613 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2005-2006 Michael Ellerman, IBM Corporation
*
* Description:
* This file contains all the routines to build a flattened device
* tree for a legacy iSeries machine.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/pci_ids.h>
#include <linux/threads.h>
#include <linux/bitops.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/if_ether.h> /* ETH_ALEN */
#include <asm/machdep.h>
#include <asm/prom.h>
#include <asm/lppaca.h>
#include <asm/cputable.h>
#include <asm/abs_addr.h>
#include <asm/system.h>
#include <asm/iseries/hv_types.h>
#include <asm/iseries/hv_lp_config.h>
#include <asm/iseries/hv_call_xm.h>
#include <asm/iseries/it_exp_vpd_panel.h>
#include <asm/udbg.h>
#include "processor_vpd.h"
#include "call_hpt.h"
#include "call_pci.h"
#include "pci.h"
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
extern char __dt_strings_start[];
extern char __dt_strings_end[];
struct iseries_flat_dt {
struct boot_param_header header;
u64 reserve_map[2];
void *data;
};
static struct iseries_flat_dt *iseries_dt;
static struct iseries_flat_dt * __init dt_init(void)
{
struct iseries_flat_dt *dt;
unsigned long str_len;
str_len = __dt_strings_end - __dt_strings_start;
dt = (struct iseries_flat_dt *)ALIGN(klimit, 8);
dt->header.off_mem_rsvmap =
offsetof(struct iseries_flat_dt, reserve_map);
dt->header.off_dt_strings = ALIGN(sizeof(*dt), 8);
dt->header.off_dt_struct = dt->header.off_dt_strings
+ ALIGN(str_len, 8);
dt->data = (void *)((unsigned long)dt + dt->header.off_dt_struct);
dt->header.dt_strings_size = str_len;
/* There is no notion of hardware cpu id on iSeries */
dt->header.boot_cpuid_phys = smp_processor_id();
memcpy((char *)dt + dt->header.off_dt_strings, __dt_strings_start,
str_len);
dt->header.magic = OF_DT_HEADER;
dt->header.version = 0x10;
dt->header.last_comp_version = 0x10;
dt->reserve_map[0] = 0;
dt->reserve_map[1] = 0;
return dt;
}
static void __init dt_push_u32(struct iseries_flat_dt *dt, u32 value)
{
*((u32 *)dt->data) = value;
dt->data += sizeof(u32);
}
#ifdef notyet
static void __init dt_push_u64(struct iseries_flat_dt *dt, u64 value)
{
*((u64 *)dt->data) = value;
dt->data += sizeof(u64);
}
#endif
static void __init dt_push_bytes(struct iseries_flat_dt *dt, char *data,
int len)
{
memcpy(dt->data, data, len);
dt->data += ALIGN(len, 4);
}
static void __init dt_start_node(struct iseries_flat_dt *dt, char *name)
{
dt_push_u32(dt, OF_DT_BEGIN_NODE);
dt_push_bytes(dt, name, strlen(name) + 1);
}
#define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
static void __init dt_prop(struct iseries_flat_dt *dt, char *name,
void *data, int len)
{
unsigned long offset;
dt_push_u32(dt, OF_DT_PROP);
/* Length of the data */
dt_push_u32(dt, len);
offset = name - __dt_strings_start;
/* The offset of the properties name in the string blob. */
dt_push_u32(dt, (u32)offset);
/* The actual data. */
dt_push_bytes(dt, data, len);
}
static void __init dt_prop_str(struct iseries_flat_dt *dt, char *name,
char *data)
{
dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
}
static void __init dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
{
dt_prop(dt, name, &data, sizeof(u32));
}
static void __init dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
{
dt_prop(dt, name, &data, sizeof(u64));
}
static void __init dt_prop_u64_list(struct iseries_flat_dt *dt, char *name,
u64 *data, int n)
{
dt_prop(dt, name, data, sizeof(u64) * n);
}
static void __init dt_prop_u32_list(struct iseries_flat_dt *dt, char *name,
u32 *data, int n)
{
dt_prop(dt, name, data, sizeof(u32) * n);
}
#ifdef notyet
static void __init dt_prop_empty(struct iseries_flat_dt *dt, char *name)
{
dt_prop(dt, name, NULL, 0);
}
#endif
static void __init dt_cpus(struct iseries_flat_dt *dt)
{
unsigned char buf[32];
unsigned char *p;
unsigned int i, index;
struct IoHriProcessorVpd *d;
u32 pft_size[2];
/* yuck */
snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
p = strchr(buf, ' ');
if (!p) p = buf + strlen(buf);
dt_start_node(dt, "cpus");
dt_prop_u32(dt, "#address-cells", 1);
dt_prop_u32(dt, "#size-cells", 0);
pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
for (i = 0; i < NR_CPUS; i++) {
if (lppaca[i].dyn_proc_status >= 2)
continue;
snprintf(p, 32 - (p - buf), "@%d", i);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "cpu");
index = lppaca[i].dyn_hv_phys_proc_index;
d = &xIoHriProcessorVpd[index];
dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
/* magic conversions to Hz copied from old code */
dt_prop_u32(dt, "clock-frequency",
((1UL << 34) * 1000000) / d->xProcFreq);
dt_prop_u32(dt, "timebase-frequency",
((1UL << 32) * 1000000) / d->xTimeBaseFreq);
dt_prop_u32(dt, "reg", i);
dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
dt_end_node(dt);
}
dt_end_node(dt);
}
static void __init dt_model(struct iseries_flat_dt *dt)
{
char buf[16] = "IBM,";
/* "IBM," + mfgId[2:3] + systemSerial[1:5] */
strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
buf[11] = '\0';
dt_prop_str(dt, "system-id", buf);
/* "IBM," + machineType[0:4] */
strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
buf[8] = '\0';
dt_prop_str(dt, "model", buf);
dt_prop_str(dt, "compatible", "IBM,iSeries");
}
static void __init dt_vdevices(struct iseries_flat_dt *dt)
{
u32 reg = 0;
HvLpIndexMap vlan_map;
int i;
char buf[32];
dt_start_node(dt, "vdevice");
dt_prop_str(dt, "device_type", "vdevice");
dt_prop_str(dt, "compatible", "IBM,iSeries-vdevice");
dt_prop_u32(dt, "#address-cells", 1);
dt_prop_u32(dt, "#size-cells", 0);
snprintf(buf, sizeof(buf), "vty@%08x", reg);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "serial");
dt_prop_u32(dt, "reg", reg);
dt_end_node(dt);
reg++;
snprintf(buf, sizeof(buf), "v-scsi@%08x", reg);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "vscsi");
dt_prop_str(dt, "compatible", "IBM,v-scsi");
dt_prop_u32(dt, "reg", reg);
dt_end_node(dt);
reg++;
vlan_map = HvLpConfig_getVirtualLanIndexMap();
for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
unsigned char mac_addr[ETH_ALEN];
if ((vlan_map & (0x8000 >> i)) == 0)
continue;
snprintf(buf, 32, "l-lan@%08x", reg + i);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "network");
dt_prop_str(dt, "compatible", "IBM,iSeries-l-lan");
dt_prop_u32(dt, "reg", reg + i);
dt_prop_u32(dt, "linux,unit_address", i);
mac_addr[0] = 0x02;
mac_addr[1] = 0x01;
mac_addr[2] = 0xff;
mac_addr[3] = i;
mac_addr[4] = 0xff;
mac_addr[5] = HvLpConfig_getLpIndex_outline();
dt_prop(dt, "local-mac-address", (char *)mac_addr, ETH_ALEN);
dt_prop(dt, "mac-address", (char *)mac_addr, ETH_ALEN);
dt_prop_u32(dt, "max-frame-size", 9000);
dt_prop_u32(dt, "address-bits", 48);
dt_end_node(dt);
}
reg += HVMAXARCHITECTEDVIRTUALLANS;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALDISKS; i++) {
snprintf(buf, 32, "viodasd@%08x", reg + i);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "block");
dt_prop_str(dt, "compatible", "IBM,iSeries-viodasd");
dt_prop_u32(dt, "reg", reg + i);
dt_prop_u32(dt, "linux,unit_address", i);
dt_end_node(dt);
}
reg += HVMAXARCHITECTEDVIRTUALDISKS;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALCDROMS; i++) {
snprintf(buf, 32, "viocd@%08x", reg + i);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "block");
dt_prop_str(dt, "compatible", "IBM,iSeries-viocd");
dt_prop_u32(dt, "reg", reg + i);
dt_prop_u32(dt, "linux,unit_address", i);
dt_end_node(dt);
}
reg += HVMAXARCHITECTEDVIRTUALCDROMS;
for (i = 0; i < HVMAXARCHITECTEDVIRTUALTAPES; i++) {
snprintf(buf, 32, "viotape@%08x", reg + i);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "byte");
dt_prop_str(dt, "compatible", "IBM,iSeries-viotape");
dt_prop_u32(dt, "reg", reg + i);
dt_prop_u32(dt, "linux,unit_address", i);
dt_end_node(dt);
}
dt_end_node(dt);
}
struct pci_class_name {
u16 code;
char *name;
char *type;
};
static struct pci_class_name __initdata pci_class_name[] = {
{ PCI_CLASS_NETWORK_ETHERNET, "ethernet", "network" },
};
static struct pci_class_name * __init dt_find_pci_class_name(u16 class_code)
{
struct pci_class_name *cp;
for (cp = pci_class_name;
cp < &pci_class_name[ARRAY_SIZE(pci_class_name)]; cp++)
if (cp->code == class_code)
return cp;
return NULL;
}
/*
* This assumes that the node slot is always on the primary bus!
*/
static void __init scan_bridge_slot(struct iseries_flat_dt *dt,
HvBusNumber bus, struct HvCallPci_BridgeInfo *bridge_info)
{
HvSubBusNumber sub_bus = bridge_info->subBusNumber;
u16 vendor_id;
u16 device_id;
u32 class_id;
int err;
char buf[32];
u32 reg[5];
int id_sel = ISERIES_GET_DEVICE_FROM_SUBBUS(sub_bus);
int function = ISERIES_GET_FUNCTION_FROM_SUBBUS(sub_bus);
HvAgentId eads_id_sel = ISERIES_PCI_AGENTID(id_sel, function);
u8 devfn;
struct pci_class_name *cp;
/*
* Connect all functions of any device found.
*/
for (id_sel = 1; id_sel <= bridge_info->maxAgents; id_sel++) {
for (function = 0; function < 8; function++) {
HvAgentId agent_id = ISERIES_PCI_AGENTID(id_sel,
function);
err = HvCallXm_connectBusUnit(bus, sub_bus,
agent_id, 0);
if (err) {
if (err != 0x302)
printk(KERN_DEBUG
"connectBusUnit(%x, %x, %x) "
"== %x\n",
bus, sub_bus, agent_id, err);
continue;
}
err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
PCI_VENDOR_ID, &vendor_id);
if (err) {
printk(KERN_DEBUG
"ReadVendor(%x, %x, %x) == %x\n",
bus, sub_bus, agent_id, err);
continue;
}
err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
PCI_DEVICE_ID, &device_id);
if (err) {
printk(KERN_DEBUG
"ReadDevice(%x, %x, %x) == %x\n",
bus, sub_bus, agent_id, err);
continue;
}
err = HvCallPci_configLoad32(bus, sub_bus, agent_id,
PCI_CLASS_REVISION , &class_id);
if (err) {
printk(KERN_DEBUG
"ReadClass(%x, %x, %x) == %x\n",
bus, sub_bus, agent_id, err);
continue;
}
devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(eads_id_sel),
function);
cp = dt_find_pci_class_name(class_id >> 16);
if (cp && cp->name)
strncpy(buf, cp->name, sizeof(buf) - 1);
else
snprintf(buf, sizeof(buf), "pci%x,%x",
vendor_id, device_id);
buf[sizeof(buf) - 1] = '\0';
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
"@%x", PCI_SLOT(devfn));
buf[sizeof(buf) - 1] = '\0';
if (function != 0)
snprintf(buf + strlen(buf),
sizeof(buf) - strlen(buf),
",%x", function);
dt_start_node(dt, buf);
reg[0] = (bus << 16) | (devfn << 8);
reg[1] = 0;
reg[2] = 0;
reg[3] = 0;
reg[4] = 0;
dt_prop_u32_list(dt, "reg", reg, 5);
if (cp && (cp->type || cp->name))
dt_prop_str(dt, "device_type",
cp->type ? cp->type : cp->name);
dt_prop_u32(dt, "vendor-id", vendor_id);
dt_prop_u32(dt, "device-id", device_id);
dt_prop_u32(dt, "class-code", class_id >> 8);
dt_prop_u32(dt, "revision-id", class_id & 0xff);
dt_prop_u32(dt, "linux,subbus", sub_bus);
dt_prop_u32(dt, "linux,agent-id", agent_id);
dt_prop_u32(dt, "linux,logical-slot-number",
bridge_info->logicalSlotNumber);
dt_end_node(dt);
}
}
}
static void __init scan_bridge(struct iseries_flat_dt *dt, HvBusNumber bus,
HvSubBusNumber sub_bus, int id_sel)
{
struct HvCallPci_BridgeInfo bridge_info;
HvAgentId agent_id;
int function;
int ret;
/* Note: hvSubBus and irq is always be 0 at this level! */
for (function = 0; function < 8; ++function) {
agent_id = ISERIES_PCI_AGENTID(id_sel, function);
ret = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0);
if (ret != 0) {
if (ret != 0xb)
printk(KERN_DEBUG "connectBusUnit(%x, %x, %x) "
"== %x\n",
bus, sub_bus, agent_id, ret);
continue;
}
printk("found device at bus %d idsel %d func %d (AgentId %x)\n",
bus, id_sel, function, agent_id);
ret = HvCallPci_getBusUnitInfo(bus, sub_bus, agent_id,
iseries_hv_addr(&bridge_info),
sizeof(struct HvCallPci_BridgeInfo));
if (ret != 0)
continue;
printk("bridge info: type %x subbus %x "
"maxAgents %x maxsubbus %x logslot %x\n",
bridge_info.busUnitInfo.deviceType,
bridge_info.subBusNumber,
bridge_info.maxAgents,
bridge_info.maxSubBusNumber,
bridge_info.logicalSlotNumber);
if (bridge_info.busUnitInfo.deviceType ==
HvCallPci_BridgeDevice)
scan_bridge_slot(dt, bus, &bridge_info);
else
printk("PCI: Invalid Bridge Configuration(0x%02X)",
bridge_info.busUnitInfo.deviceType);
}
}
static void __init scan_phb(struct iseries_flat_dt *dt, HvBusNumber bus)
{
struct HvCallPci_DeviceInfo dev_info;
const HvSubBusNumber sub_bus = 0; /* EADs is always 0. */
int err;
int id_sel;
const int max_agents = 8;
/*
* Probe for EADs Bridges
*/
for (id_sel = 1; id_sel < max_agents; ++id_sel) {
err = HvCallPci_getDeviceInfo(bus, sub_bus, id_sel,
iseries_hv_addr(&dev_info),
sizeof(struct HvCallPci_DeviceInfo));
if (err) {
if (err != 0x302)
printk(KERN_DEBUG "getDeviceInfo(%x, %x, %x) "
"== %x\n",
bus, sub_bus, id_sel, err);
continue;
}
if (dev_info.deviceType != HvCallPci_NodeDevice) {
printk(KERN_DEBUG "PCI: Invalid System Configuration"
"(0x%02X) for bus 0x%02x id 0x%02x.\n",
dev_info.deviceType, bus, id_sel);
continue;
}
scan_bridge(dt, bus, sub_bus, id_sel);
}
}
static void __init dt_pci_devices(struct iseries_flat_dt *dt)
{
HvBusNumber bus;
char buf[32];
u32 buses[2];
int phb_num = 0;
/* Check all possible buses. */
for (bus = 0; bus < 256; bus++) {
int err = HvCallXm_testBus(bus);
if (err) {
/*
* Check for Unexpected Return code, a clue that
* something has gone wrong.
*/
if (err != 0x0301)
printk(KERN_ERR "Unexpected Return on Probe"
"(0x%02X): 0x%04X", bus, err);
continue;
}
printk("bus %d appears to exist\n", bus);
snprintf(buf, 32, "pci@%d", phb_num);
dt_start_node(dt, buf);
dt_prop_str(dt, "device_type", "pci");
dt_prop_str(dt, "compatible", "IBM,iSeries-Logical-PHB");
dt_prop_u32(dt, "#address-cells", 3);
dt_prop_u32(dt, "#size-cells", 2);
buses[0] = buses[1] = bus;
dt_prop_u32_list(dt, "bus-range", buses, 2);
scan_phb(dt, bus);
dt_end_node(dt);
phb_num++;
}
}
static void dt_finish(struct iseries_flat_dt *dt)
{
dt_push_u32(dt, OF_DT_END);
dt->header.totalsize = (unsigned long)dt->data - (unsigned long)dt;
klimit = ALIGN((unsigned long)dt->data, 8);
}
void * __init build_flat_dt(unsigned long phys_mem_size)
{
u64 tmp[2];
iseries_dt = dt_init();
dt_start_node(iseries_dt, "");
dt_prop_u32(iseries_dt, "#address-cells", 2);
dt_prop_u32(iseries_dt, "#size-cells", 2);
dt_model(iseries_dt);
/* /memory */
dt_start_node(iseries_dt, "memory@0");
dt_prop_str(iseries_dt, "name", "memory");
dt_prop_str(iseries_dt, "device_type", "memory");
tmp[0] = 0;
tmp[1] = phys_mem_size;
dt_prop_u64_list(iseries_dt, "reg", tmp, 2);
dt_end_node(iseries_dt);
/* /chosen */
dt_start_node(iseries_dt, "chosen");
dt_prop_str(iseries_dt, "bootargs", cmd_line);
dt_end_node(iseries_dt);
dt_cpus(iseries_dt);
dt_vdevices(iseries_dt);
dt_pci_devices(iseries_dt);
dt_end_node(iseries_dt);
dt_finish(iseries_dt);
return iseries_dt;
}