linux/lib/Kconfig.kfence

88 lines
3.2 KiB
Plaintext
Raw Normal View History

mm: add Kernel Electric-Fence infrastructure Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7. This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. This series enables KFENCE for the x86 and arm64 architectures, and adds KFENCE hooks to the SLAB and SLUB allocators. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, the next allocation through the main allocator (SLAB or SLUB) returns a guarded allocation from the KFENCE object pool. At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. The KFENCE memory pool is of fixed size, and if the pool is exhausted no further KFENCE allocations occur. The default config is conservative with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB pages). We have verified by running synthetic benchmarks (sysbench I/O, hackbench) and production server-workload benchmarks that a kernel with KFENCE (using sample intervals 100-500ms) is performance-neutral compared to a non-KFENCE baseline kernel. KFENCE is inspired by GWP-ASan [1], a userspace tool with similar properties. The name "KFENCE" is a homage to the Electric Fence Malloc Debugger [2]. For more details, see Documentation/dev-tools/kfence.rst added in the series -- also viewable here: https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst [1] http://llvm.org/docs/GwpAsan.html [2] https://linux.die.net/man/3/efence This patch (of 9): This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. To detect out-of-bounds writes to memory within the object's page itself, KFENCE also uses pattern-based redzones. The following figure illustrates the page layout: ---+-----------+-----------+-----------+-----------+-----------+--- | xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx | | xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx | | x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x | | xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx | | xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx | | xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx | ---+-----------+-----------+-----------+-----------+-----------+--- Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, a guarded allocation from the KFENCE object pool is returned to the main allocator (SLAB or SLUB). At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. To date, we have verified by running synthetic benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE is performance-neutral compared to the non-KFENCE baseline. For more details, see Documentation/dev-tools/kfence.rst (added later in the series). [elver@google.com: fix parameter description for kfence_object_start()] Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com [elver@google.com: avoid stalling work queue task without allocations] Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com [elver@google.com: fix potential deadlock due to wake_up()] Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com [elver@google.com: add option to use KFENCE without static keys] Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com [elver@google.com: add missing copyright and description headers] Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: SeongJae Park <sjpark@amazon.de> Co-developed-by: Marco Elver <elver@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joern Engel <joern@purestorage.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:18:53 +03:00
# SPDX-License-Identifier: GPL-2.0-only
config HAVE_ARCH_KFENCE
bool
menuconfig KFENCE
bool "KFENCE: low-overhead sampling-based memory safety error detector"
kfence, kasan: make KFENCE compatible with KASAN Make KFENCE compatible with KASAN. Currently this helps test KFENCE itself, where KASAN can catch potential corruptions to KFENCE state, or other corruptions that may be a result of freepointer corruptions in the main allocators. [akpm@linux-foundation.org: merge fixup] [andreyknvl@google.com: untag addresses for KFENCE] Link: https://lkml.kernel.org/r/9dc196006921b191d25d10f6e611316db7da2efc.1611946152.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-7-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Jann Horn <jannh@google.com> Co-developed-by: Marco Elver <elver@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:19:21 +03:00
depends on HAVE_ARCH_KFENCE && (SLAB || SLUB)
mm: add Kernel Electric-Fence infrastructure Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7. This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. This series enables KFENCE for the x86 and arm64 architectures, and adds KFENCE hooks to the SLAB and SLUB allocators. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, the next allocation through the main allocator (SLAB or SLUB) returns a guarded allocation from the KFENCE object pool. At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. The KFENCE memory pool is of fixed size, and if the pool is exhausted no further KFENCE allocations occur. The default config is conservative with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB pages). We have verified by running synthetic benchmarks (sysbench I/O, hackbench) and production server-workload benchmarks that a kernel with KFENCE (using sample intervals 100-500ms) is performance-neutral compared to a non-KFENCE baseline kernel. KFENCE is inspired by GWP-ASan [1], a userspace tool with similar properties. The name "KFENCE" is a homage to the Electric Fence Malloc Debugger [2]. For more details, see Documentation/dev-tools/kfence.rst added in the series -- also viewable here: https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst [1] http://llvm.org/docs/GwpAsan.html [2] https://linux.die.net/man/3/efence This patch (of 9): This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. To detect out-of-bounds writes to memory within the object's page itself, KFENCE also uses pattern-based redzones. The following figure illustrates the page layout: ---+-----------+-----------+-----------+-----------+-----------+--- | xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx | | xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx | | x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x | | xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx | | xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx | | xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx | ---+-----------+-----------+-----------+-----------+-----------+--- Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, a guarded allocation from the KFENCE object pool is returned to the main allocator (SLAB or SLUB). At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. To date, we have verified by running synthetic benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE is performance-neutral compared to the non-KFENCE baseline. For more details, see Documentation/dev-tools/kfence.rst (added later in the series). [elver@google.com: fix parameter description for kfence_object_start()] Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com [elver@google.com: avoid stalling work queue task without allocations] Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com [elver@google.com: fix potential deadlock due to wake_up()] Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com [elver@google.com: add option to use KFENCE without static keys] Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com [elver@google.com: add missing copyright and description headers] Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: SeongJae Park <sjpark@amazon.de> Co-developed-by: Marco Elver <elver@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joern Engel <joern@purestorage.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:18:53 +03:00
select STACKTRACE
kfence: await for allocation using wait_event Patch series "kfence: optimize timer scheduling", v2. We have observed that mostly-idle systems with KFENCE enabled wake up otherwise idle CPUs, preventing such to enter a lower power state. Debugging revealed that KFENCE spends too much active time in toggle_allocation_gate(). While the first version of KFENCE was using all the right bits to be scheduling optimal, and thus power efficient, by simply using wait_event() + wake_up(), that code was unfortunately removed. As KFENCE was exposed to various different configs and tests, the scheduling optimal code slowly disappeared. First because of hung task warnings, and finally because of deadlocks when an allocation is made by timer code with debug objects enabled. Clearly, the "fixes" were not too friendly for devices that want to be power efficient. Therefore, let's try a little harder to fix the hung task and deadlock problems that we have with wait_event() + wake_up(), while remaining as scheduling friendly and power efficient as possible. Crucially, we need to defer the wake_up() to an irq_work, avoiding any potential for deadlock. The result with this series is that on the devices where we observed a power regression, power usage returns back to baseline levels. This patch (of 3): On mostly-idle systems, we have observed that toggle_allocation_gate() is a cause of frequent wake-ups, preventing an otherwise idle CPU to go into a lower power state. A late change in KFENCE's development, due to a potential deadlock [1], required changing the scheduling-friendly wait_event_timeout() and wake_up() to an open-coded wait-loop using schedule_timeout(). [1] https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com To avoid unnecessary wake-ups, switch to using wait_event_timeout(). Unfortunately, we still cannot use a version with direct wake_up() in __kfence_alloc() due to the same potential for deadlock as in [1]. Instead, add a level of indirection via an irq_work that is scheduled if we determine that the kfence_timer requires a wake_up(). Link: https://lkml.kernel.org/r/20210421105132.3965998-1-elver@google.com Link: https://lkml.kernel.org/r/20210421105132.3965998-2-elver@google.com Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure") Signed-off-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jann Horn <jannh@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Hillf Danton <hdanton@sina.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 04:40:21 +03:00
select IRQ_WORK
mm: add Kernel Electric-Fence infrastructure Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7. This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. This series enables KFENCE for the x86 and arm64 architectures, and adds KFENCE hooks to the SLAB and SLUB allocators. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, the next allocation through the main allocator (SLAB or SLUB) returns a guarded allocation from the KFENCE object pool. At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. The KFENCE memory pool is of fixed size, and if the pool is exhausted no further KFENCE allocations occur. The default config is conservative with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB pages). We have verified by running synthetic benchmarks (sysbench I/O, hackbench) and production server-workload benchmarks that a kernel with KFENCE (using sample intervals 100-500ms) is performance-neutral compared to a non-KFENCE baseline kernel. KFENCE is inspired by GWP-ASan [1], a userspace tool with similar properties. The name "KFENCE" is a homage to the Electric Fence Malloc Debugger [2]. For more details, see Documentation/dev-tools/kfence.rst added in the series -- also viewable here: https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst [1] http://llvm.org/docs/GwpAsan.html [2] https://linux.die.net/man/3/efence This patch (of 9): This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. To detect out-of-bounds writes to memory within the object's page itself, KFENCE also uses pattern-based redzones. The following figure illustrates the page layout: ---+-----------+-----------+-----------+-----------+-----------+--- | xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx | | xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx | | x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x | | xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx | | xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx | | xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx | ---+-----------+-----------+-----------+-----------+-----------+--- Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, a guarded allocation from the KFENCE object pool is returned to the main allocator (SLAB or SLUB). At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. To date, we have verified by running synthetic benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE is performance-neutral compared to the non-KFENCE baseline. For more details, see Documentation/dev-tools/kfence.rst (added later in the series). [elver@google.com: fix parameter description for kfence_object_start()] Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com [elver@google.com: avoid stalling work queue task without allocations] Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com [elver@google.com: fix potential deadlock due to wake_up()] Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com [elver@google.com: add option to use KFENCE without static keys] Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com [elver@google.com: add missing copyright and description headers] Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: SeongJae Park <sjpark@amazon.de> Co-developed-by: Marco Elver <elver@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joern Engel <joern@purestorage.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:18:53 +03:00
help
KFENCE is a low-overhead sampling-based detector of heap out-of-bounds
access, use-after-free, and invalid-free errors. KFENCE is designed
to have negligible cost to permit enabling it in production
environments.
kfence, Documentation: add KFENCE documentation Add KFENCE documentation in dev-tools/kfence.rst, and add to index. [elver@google.com: add missing copyright header to documentation] Link: https://lkml.kernel.org/r/20210118092159.145934-4-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-8-elver@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Signed-off-by: Marco Elver <elver@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Alexander Potapenko <glider@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:19:26 +03:00
See <file:Documentation/dev-tools/kfence.rst> for more details.
mm: add Kernel Electric-Fence infrastructure Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7. This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. This series enables KFENCE for the x86 and arm64 architectures, and adds KFENCE hooks to the SLAB and SLUB allocators. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, the next allocation through the main allocator (SLAB or SLUB) returns a guarded allocation from the KFENCE object pool. At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. The KFENCE memory pool is of fixed size, and if the pool is exhausted no further KFENCE allocations occur. The default config is conservative with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB pages). We have verified by running synthetic benchmarks (sysbench I/O, hackbench) and production server-workload benchmarks that a kernel with KFENCE (using sample intervals 100-500ms) is performance-neutral compared to a non-KFENCE baseline kernel. KFENCE is inspired by GWP-ASan [1], a userspace tool with similar properties. The name "KFENCE" is a homage to the Electric Fence Malloc Debugger [2]. For more details, see Documentation/dev-tools/kfence.rst added in the series -- also viewable here: https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst [1] http://llvm.org/docs/GwpAsan.html [2] https://linux.die.net/man/3/efence This patch (of 9): This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. To detect out-of-bounds writes to memory within the object's page itself, KFENCE also uses pattern-based redzones. The following figure illustrates the page layout: ---+-----------+-----------+-----------+-----------+-----------+--- | xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx | | xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx | | x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x | | xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx | | xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx | | xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx | ---+-----------+-----------+-----------+-----------+-----------+--- Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, a guarded allocation from the KFENCE object pool is returned to the main allocator (SLAB or SLUB). At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. To date, we have verified by running synthetic benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE is performance-neutral compared to the non-KFENCE baseline. For more details, see Documentation/dev-tools/kfence.rst (added later in the series). [elver@google.com: fix parameter description for kfence_object_start()] Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com [elver@google.com: avoid stalling work queue task without allocations] Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com [elver@google.com: fix potential deadlock due to wake_up()] Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com [elver@google.com: add option to use KFENCE without static keys] Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com [elver@google.com: add missing copyright and description headers] Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: SeongJae Park <sjpark@amazon.de> Co-developed-by: Marco Elver <elver@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joern Engel <joern@purestorage.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:18:53 +03:00
Note that, KFENCE is not a substitute for explicit testing with tools
such as KASAN. KFENCE can detect a subset of bugs that KASAN can
detect, albeit at very different performance profiles. If you can
afford to use KASAN, continue using KASAN, for example in test
environments. If your kernel targets production use, and cannot
enable KASAN due to its cost, consider using KFENCE.
if KFENCE
config KFENCE_SAMPLE_INTERVAL
int "Default sample interval in milliseconds"
default 100
help
The KFENCE sample interval determines the frequency with which heap
allocations will be guarded by KFENCE. May be overridden via boot
parameter "kfence.sample_interval".
Set this to 0 to disable KFENCE by default, in which case only
setting "kfence.sample_interval" to a non-zero value enables KFENCE.
config KFENCE_NUM_OBJECTS
int "Number of guarded objects available"
range 1 65535
default 255
help
The number of guarded objects available. For each KFENCE object, 2
pages are required; with one containing the object and two adjacent
ones used as guard pages.
kfence: default to dynamic branch instead of static keys mode We have observed that on very large machines with newer CPUs, the static key/branch switching delay is on the order of milliseconds. This is due to the required broadcast IPIs, which simply does not scale well to hundreds of CPUs (cores). If done too frequently, this can adversely affect tail latencies of various workloads. One workaround is to increase the sample interval to several seconds, while decreasing sampled allocation coverage, but the problem still exists and could still increase tail latencies. As already noted in the Kconfig help text, there are trade-offs: at lower sample intervals the dynamic branch results in better performance; however, at very large sample intervals, the static keys mode can result in better performance -- careful benchmarking is recommended. Our initial benchmarking showed that with large enough sample intervals and workloads stressing the allocator, the static keys mode was slightly better. Evaluating and observing the possible system-wide side-effects of the static-key-switching induced broadcast IPIs, however, was a blind spot (in particular on large machines with 100s of cores). Therefore, a major downside of the static keys mode is, unfortunately, that it is hard to predict performance on new system architectures and topologies, but also making conclusions about performance of new workloads based on a limited set of benchmarks. Most distributions will simply select the defaults, while targeting a large variety of different workloads and system architectures. As such, the better default is CONFIG_KFENCE_STATIC_KEYS=n, and re-enabling it is only recommended after careful evaluation. For reference, on x86-64 the condition in kfence_alloc() generates exactly 2 instructions in the kmem_cache_alloc() fast-path: | ... | cmpl $0x0,0x1a8021c(%rip) # ffffffff82d560d0 <kfence_allocation_gate> | je ffffffff812d6003 <kmem_cache_alloc+0x243> | ... which, given kfence_allocation_gate is infrequently modified, should be well predicted by most CPUs. Link: https://lkml.kernel.org/r/20211019102524.2807208-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:45:49 +03:00
config KFENCE_STATIC_KEYS
bool "Use static keys to set up allocations" if EXPERT
depends on JUMP_LABEL
help
Use static keys (static branches) to set up KFENCE allocations. This
option is only recommended when using very large sample intervals, or
performance has carefully been evaluated with this option.
Using static keys comes with trade-offs that need to be carefully
evaluated given target workloads and system architectures. Notably,
enabling and disabling static keys invoke IPI broadcasts, the latency
and impact of which is much harder to predict than a dynamic branch.
Say N if you are unsure.
mm: add Kernel Electric-Fence infrastructure Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7. This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. This series enables KFENCE for the x86 and arm64 architectures, and adds KFENCE hooks to the SLAB and SLUB allocators. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, the next allocation through the main allocator (SLAB or SLUB) returns a guarded allocation from the KFENCE object pool. At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. The KFENCE memory pool is of fixed size, and if the pool is exhausted no further KFENCE allocations occur. The default config is conservative with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB pages). We have verified by running synthetic benchmarks (sysbench I/O, hackbench) and production server-workload benchmarks that a kernel with KFENCE (using sample intervals 100-500ms) is performance-neutral compared to a non-KFENCE baseline kernel. KFENCE is inspired by GWP-ASan [1], a userspace tool with similar properties. The name "KFENCE" is a homage to the Electric Fence Malloc Debugger [2]. For more details, see Documentation/dev-tools/kfence.rst added in the series -- also viewable here: https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst [1] http://llvm.org/docs/GwpAsan.html [2] https://linux.die.net/man/3/efence This patch (of 9): This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. To detect out-of-bounds writes to memory within the object's page itself, KFENCE also uses pattern-based redzones. The following figure illustrates the page layout: ---+-----------+-----------+-----------+-----------+-----------+--- | xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx | | xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx | | x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x | | xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx | | xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx | | xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx | ---+-----------+-----------+-----------+-----------+-----------+--- Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, a guarded allocation from the KFENCE object pool is returned to the main allocator (SLAB or SLUB). At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. To date, we have verified by running synthetic benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE is performance-neutral compared to the non-KFENCE baseline. For more details, see Documentation/dev-tools/kfence.rst (added later in the series). [elver@google.com: fix parameter description for kfence_object_start()] Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com [elver@google.com: avoid stalling work queue task without allocations] Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com [elver@google.com: fix potential deadlock due to wake_up()] Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com [elver@google.com: add option to use KFENCE without static keys] Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com [elver@google.com: add missing copyright and description headers] Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: SeongJae Park <sjpark@amazon.de> Co-developed-by: Marco Elver <elver@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joern Engel <joern@purestorage.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:18:53 +03:00
config KFENCE_STRESS_TEST_FAULTS
int "Stress testing of fault handling and error reporting" if EXPERT
default 0
help
The inverse probability with which to randomly protect KFENCE object
pages, resulting in spurious use-after-frees. The main purpose of
this option is to stress test KFENCE with concurrent error reports
and allocations/frees. A value of 0 disables stress testing logic.
Only for KFENCE testing; set to 0 if you are not a KFENCE developer.
kfence: add test suite Add KFENCE test suite, testing various error detection scenarios. Makes use of KUnit for test organization. Since KFENCE's interface to obtain error reports is via the console, the test verifies that KFENCE outputs expected reports to the console. [elver@google.com: fix typo in test] Link: https://lkml.kernel.org/r/X9lHQExmHGvETxY4@elver.google.com [elver@google.com: show access type in report] Link: https://lkml.kernel.org/r/20210111091544.3287013-2-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-9-elver@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Signed-off-by: Marco Elver <elver@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Alexander Potapenko <glider@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joern Engel <joern@purestorage.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: SeongJae Park <sjpark@amazon.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:19:31 +03:00
config KFENCE_KUNIT_TEST
tristate "KFENCE integration test suite" if !KUNIT_ALL_TESTS
default KUNIT_ALL_TESTS
depends on TRACEPOINTS && KUNIT
help
Test suite for KFENCE, testing various error detection scenarios with
various allocation types, and checking that reports are correctly
output to console.
Say Y here if you want the test to be built into the kernel and run
during boot; say M if you want the test to build as a module; say N
if you are unsure.
mm: add Kernel Electric-Fence infrastructure Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7. This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. This series enables KFENCE for the x86 and arm64 architectures, and adds KFENCE hooks to the SLAB and SLUB allocators. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, the next allocation through the main allocator (SLAB or SLUB) returns a guarded allocation from the KFENCE object pool. At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. The KFENCE memory pool is of fixed size, and if the pool is exhausted no further KFENCE allocations occur. The default config is conservative with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB pages). We have verified by running synthetic benchmarks (sysbench I/O, hackbench) and production server-workload benchmarks that a kernel with KFENCE (using sample intervals 100-500ms) is performance-neutral compared to a non-KFENCE baseline kernel. KFENCE is inspired by GWP-ASan [1], a userspace tool with similar properties. The name "KFENCE" is a homage to the Electric Fence Malloc Debugger [2]. For more details, see Documentation/dev-tools/kfence.rst added in the series -- also viewable here: https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst [1] http://llvm.org/docs/GwpAsan.html [2] https://linux.die.net/man/3/efence This patch (of 9): This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a low-overhead sampling-based memory safety error detector of heap use-after-free, invalid-free, and out-of-bounds access errors. KFENCE is designed to be enabled in production kernels, and has near zero performance overhead. Compared to KASAN, KFENCE trades performance for precision. The main motivation behind KFENCE's design, is that with enough total uptime KFENCE will detect bugs in code paths not typically exercised by non-production test workloads. One way to quickly achieve a large enough total uptime is when the tool is deployed across a large fleet of machines. KFENCE objects each reside on a dedicated page, at either the left or right page boundaries. The pages to the left and right of the object page are "guard pages", whose attributes are changed to a protected state, and cause page faults on any attempted access to them. Such page faults are then intercepted by KFENCE, which handles the fault gracefully by reporting a memory access error. To detect out-of-bounds writes to memory within the object's page itself, KFENCE also uses pattern-based redzones. The following figure illustrates the page layout: ---+-----------+-----------+-----------+-----------+-----------+--- | xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx | | xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx | | x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x | | xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx | | xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx | | xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx | ---+-----------+-----------+-----------+-----------+-----------+--- Guarded allocations are set up based on a sample interval (can be set via kfence.sample_interval). After expiration of the sample interval, a guarded allocation from the KFENCE object pool is returned to the main allocator (SLAB or SLUB). At this point, the timer is reset, and the next allocation is set up after the expiration of the interval. To enable/disable a KFENCE allocation through the main allocator's fast-path without overhead, KFENCE relies on static branches via the static keys infrastructure. The static branch is toggled to redirect the allocation to KFENCE. To date, we have verified by running synthetic benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE is performance-neutral compared to the non-KFENCE baseline. For more details, see Documentation/dev-tools/kfence.rst (added later in the series). [elver@google.com: fix parameter description for kfence_object_start()] Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com [elver@google.com: avoid stalling work queue task without allocations] Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com [elver@google.com: fix potential deadlock due to wake_up()] Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com [elver@google.com: add option to use KFENCE without static keys] Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com [elver@google.com: add missing copyright and description headers] Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: SeongJae Park <sjpark@amazon.de> Co-developed-by: Marco Elver <elver@google.com> Reviewed-by: Jann Horn <jannh@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joern Engel <joern@purestorage.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 04:18:53 +03:00
endif # KFENCE