2005-04-17 02:20:36 +04:00
/*
* lib / prio_tree . c - priority search tree
*
* Copyright ( C ) 2004 , Rajesh Venkatasubramanian < vrajesh @ umich . edu >
*
* This file is released under the GPL v2 .
*
* Based on the radix priority search tree proposed by Edward M . McCreight
* SIAM Journal of Computing , vol . 14 , no .2 , pages 257 - 276 , May 1985
*
* 02F eb2004 Initial version
*/
# include <linux/init.h>
# include <linux/mm.h>
# include <linux/prio_tree.h>
/*
* A clever mix of heap and radix trees forms a radix priority search tree ( PST )
* which is useful for storing intervals , e . g , we can consider a vma as a closed
* interval of file pages [ offset_begin , offset_end ] , and store all vmas that
* map a file in a PST . Then , using the PST , we can answer a stabbing query ,
* i . e . , selecting a set of stored intervals ( vmas ) that overlap with ( map ) a
* given input interval X ( a set of consecutive file pages ) , in " O(log n + m) "
* time where ' log n ' is the height of the PST , and ' m ' is the number of stored
* intervals ( vmas ) that overlap ( map ) with the input interval X ( the set of
* consecutive file pages ) .
*
* In our implementation , we store closed intervals of the form [ radix_index ,
* heap_index ] . We assume that always radix_index < = heap_index . McCreight ' s PST
* is designed for storing intervals with unique radix indices , i . e . , each
* interval have different radix_index . However , this limitation can be easily
* overcome by using the size , i . e . , heap_index - radix_index , as part of the
* index , so we index the tree using [ ( radix_index , size ) , heap_index ] .
*
* When the above - mentioned indexing scheme is used , theoretically , in a 32 bit
* machine , the maximum height of a PST can be 64. We can use a balanced version
* of the priority search tree to optimize the tree height , but the balanced
* tree proposed by McCreight is too complex and memory - hungry for our purpose .
*/
/*
* The following macros are used for implementing prio_tree for i_mmap
*/
# define RADIX_INDEX(vma) ((vma)->vm_pgoff)
# define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
/* avoid overflow */
# define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
static void get_index ( const struct prio_tree_root * root ,
const struct prio_tree_node * node ,
unsigned long * radix , unsigned long * heap )
{
if ( root - > raw ) {
struct vm_area_struct * vma = prio_tree_entry (
node , struct vm_area_struct , shared . prio_tree_node ) ;
* radix = RADIX_INDEX ( vma ) ;
* heap = HEAP_INDEX ( vma ) ;
}
else {
* radix = node - > start ;
* heap = node - > last ;
}
}
static unsigned long index_bits_to_maxindex [ BITS_PER_LONG ] ;
void __init prio_tree_init ( void )
{
unsigned int i ;
for ( i = 0 ; i < ARRAY_SIZE ( index_bits_to_maxindex ) - 1 ; i + + )
index_bits_to_maxindex [ i ] = ( 1UL < < ( i + 1 ) ) - 1 ;
index_bits_to_maxindex [ ARRAY_SIZE ( index_bits_to_maxindex ) - 1 ] = ~ 0UL ;
}
/*
* Maximum heap_index that can be stored in a PST with index_bits bits
*/
static inline unsigned long prio_tree_maxindex ( unsigned int bits )
{
return index_bits_to_maxindex [ bits - 1 ] ;
}
/*
* Extend a priority search tree so that it can store a node with heap_index
* max_heap_index . In the worst case , this algorithm takes O ( ( log n ) ^ 2 ) .
* However , this function is used rarely and the common case performance is
* not bad .
*/
static struct prio_tree_node * prio_tree_expand ( struct prio_tree_root * root ,
struct prio_tree_node * node , unsigned long max_heap_index )
{
2012-03-24 02:02:15 +04:00
struct prio_tree_node * prev ;
2005-04-17 02:20:36 +04:00
if ( max_heap_index > prio_tree_maxindex ( root - > index_bits ) )
root - > index_bits + + ;
2012-03-24 02:02:15 +04:00
prev = node ;
INIT_PRIO_TREE_NODE ( node ) ;
2005-04-17 02:20:36 +04:00
while ( max_heap_index > prio_tree_maxindex ( root - > index_bits ) ) {
2012-03-24 02:02:15 +04:00
struct prio_tree_node * tmp = root - > prio_tree_node ;
2005-04-17 02:20:36 +04:00
root - > index_bits + + ;
if ( prio_tree_empty ( root ) )
continue ;
2012-03-24 02:02:15 +04:00
prio_tree_remove ( root , root - > prio_tree_node ) ;
INIT_PRIO_TREE_NODE ( tmp ) ;
2005-04-17 02:20:36 +04:00
2012-03-24 02:02:15 +04:00
prev - > left = tmp ;
tmp - > parent = prev ;
prev = tmp ;
}
2005-04-17 02:20:36 +04:00
if ( ! prio_tree_empty ( root ) ) {
2012-03-24 02:02:15 +04:00
prev - > left = root - > prio_tree_node ;
prev - > left - > parent = prev ;
2005-04-17 02:20:36 +04:00
}
root - > prio_tree_node = node ;
return node ;
}
/*
* Replace a prio_tree_node with a new node and return the old node
*/
struct prio_tree_node * prio_tree_replace ( struct prio_tree_root * root ,
struct prio_tree_node * old , struct prio_tree_node * node )
{
INIT_PRIO_TREE_NODE ( node ) ;
if ( prio_tree_root ( old ) ) {
BUG_ON ( root - > prio_tree_node ! = old ) ;
/*
* We can reduce root - > index_bits here . However , it is complex
* and does not help much to improve performance ( IMO ) .
*/
root - > prio_tree_node = node ;
} else {
node - > parent = old - > parent ;
if ( old - > parent - > left = = old )
old - > parent - > left = node ;
else
old - > parent - > right = node ;
}
if ( ! prio_tree_left_empty ( old ) ) {
node - > left = old - > left ;
old - > left - > parent = node ;
}
if ( ! prio_tree_right_empty ( old ) ) {
node - > right = old - > right ;
old - > right - > parent = node ;
}
return old ;
}
/*
* Insert a prio_tree_node @ node into a radix priority search tree @ root . The
* algorithm typically takes O ( log n ) time where ' log n ' is the number of bits
* required to represent the maximum heap_index . In the worst case , the algo
* can take O ( ( log n ) ^ 2 ) - check prio_tree_expand .
*
* If a prior node with same radix_index and heap_index is already found in
* the tree , then returns the address of the prior node . Otherwise , inserts
* @ node into the tree and returns @ node .
*/
struct prio_tree_node * prio_tree_insert ( struct prio_tree_root * root ,
struct prio_tree_node * node )
{
struct prio_tree_node * cur , * res = node ;
unsigned long radix_index , heap_index ;
unsigned long r_index , h_index , index , mask ;
int size_flag = 0 ;
get_index ( root , node , & radix_index , & heap_index ) ;
if ( prio_tree_empty ( root ) | |
heap_index > prio_tree_maxindex ( root - > index_bits ) )
return prio_tree_expand ( root , node , heap_index ) ;
cur = root - > prio_tree_node ;
mask = 1UL < < ( root - > index_bits - 1 ) ;
while ( mask ) {
get_index ( root , cur , & r_index , & h_index ) ;
if ( r_index = = radix_index & & h_index = = heap_index )
return cur ;
if ( h_index < heap_index | |
( h_index = = heap_index & & r_index > radix_index ) ) {
struct prio_tree_node * tmp = node ;
node = prio_tree_replace ( root , cur , node ) ;
cur = tmp ;
/* swap indices */
index = r_index ;
r_index = radix_index ;
radix_index = index ;
index = h_index ;
h_index = heap_index ;
heap_index = index ;
}
if ( size_flag )
index = heap_index - radix_index ;
else
index = radix_index ;
if ( index & mask ) {
if ( prio_tree_right_empty ( cur ) ) {
INIT_PRIO_TREE_NODE ( node ) ;
cur - > right = node ;
node - > parent = cur ;
return res ;
} else
cur = cur - > right ;
} else {
if ( prio_tree_left_empty ( cur ) ) {
INIT_PRIO_TREE_NODE ( node ) ;
cur - > left = node ;
node - > parent = cur ;
return res ;
} else
cur = cur - > left ;
}
mask > > = 1 ;
if ( ! mask ) {
mask = 1UL < < ( BITS_PER_LONG - 1 ) ;
size_flag = 1 ;
}
}
/* Should not reach here */
BUG ( ) ;
return NULL ;
}
/*
* Remove a prio_tree_node @ node from a radix priority search tree @ root . The
* algorithm takes O ( log n ) time where ' log n ' is the number of bits required
* to represent the maximum heap_index .
*/
void prio_tree_remove ( struct prio_tree_root * root , struct prio_tree_node * node )
{
struct prio_tree_node * cur ;
unsigned long r_index , h_index_right , h_index_left ;
cur = node ;
while ( ! prio_tree_left_empty ( cur ) | | ! prio_tree_right_empty ( cur ) ) {
if ( ! prio_tree_left_empty ( cur ) )
get_index ( root , cur - > left , & r_index , & h_index_left ) ;
else {
cur = cur - > right ;
continue ;
}
if ( ! prio_tree_right_empty ( cur ) )
get_index ( root , cur - > right , & r_index , & h_index_right ) ;
else {
cur = cur - > left ;
continue ;
}
/* both h_index_left and h_index_right cannot be 0 */
if ( h_index_left > = h_index_right )
cur = cur - > left ;
else
cur = cur - > right ;
}
if ( prio_tree_root ( cur ) ) {
BUG_ON ( root - > prio_tree_node ! = cur ) ;
__INIT_PRIO_TREE_ROOT ( root , root - > raw ) ;
return ;
}
if ( cur - > parent - > right = = cur )
cur - > parent - > right = cur - > parent ;
else
cur - > parent - > left = cur - > parent ;
while ( cur ! = node )
cur = prio_tree_replace ( root , cur - > parent , cur ) ;
}
2012-03-24 02:02:15 +04:00
static void iter_walk_down ( struct prio_tree_iter * iter )
{
iter - > mask > > = 1 ;
if ( iter - > mask ) {
if ( iter - > size_level )
iter - > size_level + + ;
return ;
}
if ( iter - > size_level ) {
BUG_ON ( ! prio_tree_left_empty ( iter - > cur ) ) ;
BUG_ON ( ! prio_tree_right_empty ( iter - > cur ) ) ;
iter - > size_level + + ;
iter - > mask = ULONG_MAX ;
} else {
iter - > size_level = 1 ;
iter - > mask = 1UL < < ( BITS_PER_LONG - 1 ) ;
}
}
static void iter_walk_up ( struct prio_tree_iter * iter )
{
if ( iter - > mask = = ULONG_MAX )
iter - > mask = 1UL ;
else if ( iter - > size_level = = 1 )
iter - > mask = 1UL ;
else
iter - > mask < < = 1 ;
if ( iter - > size_level )
iter - > size_level - - ;
if ( ! iter - > size_level & & ( iter - > value & iter - > mask ) )
iter - > value ^ = iter - > mask ;
}
2005-04-17 02:20:36 +04:00
/*
* Following functions help to enumerate all prio_tree_nodes in the tree that
* overlap with the input interval X [ radix_index , heap_index ] . The enumeration
* takes O ( log n + m ) time where ' log n ' is the height of the tree ( which is
* proportional to # of bits required to represent the maximum heap_index ) and
* ' m ' is the number of prio_tree_nodes that overlap the interval X .
*/
static struct prio_tree_node * prio_tree_left ( struct prio_tree_iter * iter ,
unsigned long * r_index , unsigned long * h_index )
{
if ( prio_tree_left_empty ( iter - > cur ) )
return NULL ;
get_index ( iter - > root , iter - > cur - > left , r_index , h_index ) ;
if ( iter - > r_index < = * h_index ) {
iter - > cur = iter - > cur - > left ;
2012-03-24 02:02:15 +04:00
iter_walk_down ( iter ) ;
2005-04-17 02:20:36 +04:00
return iter - > cur ;
}
return NULL ;
}
static struct prio_tree_node * prio_tree_right ( struct prio_tree_iter * iter ,
unsigned long * r_index , unsigned long * h_index )
{
unsigned long value ;
if ( prio_tree_right_empty ( iter - > cur ) )
return NULL ;
if ( iter - > size_level )
value = iter - > value ;
else
value = iter - > value | iter - > mask ;
if ( iter - > h_index < value )
return NULL ;
get_index ( iter - > root , iter - > cur - > right , r_index , h_index ) ;
if ( iter - > r_index < = * h_index ) {
iter - > cur = iter - > cur - > right ;
2012-03-24 02:02:15 +04:00
iter_walk_down ( iter ) ;
2005-04-17 02:20:36 +04:00
return iter - > cur ;
}
return NULL ;
}
static struct prio_tree_node * prio_tree_parent ( struct prio_tree_iter * iter )
{
iter - > cur = iter - > cur - > parent ;
2012-03-24 02:02:15 +04:00
iter_walk_up ( iter ) ;
2005-04-17 02:20:36 +04:00
return iter - > cur ;
}
static inline int overlap ( struct prio_tree_iter * iter ,
unsigned long r_index , unsigned long h_index )
{
return iter - > h_index > = r_index & & iter - > r_index < = h_index ;
}
/*
* prio_tree_first :
*
* Get the first prio_tree_node that overlaps with the interval [ radix_index ,
* heap_index ] . Note that always radix_index < = heap_index . We do a pre - order
* traversal of the tree .
*/
static struct prio_tree_node * prio_tree_first ( struct prio_tree_iter * iter )
{
struct prio_tree_root * root ;
unsigned long r_index , h_index ;
INIT_PRIO_TREE_ITER ( iter ) ;
root = iter - > root ;
if ( prio_tree_empty ( root ) )
return NULL ;
get_index ( root , root - > prio_tree_node , & r_index , & h_index ) ;
if ( iter - > r_index > h_index )
return NULL ;
iter - > mask = 1UL < < ( root - > index_bits - 1 ) ;
iter - > cur = root - > prio_tree_node ;
while ( 1 ) {
if ( overlap ( iter , r_index , h_index ) )
return iter - > cur ;
if ( prio_tree_left ( iter , & r_index , & h_index ) )
continue ;
if ( prio_tree_right ( iter , & r_index , & h_index ) )
continue ;
break ;
}
return NULL ;
}
/*
* prio_tree_next :
*
* Get the next prio_tree_node that overlaps with the input interval in iter
*/
struct prio_tree_node * prio_tree_next ( struct prio_tree_iter * iter )
{
unsigned long r_index , h_index ;
if ( iter - > cur = = NULL )
return prio_tree_first ( iter ) ;
repeat :
while ( prio_tree_left ( iter , & r_index , & h_index ) )
if ( overlap ( iter , r_index , h_index ) )
return iter - > cur ;
while ( ! prio_tree_right ( iter , & r_index , & h_index ) ) {
while ( ! prio_tree_root ( iter - > cur ) & &
iter - > cur - > parent - > right = = iter - > cur )
prio_tree_parent ( iter ) ;
if ( prio_tree_root ( iter - > cur ) )
return NULL ;
prio_tree_parent ( iter ) ;
}
if ( overlap ( iter , r_index , h_index ) )
return iter - > cur ;
goto repeat ;
}