2005-04-17 02:20:36 +04:00
/*
* linux / kernel / workqueue . c
*
* Generic mechanism for defining kernel helper threads for running
* arbitrary tasks in process context .
*
* Started by Ingo Molnar , Copyright ( C ) 2002
*
* Derived from the taskqueue / keventd code by :
*
* David Woodhouse < dwmw2 @ infradead . org >
* Andrew Morton < andrewm @ uow . edu . au >
* Kai Petzke < wpp @ marie . physik . tu - berlin . de >
* Theodore Ts ' o < tytso @ mit . edu >
*/
# include <linux/module.h>
# include <linux/kernel.h>
# include <linux/sched.h>
# include <linux/init.h>
# include <linux/signal.h>
# include <linux/completion.h>
# include <linux/workqueue.h>
# include <linux/slab.h>
# include <linux/cpu.h>
# include <linux/notifier.h>
# include <linux/kthread.h>
/*
* The per - CPU workqueue ( if single thread , we always use cpu 0 ' s ) .
*
* The sequence counters are for flush_scheduled_work ( ) . It wants to wait
* until until all currently - scheduled works are completed , but it doesn ' t
* want to be livelocked by new , incoming ones . So it waits until
* remove_sequence is > = the insert_sequence which pertained when
* flush_scheduled_work ( ) was called .
*/
struct cpu_workqueue_struct {
spinlock_t lock ;
long remove_sequence ; /* Least-recently added (next to run) */
long insert_sequence ; /* Next to add */
struct list_head worklist ;
wait_queue_head_t more_work ;
wait_queue_head_t work_done ;
struct workqueue_struct * wq ;
task_t * thread ;
int run_depth ; /* Detect run_workqueue() recursion depth */
} ____cacheline_aligned ;
/*
* The externally visible workqueue abstraction is an array of
* per - CPU workqueues :
*/
struct workqueue_struct {
struct cpu_workqueue_struct cpu_wq [ NR_CPUS ] ;
const char * name ;
struct list_head list ; /* Empty if single thread */
} ;
/* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
threads to each one as cpus come / go . */
static DEFINE_SPINLOCK ( workqueue_lock ) ;
static LIST_HEAD ( workqueues ) ;
/* If it's single threaded, it isn't in the list of workqueues. */
static inline int is_single_threaded ( struct workqueue_struct * wq )
{
return list_empty ( & wq - > list ) ;
}
/* Preempt must be disabled. */
static void __queue_work ( struct cpu_workqueue_struct * cwq ,
struct work_struct * work )
{
unsigned long flags ;
spin_lock_irqsave ( & cwq - > lock , flags ) ;
work - > wq_data = cwq ;
list_add_tail ( & work - > entry , & cwq - > worklist ) ;
cwq - > insert_sequence + + ;
wake_up ( & cwq - > more_work ) ;
spin_unlock_irqrestore ( & cwq - > lock , flags ) ;
}
/*
* Queue work on a workqueue . Return non - zero if it was successfully
* added .
*
* We queue the work to the CPU it was submitted , but there is no
* guarantee that it will be processed by that CPU .
*/
int fastcall queue_work ( struct workqueue_struct * wq , struct work_struct * work )
{
int ret = 0 , cpu = get_cpu ( ) ;
if ( ! test_and_set_bit ( 0 , & work - > pending ) ) {
if ( unlikely ( is_single_threaded ( wq ) ) )
cpu = 0 ;
BUG_ON ( ! list_empty ( & work - > entry ) ) ;
__queue_work ( wq - > cpu_wq + cpu , work ) ;
ret = 1 ;
}
put_cpu ( ) ;
return ret ;
}
static void delayed_work_timer_fn ( unsigned long __data )
{
struct work_struct * work = ( struct work_struct * ) __data ;
struct workqueue_struct * wq = work - > wq_data ;
int cpu = smp_processor_id ( ) ;
if ( unlikely ( is_single_threaded ( wq ) ) )
cpu = 0 ;
__queue_work ( wq - > cpu_wq + cpu , work ) ;
}
int fastcall queue_delayed_work ( struct workqueue_struct * wq ,
struct work_struct * work , unsigned long delay )
{
int ret = 0 ;
struct timer_list * timer = & work - > timer ;
if ( ! test_and_set_bit ( 0 , & work - > pending ) ) {
BUG_ON ( timer_pending ( timer ) ) ;
BUG_ON ( ! list_empty ( & work - > entry ) ) ;
/* This stores wq for the moment, for the timer_fn */
work - > wq_data = wq ;
timer - > expires = jiffies + delay ;
timer - > data = ( unsigned long ) work ;
timer - > function = delayed_work_timer_fn ;
add_timer ( timer ) ;
ret = 1 ;
}
return ret ;
}
static inline void run_workqueue ( struct cpu_workqueue_struct * cwq )
{
unsigned long flags ;
/*
* Keep taking off work from the queue until
* done .
*/
spin_lock_irqsave ( & cwq - > lock , flags ) ;
cwq - > run_depth + + ;
if ( cwq - > run_depth > 3 ) {
/* morton gets to eat his hat */
printk ( " %s: recursion depth exceeded: %d \n " ,
__FUNCTION__ , cwq - > run_depth ) ;
dump_stack ( ) ;
}
while ( ! list_empty ( & cwq - > worklist ) ) {
struct work_struct * work = list_entry ( cwq - > worklist . next ,
struct work_struct , entry ) ;
void ( * f ) ( void * ) = work - > func ;
void * data = work - > data ;
list_del_init ( cwq - > worklist . next ) ;
spin_unlock_irqrestore ( & cwq - > lock , flags ) ;
BUG_ON ( work - > wq_data ! = cwq ) ;
clear_bit ( 0 , & work - > pending ) ;
f ( data ) ;
spin_lock_irqsave ( & cwq - > lock , flags ) ;
cwq - > remove_sequence + + ;
wake_up ( & cwq - > work_done ) ;
}
cwq - > run_depth - - ;
spin_unlock_irqrestore ( & cwq - > lock , flags ) ;
}
static int worker_thread ( void * __cwq )
{
struct cpu_workqueue_struct * cwq = __cwq ;
DECLARE_WAITQUEUE ( wait , current ) ;
struct k_sigaction sa ;
sigset_t blocked ;
current - > flags | = PF_NOFREEZE ;
set_user_nice ( current , - 5 ) ;
/* Block and flush all signals */
sigfillset ( & blocked ) ;
sigprocmask ( SIG_BLOCK , & blocked , NULL ) ;
flush_signals ( current ) ;
/* SIG_IGN makes children autoreap: see do_notify_parent(). */
sa . sa . sa_handler = SIG_IGN ;
sa . sa . sa_flags = 0 ;
siginitset ( & sa . sa . sa_mask , sigmask ( SIGCHLD ) ) ;
do_sigaction ( SIGCHLD , & sa , ( struct k_sigaction * ) 0 ) ;
set_current_state ( TASK_INTERRUPTIBLE ) ;
while ( ! kthread_should_stop ( ) ) {
add_wait_queue ( & cwq - > more_work , & wait ) ;
if ( list_empty ( & cwq - > worklist ) )
schedule ( ) ;
else
__set_current_state ( TASK_RUNNING ) ;
remove_wait_queue ( & cwq - > more_work , & wait ) ;
if ( ! list_empty ( & cwq - > worklist ) )
run_workqueue ( cwq ) ;
set_current_state ( TASK_INTERRUPTIBLE ) ;
}
__set_current_state ( TASK_RUNNING ) ;
return 0 ;
}
static void flush_cpu_workqueue ( struct cpu_workqueue_struct * cwq )
{
if ( cwq - > thread = = current ) {
/*
* Probably keventd trying to flush its own queue . So simply run
* it by hand rather than deadlocking .
*/
run_workqueue ( cwq ) ;
} else {
DEFINE_WAIT ( wait ) ;
long sequence_needed ;
spin_lock_irq ( & cwq - > lock ) ;
sequence_needed = cwq - > insert_sequence ;
while ( sequence_needed - cwq - > remove_sequence > 0 ) {
prepare_to_wait ( & cwq - > work_done , & wait ,
TASK_UNINTERRUPTIBLE ) ;
spin_unlock_irq ( & cwq - > lock ) ;
schedule ( ) ;
spin_lock_irq ( & cwq - > lock ) ;
}
finish_wait ( & cwq - > work_done , & wait ) ;
spin_unlock_irq ( & cwq - > lock ) ;
}
}
/*
* flush_workqueue - ensure that any scheduled work has run to completion .
*
* Forces execution of the workqueue and blocks until its completion .
* This is typically used in driver shutdown handlers .
*
* This function will sample each workqueue ' s current insert_sequence number and
* will sleep until the head sequence is greater than or equal to that . This
* means that we sleep until all works which were queued on entry have been
* handled , but we are not livelocked by new incoming ones .
*
* This function used to run the workqueues itself . Now we just wait for the
* helper threads to do it .
*/
void fastcall flush_workqueue ( struct workqueue_struct * wq )
{
might_sleep ( ) ;
if ( is_single_threaded ( wq ) ) {
/* Always use cpu 0's area. */
flush_cpu_workqueue ( wq - > cpu_wq + 0 ) ;
} else {
int cpu ;
lock_cpu_hotplug ( ) ;
for_each_online_cpu ( cpu )
flush_cpu_workqueue ( wq - > cpu_wq + cpu ) ;
unlock_cpu_hotplug ( ) ;
}
}
static struct task_struct * create_workqueue_thread ( struct workqueue_struct * wq ,
int cpu )
{
struct cpu_workqueue_struct * cwq = wq - > cpu_wq + cpu ;
struct task_struct * p ;
spin_lock_init ( & cwq - > lock ) ;
cwq - > wq = wq ;
cwq - > thread = NULL ;
cwq - > insert_sequence = 0 ;
cwq - > remove_sequence = 0 ;
INIT_LIST_HEAD ( & cwq - > worklist ) ;
init_waitqueue_head ( & cwq - > more_work ) ;
init_waitqueue_head ( & cwq - > work_done ) ;
if ( is_single_threaded ( wq ) )
p = kthread_create ( worker_thread , cwq , " %s " , wq - > name ) ;
else
p = kthread_create ( worker_thread , cwq , " %s/%d " , wq - > name , cpu ) ;
if ( IS_ERR ( p ) )
return NULL ;
cwq - > thread = p ;
return p ;
}
struct workqueue_struct * __create_workqueue ( const char * name ,
int singlethread )
{
int cpu , destroy = 0 ;
struct workqueue_struct * wq ;
struct task_struct * p ;
BUG_ON ( strlen ( name ) > 10 ) ;
wq = kmalloc ( sizeof ( * wq ) , GFP_KERNEL ) ;
if ( ! wq )
return NULL ;
memset ( wq , 0 , sizeof ( * wq ) ) ;
wq - > name = name ;
/* We don't need the distraction of CPUs appearing and vanishing. */
lock_cpu_hotplug ( ) ;
if ( singlethread ) {
INIT_LIST_HEAD ( & wq - > list ) ;
p = create_workqueue_thread ( wq , 0 ) ;
if ( ! p )
destroy = 1 ;
else
wake_up_process ( p ) ;
} else {
spin_lock ( & workqueue_lock ) ;
list_add ( & wq - > list , & workqueues ) ;
spin_unlock ( & workqueue_lock ) ;
for_each_online_cpu ( cpu ) {
p = create_workqueue_thread ( wq , cpu ) ;
if ( p ) {
kthread_bind ( p , cpu ) ;
wake_up_process ( p ) ;
} else
destroy = 1 ;
}
}
unlock_cpu_hotplug ( ) ;
/*
* Was there any error during startup ? If yes then clean up :
*/
if ( destroy ) {
destroy_workqueue ( wq ) ;
wq = NULL ;
}
return wq ;
}
static void cleanup_workqueue_thread ( struct workqueue_struct * wq , int cpu )
{
struct cpu_workqueue_struct * cwq ;
unsigned long flags ;
struct task_struct * p ;
cwq = wq - > cpu_wq + cpu ;
spin_lock_irqsave ( & cwq - > lock , flags ) ;
p = cwq - > thread ;
cwq - > thread = NULL ;
spin_unlock_irqrestore ( & cwq - > lock , flags ) ;
if ( p )
kthread_stop ( p ) ;
}
void destroy_workqueue ( struct workqueue_struct * wq )
{
int cpu ;
flush_workqueue ( wq ) ;
/* We don't need the distraction of CPUs appearing and vanishing. */
lock_cpu_hotplug ( ) ;
if ( is_single_threaded ( wq ) )
cleanup_workqueue_thread ( wq , 0 ) ;
else {
for_each_online_cpu ( cpu )
cleanup_workqueue_thread ( wq , cpu ) ;
spin_lock ( & workqueue_lock ) ;
list_del ( & wq - > list ) ;
spin_unlock ( & workqueue_lock ) ;
}
unlock_cpu_hotplug ( ) ;
kfree ( wq ) ;
}
static struct workqueue_struct * keventd_wq ;
int fastcall schedule_work ( struct work_struct * work )
{
return queue_work ( keventd_wq , work ) ;
}
int fastcall schedule_delayed_work ( struct work_struct * work , unsigned long delay )
{
return queue_delayed_work ( keventd_wq , work , delay ) ;
}
int schedule_delayed_work_on ( int cpu ,
struct work_struct * work , unsigned long delay )
{
int ret = 0 ;
struct timer_list * timer = & work - > timer ;
if ( ! test_and_set_bit ( 0 , & work - > pending ) ) {
BUG_ON ( timer_pending ( timer ) ) ;
BUG_ON ( ! list_empty ( & work - > entry ) ) ;
/* This stores keventd_wq for the moment, for the timer_fn */
work - > wq_data = keventd_wq ;
timer - > expires = jiffies + delay ;
timer - > data = ( unsigned long ) work ;
timer - > function = delayed_work_timer_fn ;
add_timer_on ( timer , cpu ) ;
ret = 1 ;
}
return ret ;
}
void flush_scheduled_work ( void )
{
flush_workqueue ( keventd_wq ) ;
}
/**
* cancel_rearming_delayed_workqueue - reliably kill off a delayed
* work whose handler rearms the delayed work .
* @ wq : the controlling workqueue structure
* @ work : the delayed work struct
*/
2005-04-17 02:23:59 +04:00
void cancel_rearming_delayed_workqueue ( struct workqueue_struct * wq ,
struct work_struct * work )
2005-04-17 02:20:36 +04:00
{
while ( ! cancel_delayed_work ( work ) )
flush_workqueue ( wq ) ;
}
2005-04-17 02:23:59 +04:00
EXPORT_SYMBOL ( cancel_rearming_delayed_workqueue ) ;
2005-04-17 02:20:36 +04:00
/**
* cancel_rearming_delayed_work - reliably kill off a delayed keventd
* work whose handler rearms the delayed work .
* @ work : the delayed work struct
*/
void cancel_rearming_delayed_work ( struct work_struct * work )
{
cancel_rearming_delayed_workqueue ( keventd_wq , work ) ;
}
EXPORT_SYMBOL ( cancel_rearming_delayed_work ) ;
int keventd_up ( void )
{
return keventd_wq ! = NULL ;
}
int current_is_keventd ( void )
{
struct cpu_workqueue_struct * cwq ;
int cpu = smp_processor_id ( ) ; /* preempt-safe: keventd is per-cpu */
int ret = 0 ;
BUG_ON ( ! keventd_wq ) ;
cwq = keventd_wq - > cpu_wq + cpu ;
if ( current = = cwq - > thread )
ret = 1 ;
return ret ;
}
# ifdef CONFIG_HOTPLUG_CPU
/* Take the work from this (downed) CPU. */
static void take_over_work ( struct workqueue_struct * wq , unsigned int cpu )
{
struct cpu_workqueue_struct * cwq = wq - > cpu_wq + cpu ;
LIST_HEAD ( list ) ;
struct work_struct * work ;
spin_lock_irq ( & cwq - > lock ) ;
list_splice_init ( & cwq - > worklist , & list ) ;
while ( ! list_empty ( & list ) ) {
printk ( " Taking work for %s \n " , wq - > name ) ;
work = list_entry ( list . next , struct work_struct , entry ) ;
list_del ( & work - > entry ) ;
__queue_work ( wq - > cpu_wq + smp_processor_id ( ) , work ) ;
}
spin_unlock_irq ( & cwq - > lock ) ;
}
/* We're holding the cpucontrol mutex here */
static int __devinit workqueue_cpu_callback ( struct notifier_block * nfb ,
unsigned long action ,
void * hcpu )
{
unsigned int hotcpu = ( unsigned long ) hcpu ;
struct workqueue_struct * wq ;
switch ( action ) {
case CPU_UP_PREPARE :
/* Create a new workqueue thread for it. */
list_for_each_entry ( wq , & workqueues , list ) {
if ( create_workqueue_thread ( wq , hotcpu ) < 0 ) {
printk ( " workqueue for %i failed \n " , hotcpu ) ;
return NOTIFY_BAD ;
}
}
break ;
case CPU_ONLINE :
/* Kick off worker threads. */
list_for_each_entry ( wq , & workqueues , list ) {
kthread_bind ( wq - > cpu_wq [ hotcpu ] . thread , hotcpu ) ;
wake_up_process ( wq - > cpu_wq [ hotcpu ] . thread ) ;
}
break ;
case CPU_UP_CANCELED :
list_for_each_entry ( wq , & workqueues , list ) {
/* Unbind so it can run. */
kthread_bind ( wq - > cpu_wq [ hotcpu ] . thread ,
smp_processor_id ( ) ) ;
cleanup_workqueue_thread ( wq , hotcpu ) ;
}
break ;
case CPU_DEAD :
list_for_each_entry ( wq , & workqueues , list )
cleanup_workqueue_thread ( wq , hotcpu ) ;
list_for_each_entry ( wq , & workqueues , list )
take_over_work ( wq , hotcpu ) ;
break ;
}
return NOTIFY_OK ;
}
# endif
void init_workqueues ( void )
{
hotcpu_notifier ( workqueue_cpu_callback , 0 ) ;
keventd_wq = create_workqueue ( " events " ) ;
BUG_ON ( ! keventd_wq ) ;
}
EXPORT_SYMBOL_GPL ( __create_workqueue ) ;
EXPORT_SYMBOL_GPL ( queue_work ) ;
EXPORT_SYMBOL_GPL ( queue_delayed_work ) ;
EXPORT_SYMBOL_GPL ( flush_workqueue ) ;
EXPORT_SYMBOL_GPL ( destroy_workqueue ) ;
EXPORT_SYMBOL ( schedule_work ) ;
EXPORT_SYMBOL ( schedule_delayed_work ) ;
EXPORT_SYMBOL ( schedule_delayed_work_on ) ;
EXPORT_SYMBOL ( flush_scheduled_work ) ;