
struct dcp_sha_req_ctx {
unsigned int init : 1 ;
unsigned int fini : 1 ;
} ;
/*
* There can even be only one instance of the MXS DCP due to the
* design of Linux Crypto API .
*/
static struct dcp * global_sdcp ;
2014-01-08 17:48:56 +04:00
static DEFINE_MUTEX ( global_mutex ) ;
2013-12-10 23:26:21 +04:00
/* DCP register layout. */
# define MXS_DCP_CTRL 0x00
# define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
# define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
# define MXS_DCP_STAT 0x10
# define MXS_DCP_STAT_CLR 0x18
# define MXS_DCP_STAT_IRQ_MASK 0xf
# define MXS_DCP_CHANNELCTRL 0x20
# define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
# define MXS_DCP_CAPABILITY1 0x40
# define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
# define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
# define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
# define MXS_DCP_CONTEXT 0x50
# define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
# define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
# define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
# define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
/* DMA descriptor bits. */
# define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
# define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
# define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
# define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
# define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
# define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
# define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
# define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
# define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
# define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
# define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
# define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
# define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
# define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
static int mxs_dcp_start_dma ( struct dcp_async_ctx * actx )
{
struct dcp * sdcp = global_sdcp ;
const int chan = actx - > chan ;
uint32_t stat ;
int ret ;
struct dcp_dma_desc * desc = & sdcp - > coh - > desc [ actx - > chan ] ;
dma_addr_t desc_phys = dma_map_single ( sdcp - > dev , desc , sizeof ( * desc ) ,
DMA_TO_DEVICE ) ;
reinit_completion ( & sdcp - > completion [ chan ] ) ;
/* Clear status register. */
writel ( 0xffffffff , sdcp - > base + MXS_DCP_CH_N_STAT_CLR ( chan ) ) ;
/* Load the DMA descriptor. */
writel ( desc_phys , sdcp - > base + MXS_DCP_CH_N_CMDPTR ( chan ) ) ;
/* Increment the semaphore to start the DMA transfer. */
writel ( 1 , sdcp - > base + MXS_DCP_CH_N_SEMA ( chan ) ) ;
ret = wait_for_completion_timeout ( & sdcp - > completion [ chan ] ,
msecs_to_jiffies ( 1000 ) ) ;
if ( ! ret ) {
dev_err ( sdcp - > dev , " Channel %i timeout (DCP_STAT=0x%08x) \n " ,
chan , readl ( sdcp - > base + MXS_DCP_STAT ) ) ;
return - ETIMEDOUT ;
}
stat = readl ( sdcp - > base + MXS_DCP_CH_N_STAT ( chan ) ) ;
if ( stat & 0xff ) {
dev_err ( sdcp - > dev , " Channel %i error (CH_STAT=0x%08x) \n " ,
chan , stat ) ;
return - EINVAL ;
}
dma_unmap_single ( sdcp - > dev , desc_phys , sizeof ( * desc ) , DMA_TO_DEVICE ) ;
return 0 ;
}
/*
* Encryption ( AES128 )
*/
static int mxs_dcp_run_aes ( struct dcp_async_ctx * actx , int init )
{
struct dcp * sdcp = global_sdcp ;
struct dcp_dma_desc * desc = & sdcp - > coh - > desc [ actx - > chan ] ;
int ret ;
dma_addr_t key_phys = dma_map_single ( sdcp - > dev , sdcp - > coh - > aes_key ,
2 * AES_KEYSIZE_128 ,
DMA_TO_DEVICE ) ;
dma_addr_t src_phys = dma_map_single ( sdcp - > dev , sdcp - > coh - > aes_in_buf ,
DCP_BUF_SZ , DMA_TO_DEVICE ) ;
dma_addr_t dst_phys = dma_map_single ( sdcp - > dev , sdcp - > coh - > aes_out_buf ,
DCP_BUF_SZ , DMA_FROM_DEVICE ) ;
/* Fill in the DMA descriptor. */
desc - > control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_CIPHER ;
/* Payload contains the key. */
desc - > control0 | = MXS_DCP_CONTROL0_PAYLOAD_KEY ;
if ( actx - > enc )
desc - > control0 | = MXS_DCP_CONTROL0_CIPHER_ENCRYPT ;
if ( init )
desc - > control0 | = MXS_DCP_CONTROL0_CIPHER_INIT ;
desc - > control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 ;
if ( actx - > ecb )
desc - > control1 | = MXS_DCP_CONTROL1_CIPHER_MODE_ECB ;
else
desc - > control1 | = MXS_DCP_CONTROL1_CIPHER_MODE_CBC ;
desc - > next_cmd_addr = 0 ;
desc - > source = src_phys ;
desc - > destination = dst_phys ;
desc - > size = actx - > fill ;
desc - > payload = key_phys ;
desc - > status = 0 ;
ret = mxs_dcp_start_dma ( actx ) ;
dma_unmap_single ( sdcp - > dev , key_phys , 2 * AES_KEYSIZE_128 ,
DMA_TO_DEVICE ) ;
dma_unmap_single ( sdcp - > dev , src_phys , DCP_BUF_SZ , DMA_TO_DEVICE ) ;
dma_unmap_single ( sdcp - > dev , dst_phys , DCP_BUF_SZ , DMA_FROM_DEVICE ) ;
return ret ;
}
static int mxs_dcp_aes_block_crypt ( struct crypto_async_request * arq )
{
struct dcp * sdcp = global_sdcp ;
struct ablkcipher_request * req = ablkcipher_request_cast ( arq ) ;
struct dcp_async_ctx * actx = crypto_tfm_ctx ( arq - > tfm ) ;
struct scatterlist * dst = req - > dst ;
struct scatterlist * src = req - > src ;
const int nents = sg_nents ( req - > src ) ;
const int out_off = DCP_BUF_SZ ;
uint8_t * in_buf = sdcp - > coh - > aes_in_buf ;
uint8_t * out_buf = sdcp - > coh - > aes_out_buf ;
uint8_t * out_tmp , * src_buf , * dst_buf = NULL ;
uint32_t dst_off = 0 ;
uint8_t * key = sdcp - > coh - > aes_key ;
int ret = 0 ;
int split = 0 ;
unsigned int i , len , clen , rem = 0 ;
int init = 0 ;
actx - > fill = 0 ;
/* Copy the key from the temporary location. */
memcpy ( key , actx - > key , actx - > key_len ) ;
if ( ! actx - > ecb ) {
/* Copy the CBC IV just past the key. */
memcpy ( key + AES_KEYSIZE_128 , req - > info , AES_KEYSIZE_128 ) ;
/* CBC needs the INIT set. */
init = 1 ;
} else {
memset ( key + AES_KEYSIZE_128 , 0 , AES_KEYSIZE_128 ) ;
}
for_each_sg ( req - > src , src , nents , i ) {
src_buf = sg_virt ( src ) ;
len = sg_dma_len ( src ) ;
do {
if ( actx - > fill + len > out_off )
clen = out_off - actx - > fill ;
else
clen = len ;
memcpy ( in_buf + actx - > fill , src_buf , clen ) ;
len - = clen ;
src_buf + = clen ;
actx - > fill + = clen ;
/*
* If we filled the buffer or this is the last SG ,
* submit the buffer .
*/
if ( actx - > fill = = out_off | | sg_is_last ( src ) ) {
ret = mxs_dcp_run_aes ( actx , init ) ;
if ( ret )
return ret ;
init = 0 ;
out_tmp = out_buf ;
while ( dst & & actx - > fill ) {
if ( ! split ) {
dst_buf = sg_virt ( dst ) ;
dst_off = 0 ;
}
rem = min ( sg_dma_len ( dst ) - dst_off ,
actx - > fill ) ;
memcpy ( dst_buf + dst_off , out_tmp , rem ) ;
out_tmp + = rem ;
dst_off + = rem ;
actx - > fill - = rem ;
if ( dst_off = = sg_dma_len ( dst ) ) {
dst = sg_next ( dst ) ;
split = 0 ;
} else {
split = 1 ;
}
}
}
} while ( len ) ;
}
return ret ;
}
static int dcp_chan_thread_aes ( void * data )
{
struct dcp * sdcp = global_sdcp ;
const int chan = DCP_CHAN_CRYPTO ;
struct crypto_async_request * backlog ;
struct crypto_async_request * arq ;
int ret ;
do {
__set_current_state ( TASK_INTERRUPTIBLE ) ;
mutex_lock ( & sdcp - > mutex [ chan ] ) ;
backlog = crypto_get_backlog ( & sdcp - > queue [ chan ] ) ;
arq = crypto_dequeue_request ( & sdcp - > queue [ chan ] ) ;
mutex_unlock ( & sdcp - > mutex [ chan ] ) ;
if ( backlog )
backlog - > complete ( backlog , - EINPROGRESS ) ;
if ( arq ) {
ret = mxs_dcp_aes_block_crypt ( arq ) ;
arq - > complete ( arq , ret ) ;
continue ;
}
schedule ( ) ;
} while ( ! kthread_should_stop ( ) ) ;
return 0 ;
}
static int mxs_dcp_block_fallback ( struct ablkcipher_request * req , int enc )
{
struct crypto_tfm * tfm =
crypto_ablkcipher_tfm ( crypto_ablkcipher_reqtfm ( req ) ) ;
struct dcp_async_ctx * ctx = crypto_ablkcipher_ctx (
crypto_ablkcipher_reqtfm ( req ) ) ;
int ret ;
ablkcipher_request_set_tfm ( req , ctx - > fallback ) ;
if ( enc )
ret = crypto_ablkcipher_encrypt ( req ) ;
else
ret = crypto_ablkcipher_decrypt ( req ) ;
ablkcipher_request_set_tfm ( req , __crypto_ablkcipher_cast ( tfm ) ) ;
return ret ;
}
static int mxs_dcp_aes_enqueue ( struct ablkcipher_request * req , int enc , int ecb )
{
struct dcp * sdcp = global_sdcp ;
struct crypto_async_request * arq = & req - > base ;
struct dcp_async_ctx * actx = crypto_tfm_ctx ( arq - > tfm ) ;
int ret ;
if ( unlikely ( actx - > key_len ! = AES_KEYSIZE_128 ) )
return mxs_dcp_block_fallback ( req , enc ) ;
actx - > enc = enc ;
actx - > ecb = ecb ;
actx - > chan = DCP_CHAN_CRYPTO ;
mutex_lock ( & sdcp - > mutex [ actx - > chan ] ) ;
ret = crypto_enqueue_request ( & sdcp - > queue [ actx - > chan ] , & req - > base ) ;
mutex_unlock ( & sdcp - > mutex [ actx - > chan ] ) ;
wake_up_process ( sdcp - > thread [ actx - > chan ] ) ;
return - EINPROGRESS ;
}
static int mxs_dcp_aes_ecb_decrypt ( struct ablkcipher_request * req )
{
return mxs_dcp_aes_enqueue ( req , 0 , 1 ) ;
}
static int mxs_dcp_aes_ecb_encrypt ( struct ablkcipher_request * req )
{
return mxs_dcp_aes_enqueue ( req , 1 , 1 ) ;
}
static int mxs_dcp_aes_cbc_decrypt ( struct ablkcipher_request * req )
{
return mxs_dcp_aes_enqueue ( req , 0 , 0 ) ;
}
static int mxs_dcp_aes_cbc_encrypt ( struct ablkcipher_request * req )
{
return mxs_dcp_aes_enqueue ( req , 1 , 0 ) ;
}
static int mxs_dcp_aes_setkey ( struct crypto_ablkcipher * tfm , const u8 * key ,
unsigned int len )
{
struct dcp_async_ctx * actx = crypto_ablkcipher_ctx ( tfm ) ;
unsigned int ret ;
/*
* AES 128 is supposed by the hardware , store key into temporary
* buffer and exit . We must use the temporary buffer here , since
* there can still be an operation in progress .
*/
actx - > key_len = len ;
if ( len = = AES_KEYSIZE_128 ) {
memcpy ( actx - > key , key , len ) ;
return 0 ;
}
/* Check if the key size is supported by kernel at all. */
if ( len ! = AES_KEYSIZE_192 & & len ! = AES_KEYSIZE_256 ) {
tfm - > base . crt_flags | = CRYPTO_TFM_RES_BAD_KEY_LEN ;
return - EINVAL ;
}
/*
* If the requested AES key size is not supported by the hardware ,
* but is supported by in - kernel software implementation , we use
* software fallback .
*/
actx - > fallback - > base . crt_flags & = ~ CRYPTO_TFM_REQ_MASK ;
actx - > fallback - > base . crt_flags | =
tfm - > base . crt_flags & CRYPTO_TFM_REQ_MASK ;
ret = crypto_ablkcipher_setkey ( actx - > fallback , key , len ) ;
if ( ! ret )
return 0 ;
tfm - > base . crt_flags & = ~ CRYPTO_TFM_RES_MASK ;
tfm - > base . crt_flags | =
actx - > fallback - > base . crt_flags & CRYPTO_TFM_RES_MASK ;
return ret ;
}
static int mxs_dcp_aes_fallback_init ( struct crypto_tfm * tfm )
{
const char * name = tfm - > __crt_alg - > cra_name ;
const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK ;
struct dcp_async_ctx * actx = crypto_tfm_ctx ( tfm ) ;
struct crypto_ablkcipher * blk ;
blk = crypto_alloc_ablkcipher ( name , 0 , flags ) ;
if ( IS_ERR ( blk ) )
return PTR_ERR ( blk ) ;
actx - > fallback = blk ;
tfm - > crt_ablkcipher . reqsize = sizeof ( struct dcp_async_ctx ) ;
return 0 ;
}
static void mxs_dcp_aes_fallback_exit ( struct crypto_tfm * tfm )
{
struct dcp_async_ctx * actx = crypto_tfm_ctx ( tfm ) ;
crypto_free_ablkcipher ( actx - > fallback ) ;
actx - > fallback = NULL ;
}
/*
* Hashing ( SHA1 / SHA256 )
*/
static int mxs_dcp_run_sha ( struct ahash_request * req )
{
struct dcp * sdcp = global_sdcp ;
int ret ;
struct crypto_ahash * tfm = crypto_ahash_reqtfm ( req ) ;
struct dcp_async_ctx * actx = crypto_ahash_ctx ( tfm ) ;
struct dcp_sha_req_ctx * rctx = ahash_request_ctx ( req ) ;
struct dcp_dma_desc * desc = & sdcp - > coh - > desc [ actx - > chan ] ;
dma_addr_t digest_phys = dma_map_single ( sdcp - > dev ,
sdcp - > coh - > sha_digest ,
SHA256_DIGEST_SIZE ,
DMA_FROM_DEVICE ) ;
dma_addr_t buf_phys = dma_map_single ( sdcp - > dev , sdcp - > coh - > sha_in_buf ,
DCP_BUF_SZ , DMA_TO_DEVICE ) ;
/* Fill in the DMA descriptor. */
desc - > control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_HASH ;
if ( rctx - > init )
desc - > control0 | = MXS_DCP_CONTROL0_HASH_INIT ;
desc - > control1 = actx - > alg ;
desc - > next_cmd_addr = 0 ;
desc - > source = buf_phys ;
desc - > destination = 0 ;
desc - > size = actx - > fill ;
desc - > payload = 0 ;
desc - > status = 0 ;
/* Set HASH_TERM bit for last transfer block. */
if ( rctx - > fini ) {
desc - > control0 | = MXS_DCP_CONTROL0_HASH_TERM ;
desc - > payload = digest_phys ;
}
ret = mxs_dcp_start_dma ( actx ) ;
dma_unmap_single ( sdcp - > dev , digest_phys , SHA256_DIGEST_SIZE ,
DMA_FROM_DEVICE ) ;
dma_unmap_single ( sdcp - > dev , buf_phys , DCP_BUF_SZ , DMA_TO_DEVICE ) ;
return ret ;
}
static int dcp_sha_req_to_buf ( struct crypto_async_request * arq )
{
struct dcp * sdcp = global_sdcp ;
struct ahash_request * req = ahash_request_cast ( arq ) ;
struct crypto_ahash * tfm = crypto_ahash_reqtfm ( req ) ;
struct dcp_async_ctx * actx = crypto_ahash_ctx ( tfm ) ;
struct dcp_sha_req_ctx * rctx = ahash_request_ctx ( req ) ;
struct hash_alg_common * halg = crypto_hash_alg_common ( tfm ) ;
const int nents = sg_nents ( req - > src ) ;
uint8_t * digest = sdcp - > coh - > sha_digest ;
uint8_t * in_buf = sdcp - > coh - > sha_in_buf ;
uint8_t * src_buf ;
struct scatterlist * src ;
unsigned int i , len , clen ;
int ret ;
int fin = rctx - > fini ;
if ( fin )
rctx - > fini = 0 ;
for_each_sg ( req - > src , src , nents , i ) {
src_buf = sg_virt ( src ) ;
len = sg_dma_len ( src ) ;
do {
if ( actx - > fill + len > DCP_BUF_SZ )
clen = DCP_BUF_SZ - actx - > fill ;
else
clen = len ;
memcpy ( in_buf + actx - > fill , src_buf , clen ) ;
len - = clen ;
src_buf + = clen ;
actx - > fill + = clen ;
/*
* If we filled the buffer and still have some
* more data , submit the buffer .
*/
if ( len & & actx - > fill = = DCP_BUF_SZ ) {
ret = mxs_dcp_run_sha ( req ) ;
if ( ret )
return ret ;
actx - > fill = 0 ;
rctx - > init = 0 ;
}
} while ( len ) ;
}
if ( fin ) {
rctx - > fini = 1 ;
/* Submit whatever is left. */
ret = mxs_dcp_run_sha ( req ) ;
if ( ret | | ! req - > result )
return ret ;
actx - > fill = 0 ;
/* For some reason, the result is flipped. */
for ( i = 0 ; i < halg - > digestsize ; i + + )
req - > result [ i ] = digest [ halg - > digestsize - i - 1 ] ;
}
return 0 ;
}
static int dcp_chan_thread_sha ( void * data )
{
struct dcp * sdcp = global_sdcp ;
const int chan = DCP_CHAN_HASH_SHA ;
struct crypto_async_request * backlog ;
struct crypto_async_request * arq ;
struct dcp_sha_req_ctx * rctx ;
struct ahash_request * req ;
int ret , fini ;
do {
__set_current_state ( TASK_INTERRUPTIBLE ) ;
mutex_lock ( & sdcp - > mutex [ chan ] ) ;
backlog = crypto_get_backlog ( & sdcp - > queue [ chan ] ) ;
arq = crypto_dequeue_request ( & sdcp - > queue [ chan ] ) ;
mutex_unlock ( & sdcp - > mutex [ chan ] ) ;
if ( backlog )
backlog - > complete ( backlog , - EINPROGRESS ) ;
if ( arq ) {
req = ahash_request_cast ( arq ) ;
rctx = ahash_request_ctx ( req ) ;
ret = dcp_sha_req_to_buf ( arq ) ;
fini = rctx - > fini ;
arq - > complete ( arq , ret ) ;
if ( ! fini )
continue ;
}
schedule ( ) ;
} while ( ! kthread_should_stop ( ) ) ;
return 0 ;
}
static int dcp_sha_init ( struct ahash_request * req )
{
struct crypto_ahash * tfm = crypto_ahash_reqtfm ( req ) ;
struct dcp_async_ctx * actx = crypto_ahash_ctx ( tfm ) ;
struct hash_alg_common * halg = crypto_hash_alg_common ( tfm ) ;
/*
* Start hashing session . The code below only inits the
* hashing session context , nothing more .
*/
memset ( actx , 0 , sizeof ( * actx ) ) ;
if ( strcmp ( halg - > base . cra_name , " sha1 " ) = = 0 )
actx - > alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1 ;
else
actx - > alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256 ;
actx - > fill = 0 ;
actx - > hot = 0 ;
actx - > chan = DCP_CHAN_HASH_SHA ;
mutex_init ( & actx - > mutex ) ;
return 0 ;
}
static int dcp_sha_update_fx ( struct ahash_request * req , int fini )
{
struct dcp * sdcp = global_sdcp ;
struct dcp_sha_req_ctx * rctx = ahash_request_ctx ( req ) ;
struct crypto_ahash * tfm = crypto_ahash_reqtfm ( req ) ;
struct dcp_async_ctx * actx = crypto_ahash_ctx ( tfm ) ;
int ret ;
/*
* Ignore requests that have no data in them and are not
* the trailing requests in the stream of requests .
*/
if ( ! req - > nbytes & & ! fini )
return 0 ;
mutex_lock ( & actx - > mutex ) ;
rctx - > fini = fini ;
if ( ! actx - > hot ) {
actx - > hot = 1 ;
rctx - > init = 1 ;
}
mutex_lock ( & sdcp - > mutex [ actx - > chan ] ) ;
ret = crypto_enqueue_request ( & sdcp - > queue [ actx - > chan ] , & req - > base ) ;
mutex_unlock ( & sdcp - > mutex [ actx - > chan ] ) ;
wake_up_process ( sdcp - > thread [ actx - > chan ] ) ;
mutex_unlock ( & actx - > mutex ) ;
return - EINPROGRESS ;
}
static int dcp_sha_update ( struct ahash_request * req )
{
return dcp_sha_update_fx ( req , 0 ) ;
}
static int dcp_sha_final ( struct ahash_request * req )
{
ahash_request_set_crypt ( req , NULL , req - > result , 0 ) ;
req - > nbytes = 0 ;
return dcp_sha_update_fx ( req , 1 ) ;
}
static int dcp_sha_finup ( struct ahash_request * req )
{
return dcp_sha_update_fx ( req , 1 ) ;
}
static int dcp_sha_digest ( struct ahash_request * req )
{
int ret ;
ret = dcp_sha_init ( req ) ;
if ( ret )
return ret ;
return dcp_sha_finup ( req ) ;
}
static int dcp_sha_cra_init ( struct crypto_tfm * tfm )
{
crypto_ahash_set_reqsize ( __crypto_ahash_cast ( tfm ) ,
sizeof ( struct dcp_sha_req_ctx ) ) ;
return 0 ;
}
static void dcp_sha_cra_exit ( struct crypto_tfm * tfm )
{
}
/* AES 128 ECB and AES 128 CBC */
static struct crypto_alg dcp_aes_algs [ ] = {
{
. cra_name = " ecb(aes) " ,
. cra_driver_name = " ecb-aes-dcp " ,
. cra_priority = 400 ,
. cra_alignmask = 15 ,
. cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK ,
. cra_init = mxs_dcp_aes_fallback_init ,
. cra_exit = mxs_dcp_aes_fallback_exit ,
. cra_blocksize = AES_BLOCK_SIZE ,
. cra_ctxsize = sizeof ( struct dcp_async_ctx ) ,
. cra_type = & crypto_ablkcipher_type ,
. cra_module = THIS_MODULE ,
. cra_u = {
. ablkcipher = {
. min_keysize = AES_MIN_KEY_SIZE ,
. max_keysize = AES_MAX_KEY_SIZE ,
. setkey = mxs_dcp_aes_setkey ,
. encrypt = mxs_dcp_aes_ecb_encrypt ,
. decrypt = mxs_dcp_aes_ecb_decrypt
} ,
} ,
} , {
. cra_name = " cbc(aes) " ,
. cra_driver_name = " cbc-aes-dcp " ,
. cra_priority = 400 ,
. cra_alignmask = 15 ,
. cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK ,
. cra_init = mxs_dcp_aes_fallback_init ,
. cra_exit = mxs_dcp_aes_fallback_exit ,
. cra_blocksize = AES_BLOCK_SIZE ,
. cra_ctxsize = sizeof ( struct dcp_async_ctx ) ,
. cra_type = & crypto_ablkcipher_type ,
. cra_module = THIS_MODULE ,
. cra_u = {
. ablkcipher = {
. min_keysize = AES_MIN_KEY_SIZE ,
. max_keysize = AES_MAX_KEY_SIZE ,
. setkey = mxs_dcp_aes_setkey ,
. encrypt = mxs_dcp_aes_cbc_encrypt ,
. decrypt = mxs_dcp_aes_cbc_decrypt ,
. ivsize = AES_BLOCK_SIZE ,
} ,
} ,
} ,
} ;
/* SHA1 */
static struct ahash_alg dcp_sha1_alg = {
. init = dcp_sha_init ,
. update = dcp_sha_update ,
. final = dcp_sha_final ,
. finup = dcp_sha_finup ,
. digest = dcp_sha_digest ,
. halg = {
. digestsize = SHA1_DIGEST_SIZE ,
. base = {
. cra_name = " sha1 " ,
. cra_driver_name = " sha1-dcp " ,
. cra_priority = 400 ,
. cra_alignmask = 63 ,
. cra_flags = CRYPTO_ALG_ASYNC ,
. cra_blocksize = SHA1_BLOCK_SIZE ,
. cra_ctxsize = sizeof ( struct dcp_async_ctx ) ,
. cra_module = THIS_MODULE ,
. cra_init = dcp_sha_cra_init ,
. cra_exit = dcp_sha_cra_exit ,
} ,
} ,
} ;
/* SHA256 */
static struct ahash_alg dcp_sha256_alg = {
. init = dcp_sha_init ,
. update = dcp_sha_update ,
. final = dcp_sha_final ,
. finup = dcp_sha_finup ,
. digest = dcp_sha_digest ,
. halg = {
. digestsize = SHA256_DIGEST_SIZE ,
. base = {
. cra_name = " sha256 " ,
. cra_driver_name = " sha256-dcp " ,
. cra_priority = 400 ,
. cra_alignmask = 63 ,
. cra_flags = CRYPTO_ALG_ASYNC ,
. cra_blocksize = SHA256_BLOCK_SIZE ,
. cra_ctxsize = sizeof ( struct dcp_async_ctx ) ,
. cra_module = THIS_MODULE ,
. cra_init = dcp_sha_cra_init ,
. cra_exit = dcp_sha_cra_exit ,
} ,
} ,
} ;
static irqreturn_t mxs_dcp_irq ( int irq , void * context )
{
struct dcp * sdcp = context ;
uint32_t stat ;
int i ;
stat = readl ( sdcp - > base + MXS_DCP_STAT ) ;
stat & = MXS_DCP_STAT_IRQ_MASK ;
if ( ! stat )
return IRQ_NONE ;
/* Clear the interrupts. */
writel ( stat , sdcp - > base + MXS_DCP_STAT_CLR ) ;
/* Complete the DMA requests that finished. */
for ( i = 0 ; i < DCP_MAX_CHANS ; i + + )
if ( stat & ( 1 < < i ) )
complete ( & sdcp - > completion [ i ] ) ;
return IRQ_HANDLED ;
}
static int mxs_dcp_probe ( struct platform_device * pdev )
{
struct device * dev = & pdev - > dev ;
struct dcp * sdcp = NULL ;
int i , ret ;
struct resource * iores ;
int dcp_vmi_irq , dcp_irq ;
mutex_lock ( & global_mutex ) ;
if ( global_sdcp ) {
dev_err ( dev , " Only one DCP instance allowed! \n " ) ;
ret = - ENODEV ;
goto err_mutex ;
}
iores = platform_get_resource ( pdev , IORESOURCE_MEM , 0 ) ;
dcp_vmi_irq = platform_get_irq ( pdev , 0 ) ;
dcp_irq = platform_get_irq ( pdev , 1 ) ;
if ( dcp_vmi_irq < 0 | | dcp_irq < 0 ) {
ret = - EINVAL ;
goto err_mutex ;
}
sdcp = devm_kzalloc ( dev , sizeof ( * sdcp ) , GFP_KERNEL ) ;
if ( ! sdcp ) {
ret = - ENOMEM ;
goto err_mutex ;
}
sdcp - > dev = dev ;
sdcp - > base = devm_ioremap_resource ( dev , iores ) ;
if ( IS_ERR ( sdcp - > base ) ) {
ret = PTR_ERR ( sdcp - > base ) ;
goto err_mutex ;
}
ret = devm_request_irq ( dev , dcp_vmi_irq , mxs_dcp_irq , 0 ,
" dcp-vmi-irq " , sdcp ) ;
if ( ret ) {
dev_err ( dev , " Failed to claim DCP VMI IRQ! \n " ) ;
goto err_mutex ;
}
ret = devm_request_irq ( dev , dcp_irq , mxs_dcp_irq , 0 ,
" dcp-irq " , sdcp ) ;
if ( ret ) {
dev_err ( dev , " Failed to claim DCP IRQ! \n " ) ;
goto err_mutex ;
}
/* Allocate coherent helper block. */
sdcp - > coh = kzalloc ( sizeof ( struct dcp_coherent_block ) , GFP_KERNEL ) ;
if ( ! sdcp - > coh ) {
dev_err ( dev , " Error allocating coherent block \n " ) ;
ret = - ENOMEM ;
goto err_mutex ;
}
/* Restart the DCP block. */
stmp_reset_block ( sdcp - > base ) ;
/* Initialize control register. */
writel ( MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf ,
sdcp - > base + MXS_DCP_CTRL ) ;
/* Enable all DCP DMA channels. */
writel ( MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK ,
sdcp - > base + MXS_DCP_CHANNELCTRL ) ;
/*
* We do not enable context switching . Give the context buffer a
* pointer to an illegal address so if context switching is
* inadvertantly enabled , the DCP will return an error instead of
* trashing good memory . The DCP DMA cannot access ROM , so any ROM
* address will do .
*/
writel ( 0xffff0000 , sdcp - > base + MXS_DCP_CONTEXT ) ;
for ( i = 0 ; i < DCP_MAX_CHANS ; i + + )
writel ( 0xffffffff , sdcp - > base + MXS_DCP_CH_N_STAT_CLR ( i ) ) ;
writel ( 0xffffffff , sdcp - > base + MXS_DCP_STAT_CLR ) ;
global_sdcp = sdcp ;
platform_set_drvdata ( pdev , sdcp ) ;
for ( i = 0 ; i < DCP_MAX_CHANS ; i + + ) {
mutex_init ( & sdcp - > mutex [ i ] ) ;
init_completion ( & sdcp - > completion [ i ] ) ;
crypto_init_queue ( & sdcp - > queue [ i ] , 50 ) ;
}
/* Create the SHA and AES handler threads. */
sdcp - > thread [ DCP_CHAN_HASH_SHA ] = kthread_run ( dcp_chan_thread_sha ,
NULL , " mxs_dcp_chan/sha " ) ;
if ( IS_ERR ( sdcp - > thread [ DCP_CHAN_HASH_SHA ] ) ) {
dev_err ( dev , " Error starting SHA thread! \n " ) ;
ret = PTR_ERR ( sdcp - > thread [ DCP_CHAN_HASH_SHA ] ) ;
goto err_free_coherent ;
}
sdcp - > thread [ DCP_CHAN_CRYPTO ] = kthread_run ( dcp_chan_thread_aes ,
NULL , " mxs_dcp_chan/aes " ) ;
if ( IS_ERR ( sdcp - > thread [ DCP_CHAN_CRYPTO ] ) ) {
dev_err ( dev , " Error starting SHA thread! \n " ) ;
ret = PTR_ERR ( sdcp - > thread [ DCP_CHAN_CRYPTO ] ) ;
goto err_destroy_sha_thread ;
}
/* Register the various crypto algorithms. */
sdcp - > caps = readl ( sdcp - > base + MXS_DCP_CAPABILITY1 ) ;
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_AES128 ) {
ret = crypto_register_algs ( dcp_aes_algs ,
ARRAY_SIZE ( dcp_aes_algs ) ) ;
if ( ret ) {
/* Failed to register algorithm. */
dev_err ( dev , " Failed to register AES crypto! \n " ) ;
goto err_destroy_aes_thread ;
}
}
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_SHA1 ) {
ret = crypto_register_ahash ( & dcp_sha1_alg ) ;
if ( ret ) {
dev_err ( dev , " Failed to register %s hash! \n " ,
dcp_sha1_alg . halg . base . cra_name ) ;
goto err_unregister_aes ;
}
}
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_SHA256 ) {
ret = crypto_register_ahash ( & dcp_sha256_alg ) ;
if ( ret ) {
dev_err ( dev , " Failed to register %s hash! \n " ,
dcp_sha256_alg . halg . base . cra_name ) ;
goto err_unregister_sha1 ;
}
}
return 0 ;
err_unregister_sha1 :
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_SHA1 )
crypto_unregister_ahash ( & dcp_sha1_alg ) ;
err_unregister_aes :
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_AES128 )
crypto_unregister_algs ( dcp_aes_algs , ARRAY_SIZE ( dcp_aes_algs ) ) ;
err_destroy_aes_thread :
kthread_stop ( sdcp - > thread [ DCP_CHAN_CRYPTO ] ) ;
err_destroy_sha_thread :
kthread_stop ( sdcp - > thread [ DCP_CHAN_HASH_SHA ] ) ;
err_free_coherent :
kfree ( sdcp - > coh ) ;
err_mutex :
mutex_unlock ( & global_mutex ) ;
return ret ;
}
static int mxs_dcp_remove ( struct platform_device * pdev )
{
struct dcp * sdcp = platform_get_drvdata ( pdev ) ;
kfree ( sdcp - > coh ) ;
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_SHA256 )
crypto_unregister_ahash ( & dcp_sha256_alg ) ;
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_SHA1 )
crypto_unregister_ahash ( & dcp_sha1_alg ) ;
if ( sdcp - > caps & MXS_DCP_CAPABILITY1_AES128 )
crypto_unregister_algs ( dcp_aes_algs , ARRAY_SIZE ( dcp_aes_algs ) ) ;
kthread_stop ( sdcp - > thread [ DCP_CHAN_HASH_SHA ] ) ;
kthread_stop ( sdcp - > thread [ DCP_CHAN_CRYPTO ] ) ;
platform_set_drvdata ( pdev , NULL ) ;
mutex_lock ( & global_mutex ) ;
global_sdcp = NULL ;
mutex_unlock ( & global_mutex ) ;
return 0 ;
}
static const struct of_device_id mxs_dcp_dt_ids [ ] = {
{ . compatible = " fsl,imx23-dcp " , . data = NULL , } ,
{ . compatible = " fsl,imx28-dcp " , . data = NULL , } ,
{ /* sentinel */ }
} ;
MODULE_DEVICE_TABLE ( of , mxs_dcp_dt_ids ) ;
static struct platform_driver mxs_dcp_driver = {
. probe = mxs_dcp_probe ,
. remove = mxs_dcp_remove ,
. driver = {
. name = " mxs-dcp " ,
. owner = THIS_MODULE ,
. of_match_table = mxs_dcp_dt_ids ,
} ,
} ;
module_platform_driver ( mxs_dcp_driver ) ;
MODULE_AUTHOR ( " Marek Vasut <marex@denx.de> " ) ;
MODULE_DESCRIPTION ( " Freescale MXS DCP Driver " ) ;
MODULE_LICENSE ( " GPL " ) ;
MODULE_ALIAS ( " platform:mxs-dcp " ) ;