2017-01-25 04:27:51 +05:30
/*
* intel_hdmi_lpe_audio . h - Intel HDMI LPE audio driver
*
* Copyright ( C ) 2016 Intel Corp
* Authors : Sailaja Bandarupalli < sailaja . bandarupalli @ intel . com >
* Ramesh Babu K V < ramesh . babu @ intel . com >
* Vaibhav Agarwal < vaibhav . agarwal @ intel . com >
* Jerome Anand < jerome . anand @ intel . com >
* Aravind Siddappaji < aravindx . siddappaji @ intel . com >
* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; version 2 of the License .
*
* This program is distributed in the hope that it will be useful , but
* WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* General Public License for more details .
*
* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
*/
# ifndef __INTEL_HDMI_LPE_AUDIO_H
# define __INTEL_HDMI_LPE_AUDIO_H
# define HAD_MIN_CHANNEL 2
# define HAD_MAX_CHANNEL 8
# define HAD_NUM_OF_RING_BUFS 4
ALSA: x86: Refactor PCM process engine
This is again a big rewrite of the driver; now it touches the code to
process PCM stream transfers.
The most fundamental change is that the driver may support more than
four periods. Instead of keeping the same index between both the ring
buffer (with the fixed four buffer descriptors) and the PCM buffer
periods, we keep difference indices for both (bd_head and pcm_head
fields). In addition, when the periods are more than four, we need to
track both head and next indices. That is, we now have three indices:
bd_head, pcm_head and pcm_filled.
Also, the driver works better for periods < 4, too: the remaining BDs
out of four are marked as invalid, so that the hardware skips those
BDs in its loop.
By this flexibility, we can use even ALSA-lib dmix plugin, which
requires 16 periods as default.
The buffer size could be up to 20bit, so the max buffer size was
increased accordingly. However, the buffer pre-allocation is kept as
the old value (600kB) as default. The reason is the limited number of
BDs: since it doesn't suffice for the useful SG page management that
can fit with the usual page allocator like some other drivers, we have
to still allocate continuous pages, hence we shouldn't take too big
memories there.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-02-03 00:01:18 +01:00
/* max 20bit address, aligned to 64 */
# define HAD_MAX_BUFFER ((1024 * 1024 - 1) & ~0x3f)
# define HAD_DEFAULT_BUFFER (600 * 1024) /* default prealloc size */
# define HAD_MAX_PERIODS 256 /* arbitrary, but should suffice */
2017-02-07 08:05:46 +01:00
# define HAD_MIN_PERIODS 1
ALSA: x86: Refactor PCM process engine
This is again a big rewrite of the driver; now it touches the code to
process PCM stream transfers.
The most fundamental change is that the driver may support more than
four periods. Instead of keeping the same index between both the ring
buffer (with the fixed four buffer descriptors) and the PCM buffer
periods, we keep difference indices for both (bd_head and pcm_head
fields). In addition, when the periods are more than four, we need to
track both head and next indices. That is, we now have three indices:
bd_head, pcm_head and pcm_filled.
Also, the driver works better for periods < 4, too: the remaining BDs
out of four are marked as invalid, so that the hardware skips those
BDs in its loop.
By this flexibility, we can use even ALSA-lib dmix plugin, which
requires 16 periods as default.
The buffer size could be up to 20bit, so the max buffer size was
increased accordingly. However, the buffer pre-allocation is kept as
the old value (600kB) as default. The reason is the limited number of
BDs: since it doesn't suffice for the useful SG page management that
can fit with the usual page allocator like some other drivers, we have
to still allocate continuous pages, hence we shouldn't take too big
memories there.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-02-03 00:01:18 +01:00
# define HAD_MAX_PERIOD_BYTES ((HAD_MAX_BUFFER / HAD_MIN_PERIODS) & ~0x3f)
# define HAD_MIN_PERIOD_BYTES 1024 /* might be smaller */
2017-01-25 04:27:51 +05:30
# define HAD_FIFO_SIZE 0 /* fifo not being used */
# define MAX_SPEAKERS 8
# define AUD_SAMPLE_RATE_32 32000
# define AUD_SAMPLE_RATE_44_1 44100
# define AUD_SAMPLE_RATE_48 48000
# define AUD_SAMPLE_RATE_88_2 88200
# define AUD_SAMPLE_RATE_96 96000
# define AUD_SAMPLE_RATE_176_4 176400
# define AUD_SAMPLE_RATE_192 192000
# define HAD_MIN_RATE AUD_SAMPLE_RATE_32
# define HAD_MAX_RATE AUD_SAMPLE_RATE_192
# define DIS_SAMPLE_RATE_25_2 25200
# define DIS_SAMPLE_RATE_27 27000
# define DIS_SAMPLE_RATE_54 54000
# define DIS_SAMPLE_RATE_74_25 74250
# define DIS_SAMPLE_RATE_148_5 148500
# define HAD_REG_WIDTH 0x08
# define HAD_MAX_DIP_WORDS 16
2017-01-31 14:16:52 -06:00
/* DP Link Rates */
# define DP_2_7_GHZ 270000
# define DP_1_62_GHZ 162000
/* Maud Values */
# define AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL 1988
# define AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL 2740
# define AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL 2982
# define AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL 5480
# define AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL 5965
# define AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL 10961
# define HAD_MAX_RATE_DP_2_7_MAUD_VAL 11930
# define AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL 3314
# define AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL 4567
# define AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL 4971
# define AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL 9134
# define AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL 9942
# define AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL 18268
# define HAD_MAX_RATE_DP_1_62_MAUD_VAL 19884
/* Naud Value */
# define DP_NAUD_VAL 32768
2017-01-25 04:27:51 +05:30
/* HDMI Controller register offsets - audio domain common */
/* Base address for below regs = 0x65000 */
enum hdmi_ctrl_reg_offset_common {
2017-02-02 16:19:03 +01:00
AUDIO_HDMI_CONFIG_A = 0x000 ,
2017-01-25 04:27:51 +05:30
AUDIO_HDMI_CONFIG_B = 0x800 ,
AUDIO_HDMI_CONFIG_C = 0x900 ,
} ;
/* HDMI controller register offsets */
2017-01-31 18:14:15 +01:00
enum hdmi_ctrl_reg_offset {
2017-01-25 04:27:51 +05:30
AUD_CONFIG = 0x0 ,
AUD_CH_STATUS_0 = 0x08 ,
AUD_CH_STATUS_1 = 0x0C ,
AUD_HDMI_CTS = 0x10 ,
AUD_N_ENABLE = 0x14 ,
AUD_SAMPLE_RATE = 0x18 ,
AUD_BUF_CONFIG = 0x20 ,
AUD_BUF_CH_SWAP = 0x24 ,
AUD_BUF_A_ADDR = 0x40 ,
AUD_BUF_A_LENGTH = 0x44 ,
AUD_BUF_B_ADDR = 0x48 ,
AUD_BUF_B_LENGTH = 0x4c ,
AUD_BUF_C_ADDR = 0x50 ,
AUD_BUF_C_LENGTH = 0x54 ,
AUD_BUF_D_ADDR = 0x58 ,
AUD_BUF_D_LENGTH = 0x5c ,
AUD_CNTL_ST = 0x60 ,
2017-01-31 18:14:15 +01:00
AUD_HDMI_STATUS = 0x64 , /* v2 */
AUD_HDMIW_INFOFR = 0x68 , /* v2 */
2017-01-25 04:27:51 +05:30
} ;
2017-02-02 15:58:35 +01:00
/* Audio configuration */
2017-01-25 04:27:51 +05:30
union aud_cfg {
struct {
u32 aud_en : 1 ;
2017-02-07 12:17:23 +01:00
u32 layout : 1 ; /* LAYOUT[01], see below */
2017-01-25 04:27:51 +05:30
u32 fmt : 2 ;
u32 num_ch : 3 ;
u32 set : 1 ;
u32 flat : 1 ;
u32 val_bit : 1 ;
u32 user_bit : 1 ;
2017-02-07 12:17:23 +01:00
u32 underrun : 1 ; /* 0: send null packets,
* 1 : send silence stream
*/
u32 packet_mode : 1 ; /* 0: 32bit container, 1: 16bit */
u32 left_align : 1 ; /* 0: MSB bits 0-23, 1: bits 8-31 */
u32 bogus_sample : 1 ; /* bogus sample for odd channels */
u32 dp_modei : 1 ; /* 0: HDMI, 1: DP */
2017-01-25 04:27:51 +05:30
u32 rsvd : 16 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-02 16:19:03 +01:00
# define AUD_CONFIG_VALID_BIT (1 << 9)
# define AUD_CONFIG_DP_MODE (1 << 15)
2017-02-07 12:17:23 +01:00
# define AUD_CONFIG_CH_MASK 0x70
# define LAYOUT0 0 /* interleaved stereo */
# define LAYOUT1 1 /* for channels > 2 */
2017-02-02 16:19:03 +01:00
2017-02-02 15:58:35 +01:00
/* Audio Channel Status 0 Attributes */
2017-01-25 04:27:51 +05:30
union aud_ch_status_0 {
struct {
u32 ch_status : 1 ;
u32 lpcm_id : 1 ;
u32 cp_info : 1 ;
u32 format : 3 ;
u32 mode : 2 ;
u32 ctg_code : 8 ;
u32 src_num : 4 ;
u32 ch_num : 4 ;
2017-02-07 12:17:23 +01:00
u32 samp_freq : 4 ; /* CH_STATUS_MAP_XXX */
2017-01-25 04:27:51 +05:30
u32 clk_acc : 2 ;
u32 rsvd : 2 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-07 12:17:23 +01:00
/* samp_freq values - Sampling rate as per IEC60958 Ver 3 */
# define CH_STATUS_MAP_32KHZ 0x3
# define CH_STATUS_MAP_44KHZ 0x0
# define CH_STATUS_MAP_48KHZ 0x2
# define CH_STATUS_MAP_88KHZ 0x8
# define CH_STATUS_MAP_96KHZ 0xA
# define CH_STATUS_MAP_176KHZ 0xC
# define CH_STATUS_MAP_192KHZ 0xE
2017-02-02 15:58:35 +01:00
/* Audio Channel Status 1 Attributes */
2017-01-25 04:27:51 +05:30
union aud_ch_status_1 {
struct {
u32 max_wrd_len : 1 ;
u32 wrd_len : 3 ;
u32 rsvd : 28 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-07 12:17:23 +01:00
# define MAX_SMPL_WIDTH_20 0x0
# define MAX_SMPL_WIDTH_24 0x1
# define SMPL_WIDTH_16BITS 0x1
# define SMPL_WIDTH_24BITS 0x5
2017-02-02 15:58:35 +01:00
/* CTS register */
2017-01-25 04:27:51 +05:30
union aud_hdmi_cts {
struct {
u32 cts_val : 24 ;
u32 en_cts_prog : 1 ;
u32 rsvd : 7 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-02 15:58:35 +01:00
/* N register */
2017-01-25 04:27:51 +05:30
union aud_hdmi_n_enable {
struct {
u32 n_val : 24 ;
u32 en_n_prog : 1 ;
u32 rsvd : 7 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-02 15:58:35 +01:00
/* Audio Buffer configurations */
2017-01-25 04:27:51 +05:30
union aud_buf_config {
struct {
u32 audio_fifo_watermark : 8 ;
u32 dma_fifo_watermark : 3 ;
u32 rsvd0 : 5 ;
u32 aud_delay : 8 ;
u32 rsvd1 : 8 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-07 12:17:23 +01:00
# define FIFO_THRESHOLD 0xFE
# define DMA_FIFO_THRESHOLD 0x7
2017-02-02 15:58:35 +01:00
/* Audio Sample Swapping offset */
2017-01-25 04:27:51 +05:30
union aud_buf_ch_swap {
struct {
u32 first_0 : 3 ;
u32 second_0 : 3 ;
u32 first_1 : 3 ;
u32 second_1 : 3 ;
u32 first_2 : 3 ;
u32 second_2 : 3 ;
u32 first_3 : 3 ;
u32 second_3 : 3 ;
u32 rsvd : 8 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-07 12:17:23 +01:00
# define SWAP_LFE_CENTER 0x00fac4c8 /* octal 76543210 */
2017-02-02 15:58:35 +01:00
/* Address for Audio Buffer */
2017-01-25 04:27:51 +05:30
union aud_buf_addr {
struct {
u32 valid : 1 ;
u32 intr_en : 1 ;
u32 rsvd : 4 ;
u32 addr : 26 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
ALSA: x86: Refactor PCM process engine
This is again a big rewrite of the driver; now it touches the code to
process PCM stream transfers.
The most fundamental change is that the driver may support more than
four periods. Instead of keeping the same index between both the ring
buffer (with the fixed four buffer descriptors) and the PCM buffer
periods, we keep difference indices for both (bd_head and pcm_head
fields). In addition, when the periods are more than four, we need to
track both head and next indices. That is, we now have three indices:
bd_head, pcm_head and pcm_filled.
Also, the driver works better for periods < 4, too: the remaining BDs
out of four are marked as invalid, so that the hardware skips those
BDs in its loop.
By this flexibility, we can use even ALSA-lib dmix plugin, which
requires 16 periods as default.
The buffer size could be up to 20bit, so the max buffer size was
increased accordingly. However, the buffer pre-allocation is kept as
the old value (600kB) as default. The reason is the limited number of
BDs: since it doesn't suffice for the useful SG page management that
can fit with the usual page allocator like some other drivers, we have
to still allocate continuous pages, hence we shouldn't take too big
memories there.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-02-03 00:01:18 +01:00
# define AUD_BUF_VALID (1U << 0)
# define AUD_BUF_INTR_EN (1U << 1)
2017-02-02 15:58:35 +01:00
/* Length of Audio Buffer */
2017-01-25 04:27:51 +05:30
union aud_buf_len {
struct {
u32 buf_len : 20 ;
u32 rsvd : 12 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-02 15:58:35 +01:00
/* Audio Control State Register offset */
2017-01-25 04:27:51 +05:30
union aud_ctrl_st {
struct {
u32 ram_addr : 4 ;
u32 eld_ack : 1 ;
u32 eld_addr : 4 ;
u32 eld_buf_size : 5 ;
u32 eld_valid : 1 ;
u32 cp_ready : 1 ;
u32 dip_freq : 2 ;
u32 dip_idx : 3 ;
u32 dip_en_sta : 4 ;
u32 rsvd : 7 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-02 15:58:35 +01:00
/* Audio HDMI Widget Data Island Packet offset */
2017-01-25 04:27:51 +05:30
union aud_info_frame1 {
struct {
u32 pkt_type : 8 ;
u32 ver_num : 8 ;
u32 len : 5 ;
u32 rsvd : 11 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-07 12:17:23 +01:00
# define HDMI_INFO_FRAME_WORD1 0x000a0184
# define DP_INFO_FRAME_WORD1 0x00441b84
2017-02-02 15:58:35 +01:00
/* DIP frame 2 */
2017-01-25 04:27:51 +05:30
union aud_info_frame2 {
struct {
u32 chksum : 8 ;
u32 chnl_cnt : 3 ;
u32 rsvd0 : 1 ;
u32 coding_type : 4 ;
u32 smpl_size : 2 ;
u32 smpl_freq : 3 ;
u32 rsvd1 : 3 ;
u32 format : 8 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-02 15:58:35 +01:00
/* DIP frame 3 */
2017-01-25 04:27:51 +05:30
union aud_info_frame3 {
struct {
u32 chnl_alloc : 8 ;
u32 rsvd0 : 3 ;
u32 lsv : 4 ;
u32 dm_inh : 1 ;
u32 rsvd1 : 16 ;
2017-02-02 15:58:35 +01:00
} regx ;
u32 regval ;
2017-01-25 04:27:51 +05:30
} ;
2017-02-07 12:17:23 +01:00
# define VALID_DIP_WORDS 3
2017-02-02 16:19:03 +01:00
/* AUD_HDMI_STATUS bits */
# define HDMI_AUDIO_UNDERRUN (1U << 31)
# define HDMI_AUDIO_BUFFER_DONE (1U << 29)
2017-01-25 04:27:51 +05:30
2017-02-02 16:19:03 +01:00
/* AUD_HDMI_STATUS register mask */
2017-02-07 12:17:23 +01:00
# define AUD_HDMI_STATUS_MASK_UNDERRUN 0xC0000000
# define AUD_HDMI_STATUS_MASK_SRDBG 0x00000002
# define AUD_HDMI_STATUSG_MASK_FUNCRST 0x00000001
2017-01-25 04:27:51 +05:30
# endif