hwmon: Add Baikal-T1 PVT sensor driver
Baikal-T1 SoC provides an embedded process, voltage and temperature
sensor to monitor an internal SoC environment (chip temperature, supply
voltage and process monitor) and on time detect critical situations,
which may cause the system instability and even damages. The IP-block
is based on the Analog Bits PVT sensor, but is equipped with a
dedicated control wrapper, which provides a MMIO registers-based access
to the sensor core functionality (APB3-bus based) and exposes an
additional functions like thresholds/data ready interrupts, its status
and masks, measurements timeout. All of these is used to create a hwmon
driver being added to the kernel by this commit.
The driver implements support for the hardware monitoring capabilities
of Baikal-T1 process, voltage and temperature sensors. PVT IP-core
consists of one temperature and four voltage sensors, each of which is
implemented as a dedicated hwmon channel config.
The driver can optionally provide the hwmon alarms for each sensor the
PVT controller supports. The alarms functionality is made compile-time
configurable due to the hardware interface implementation peculiarity,
which is connected with an ability to convert data from only one sensor
at a time. Additional limitation is that the controller performs the
thresholds checking synchronously with the data conversion procedure.
Due to these limitations in order to have the hwmon alarms
automatically detected the driver code must switch from one sensor to
another, read converted data and manually check the threshold status
bits. Depending on the measurements timeout settings this design may
cause additional burden on the system performance. By default if the
alarms kernel config is disabled the data conversion is performed by
the driver on demand when read operation is requested via corresponding
_input-file.
Co-developed-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: devicetree@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-05-28 17:28:05 +03:00
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright ( C ) 2020 BAIKAL ELECTRONICS , JSC
*
* Baikal - T1 Process , Voltage , Temperature sensor driver
*/
# ifndef __HWMON_BT1_PVT_H__
# define __HWMON_BT1_PVT_H__
# include <linux/completion.h>
# include <linux/hwmon.h>
# include <linux/kernel.h>
2020-09-20 14:09:22 +03:00
# include <linux/ktime.h>
hwmon: Add Baikal-T1 PVT sensor driver
Baikal-T1 SoC provides an embedded process, voltage and temperature
sensor to monitor an internal SoC environment (chip temperature, supply
voltage and process monitor) and on time detect critical situations,
which may cause the system instability and even damages. The IP-block
is based on the Analog Bits PVT sensor, but is equipped with a
dedicated control wrapper, which provides a MMIO registers-based access
to the sensor core functionality (APB3-bus based) and exposes an
additional functions like thresholds/data ready interrupts, its status
and masks, measurements timeout. All of these is used to create a hwmon
driver being added to the kernel by this commit.
The driver implements support for the hardware monitoring capabilities
of Baikal-T1 process, voltage and temperature sensors. PVT IP-core
consists of one temperature and four voltage sensors, each of which is
implemented as a dedicated hwmon channel config.
The driver can optionally provide the hwmon alarms for each sensor the
PVT controller supports. The alarms functionality is made compile-time
configurable due to the hardware interface implementation peculiarity,
which is connected with an ability to convert data from only one sensor
at a time. Additional limitation is that the controller performs the
thresholds checking synchronously with the data conversion procedure.
Due to these limitations in order to have the hwmon alarms
automatically detected the driver code must switch from one sensor to
another, read converted data and manually check the threshold status
bits. Depending on the measurements timeout settings this design may
cause additional burden on the system performance. By default if the
alarms kernel config is disabled the data conversion is performed by
the driver on demand when read operation is requested via corresponding
_input-file.
Co-developed-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: devicetree@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-05-28 17:28:05 +03:00
# include <linux/mutex.h>
# include <linux/seqlock.h>
/* Baikal-T1 PVT registers and their bitfields */
# define PVT_CTRL 0x00
# define PVT_CTRL_EN BIT(0)
# define PVT_CTRL_MODE_FLD 1
# define PVT_CTRL_MODE_MASK GENMASK(3, PVT_CTRL_MODE_FLD)
# define PVT_CTRL_MODE_TEMP 0x0
# define PVT_CTRL_MODE_VOLT 0x1
# define PVT_CTRL_MODE_LVT 0x2
# define PVT_CTRL_MODE_HVT 0x4
# define PVT_CTRL_MODE_SVT 0x6
# define PVT_CTRL_TRIM_FLD 4
# define PVT_CTRL_TRIM_MASK GENMASK(8, PVT_CTRL_TRIM_FLD)
# define PVT_DATA 0x04
# define PVT_DATA_VALID BIT(10)
# define PVT_DATA_DATA_FLD 0
# define PVT_DATA_DATA_MASK GENMASK(9, PVT_DATA_DATA_FLD)
# define PVT_TTHRES 0x08
# define PVT_VTHRES 0x0C
# define PVT_LTHRES 0x10
# define PVT_HTHRES 0x14
# define PVT_STHRES 0x18
# define PVT_THRES_LO_FLD 0
# define PVT_THRES_LO_MASK GENMASK(9, PVT_THRES_LO_FLD)
# define PVT_THRES_HI_FLD 10
# define PVT_THRES_HI_MASK GENMASK(19, PVT_THRES_HI_FLD)
# define PVT_TTIMEOUT 0x1C
# define PVT_INTR_STAT 0x20
# define PVT_INTR_MASK 0x24
# define PVT_RAW_INTR_STAT 0x28
# define PVT_INTR_DVALID BIT(0)
# define PVT_INTR_TTHRES_LO BIT(1)
# define PVT_INTR_TTHRES_HI BIT(2)
# define PVT_INTR_VTHRES_LO BIT(3)
# define PVT_INTR_VTHRES_HI BIT(4)
# define PVT_INTR_LTHRES_LO BIT(5)
# define PVT_INTR_LTHRES_HI BIT(6)
# define PVT_INTR_HTHRES_LO BIT(7)
# define PVT_INTR_HTHRES_HI BIT(8)
# define PVT_INTR_STHRES_LO BIT(9)
# define PVT_INTR_STHRES_HI BIT(10)
# define PVT_INTR_ALL GENMASK(10, 0)
# define PVT_CLR_INTR 0x2C
/*
* PVT sensors - related limits and default values
* @ PVT_TEMP_MIN : Minimal temperature in millidegrees of Celsius .
* @ PVT_TEMP_MAX : Maximal temperature in millidegrees of Celsius .
* @ PVT_TEMP_CHS : Number of temperature hwmon channels .
* @ PVT_VOLT_MIN : Minimal voltage in mV .
* @ PVT_VOLT_MAX : Maximal voltage in mV .
* @ PVT_VOLT_CHS : Number of voltage hwmon channels .
* @ PVT_DATA_MIN : Minimal PVT raw data value .
* @ PVT_DATA_MAX : Maximal PVT raw data value .
* @ PVT_TRIM_MIN : Minimal temperature sensor trim value .
* @ PVT_TRIM_MAX : Maximal temperature sensor trim value .
* @ PVT_TRIM_DEF : Default temperature sensor trim value ( set a proper value
* when one is determined for Baikal - T1 SoC ) .
* @ PVT_TRIM_TEMP : Maximum temperature encoded by the trim factor .
* @ PVT_TRIM_STEP : Temperature stride corresponding to the trim value .
* @ PVT_TOUT_MIN : Minimal timeout between samples in nanoseconds .
* @ PVT_TOUT_DEF : Default data measurements timeout . In case if alarms are
* activated the PVT IRQ is enabled to be raised after each
* conversion in order to have the thresholds checked and the
* converted value cached . Too frequent conversions may cause
* the system CPU overload . Lets set the 50 ms delay between
* them by default to prevent this .
*/
# define PVT_TEMP_MIN -48380L
# define PVT_TEMP_MAX 147438L
# define PVT_TEMP_CHS 1
# define PVT_VOLT_MIN 620L
# define PVT_VOLT_MAX 1168L
# define PVT_VOLT_CHS 4
# define PVT_DATA_MIN 0
# define PVT_DATA_MAX (PVT_DATA_DATA_MASK >> PVT_DATA_DATA_FLD)
# define PVT_TRIM_MIN 0
# define PVT_TRIM_MAX (PVT_CTRL_TRIM_MASK >> PVT_CTRL_TRIM_FLD)
# define PVT_TRIM_TEMP 7130
# define PVT_TRIM_STEP (PVT_TRIM_TEMP / PVT_TRIM_MAX)
# define PVT_TRIM_DEF 0
# define PVT_TOUT_MIN (NSEC_PER_SEC / 3000)
# if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
# define PVT_TOUT_DEF 60000
# else
# define PVT_TOUT_DEF 0
# endif
/*
* enum pvt_sensor_type - Baikal - T1 PVT sensor types ( correspond to each PVT
* sampling mode )
* @ PVT_SENSOR * : helpers to traverse the sensors in loops .
* @ PVT_TEMP : PVT Temperature sensor .
* @ PVT_VOLT : PVT Voltage sensor .
* @ PVT_LVT : PVT Low - Voltage threshold sensor .
* @ PVT_HVT : PVT High - Voltage threshold sensor .
* @ PVT_SVT : PVT Standard - Voltage threshold sensor .
*/
enum pvt_sensor_type {
PVT_SENSOR_FIRST ,
PVT_TEMP = PVT_SENSOR_FIRST ,
PVT_VOLT ,
PVT_LVT ,
PVT_HVT ,
PVT_SVT ,
PVT_SENSOR_LAST = PVT_SVT ,
PVT_SENSORS_NUM
} ;
/*
* enum pvt_clock_type - Baikal - T1 PVT clocks .
* @ PVT_CLOCK_APB : APB clock .
* @ PVT_CLOCK_REF : PVT reference clock .
*/
enum pvt_clock_type {
PVT_CLOCK_APB ,
PVT_CLOCK_REF ,
PVT_CLOCK_NUM
} ;
/*
* struct pvt_sensor_info - Baikal - T1 PVT sensor informational structure
* @ channel : Sensor channel ID .
* @ label : hwmon sensor label .
* @ mode : PVT mode corresponding to the channel .
* @ thres_base : upper and lower threshold values of the sensor .
* @ thres_sts_lo : low threshold status bitfield .
* @ thres_sts_hi : high threshold status bitfield .
* @ type : Sensor type .
* @ attr_min_alarm : Min alarm attribute ID .
* @ attr_min_alarm : Max alarm attribute ID .
*/
struct pvt_sensor_info {
int channel ;
const char * label ;
u32 mode ;
unsigned long thres_base ;
u32 thres_sts_lo ;
u32 thres_sts_hi ;
enum hwmon_sensor_types type ;
u32 attr_min_alarm ;
u32 attr_max_alarm ;
} ;
# define PVT_SENSOR_INFO(_ch, _label, _type, _mode, _thres) \
{ \
. channel = _ch , \
. label = _label , \
. mode = PVT_CTRL_MODE_ # # _mode , \
. thres_base = PVT_ # # _thres , \
. thres_sts_lo = PVT_INTR_ # # _thres # # _LO , \
. thres_sts_hi = PVT_INTR_ # # _thres # # _HI , \
. type = _type , \
. attr_min_alarm = _type # # _min , \
. attr_max_alarm = _type # # _max , \
}
/*
* struct pvt_cache - PVT sensors data cache
* @ data : data cache in raw format .
* @ thres_sts_lo : low threshold status saved on the previous data conversion .
* @ thres_sts_hi : high threshold status saved on the previous data conversion .
* @ data_seqlock : cached data seq - lock .
* @ conversion : data conversion completion .
*/
struct pvt_cache {
u32 data ;
# if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
seqlock_t data_seqlock ;
u32 thres_sts_lo ;
u32 thres_sts_hi ;
# else
struct completion conversion ;
# endif
} ;
/*
* struct pvt_hwmon - Baikal - T1 PVT private data
* @ dev : device structure of the PVT platform device .
* @ hwmon : hwmon device structure .
* @ regs : pointer to the Baikal - T1 PVT registers region .
* @ irq : PVT events IRQ number .
* @ clks : Array of the PVT clocks descriptor ( APB / ref clocks ) .
* @ ref_clk : Pointer to the reference clocks descriptor .
* @ iface_mtx : Generic interface mutex ( used to lock the alarm registers
* when the alarms enabled , or the data conversion interface
* if alarms are disabled ) .
* @ sensor : current PVT sensor the data conversion is being performed for .
* @ cache : data cache descriptor .
2020-09-20 14:09:22 +03:00
* @ timeout : conversion timeout cache .
hwmon: Add Baikal-T1 PVT sensor driver
Baikal-T1 SoC provides an embedded process, voltage and temperature
sensor to monitor an internal SoC environment (chip temperature, supply
voltage and process monitor) and on time detect critical situations,
which may cause the system instability and even damages. The IP-block
is based on the Analog Bits PVT sensor, but is equipped with a
dedicated control wrapper, which provides a MMIO registers-based access
to the sensor core functionality (APB3-bus based) and exposes an
additional functions like thresholds/data ready interrupts, its status
and masks, measurements timeout. All of these is used to create a hwmon
driver being added to the kernel by this commit.
The driver implements support for the hardware monitoring capabilities
of Baikal-T1 process, voltage and temperature sensors. PVT IP-core
consists of one temperature and four voltage sensors, each of which is
implemented as a dedicated hwmon channel config.
The driver can optionally provide the hwmon alarms for each sensor the
PVT controller supports. The alarms functionality is made compile-time
configurable due to the hardware interface implementation peculiarity,
which is connected with an ability to convert data from only one sensor
at a time. Additional limitation is that the controller performs the
thresholds checking synchronously with the data conversion procedure.
Due to these limitations in order to have the hwmon alarms
automatically detected the driver code must switch from one sensor to
another, read converted data and manually check the threshold status
bits. Depending on the measurements timeout settings this design may
cause additional burden on the system performance. By default if the
alarms kernel config is disabled the data conversion is performed by
the driver on demand when read operation is requested via corresponding
_input-file.
Co-developed-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: devicetree@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-05-28 17:28:05 +03:00
*/
struct pvt_hwmon {
struct device * dev ;
struct device * hwmon ;
void __iomem * regs ;
int irq ;
struct clk_bulk_data clks [ PVT_CLOCK_NUM ] ;
struct mutex iface_mtx ;
enum pvt_sensor_type sensor ;
struct pvt_cache cache [ PVT_SENSORS_NUM ] ;
2020-09-20 14:09:22 +03:00
ktime_t timeout ;
hwmon: Add Baikal-T1 PVT sensor driver
Baikal-T1 SoC provides an embedded process, voltage and temperature
sensor to monitor an internal SoC environment (chip temperature, supply
voltage and process monitor) and on time detect critical situations,
which may cause the system instability and even damages. The IP-block
is based on the Analog Bits PVT sensor, but is equipped with a
dedicated control wrapper, which provides a MMIO registers-based access
to the sensor core functionality (APB3-bus based) and exposes an
additional functions like thresholds/data ready interrupts, its status
and masks, measurements timeout. All of these is used to create a hwmon
driver being added to the kernel by this commit.
The driver implements support for the hardware monitoring capabilities
of Baikal-T1 process, voltage and temperature sensors. PVT IP-core
consists of one temperature and four voltage sensors, each of which is
implemented as a dedicated hwmon channel config.
The driver can optionally provide the hwmon alarms for each sensor the
PVT controller supports. The alarms functionality is made compile-time
configurable due to the hardware interface implementation peculiarity,
which is connected with an ability to convert data from only one sensor
at a time. Additional limitation is that the controller performs the
thresholds checking synchronously with the data conversion procedure.
Due to these limitations in order to have the hwmon alarms
automatically detected the driver code must switch from one sensor to
another, read converted data and manually check the threshold status
bits. Depending on the measurements timeout settings this design may
cause additional burden on the system performance. By default if the
alarms kernel config is disabled the data conversion is performed by
the driver on demand when read operation is requested via corresponding
_input-file.
Co-developed-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: devicetree@vger.kernel.org
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-05-28 17:28:05 +03:00
} ;
/*
* struct pvt_poly_term - a term descriptor of the PVT data translation
* polynomial
* @ deg : degree of the term .
* @ coef : multiplication factor of the term .
* @ divider : distributed divider per each degree .
* @ divider_leftover : divider leftover , which couldn ' t be redistributed .
*/
struct pvt_poly_term {
unsigned int deg ;
long coef ;
long divider ;
long divider_leftover ;
} ;
/*
* struct pvt_poly - PVT data translation polynomial descriptor
* @ total_divider : total data divider .
* @ terms : polynomial terms up to a free one .
*/
struct pvt_poly {
long total_divider ;
struct pvt_poly_term terms [ ] ;
} ;
# endif /* __HWMON_BT1_PVT_H__ */