linux/fs/bcachefs/util.h

880 lines
22 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_UTIL_H
#define _BCACHEFS_UTIL_H
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/closure.h>
#include <linux/errno.h>
#include <linux/freezer.h>
#include <linux/kernel.h>
#include <linux/sched/clock.h>
#include <linux/llist.h>
#include <linux/log2.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/ratelimit.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include "mean_and_variance.h"
#include "darray.h"
struct closure;
#ifdef CONFIG_BCACHEFS_DEBUG
#define EBUG_ON(cond) BUG_ON(cond)
#else
#define EBUG_ON(cond)
#endif
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define CPU_BIG_ENDIAN 0
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define CPU_BIG_ENDIAN 1
#endif
/* type hackery */
#define type_is_exact(_val, _type) \
__builtin_types_compatible_p(typeof(_val), _type)
#define type_is(_val, _type) \
(__builtin_types_compatible_p(typeof(_val), _type) || \
__builtin_types_compatible_p(typeof(_val), const _type))
/* Userspace doesn't align allocations as nicely as the kernel allocators: */
static inline size_t buf_pages(void *p, size_t len)
{
return DIV_ROUND_UP(len +
((unsigned long) p & (PAGE_SIZE - 1)),
PAGE_SIZE);
}
static inline void vpfree(void *p, size_t size)
{
if (is_vmalloc_addr(p))
vfree(p);
else
free_pages((unsigned long) p, get_order(size));
}
static inline void *vpmalloc(size_t size, gfp_t gfp_mask)
{
return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN,
get_order(size)) ?:
__vmalloc(size, gfp_mask);
}
static inline void kvpfree(void *p, size_t size)
{
if (size < PAGE_SIZE)
kfree(p);
else
vpfree(p, size);
}
static inline void *kvpmalloc(size_t size, gfp_t gfp_mask)
{
return size < PAGE_SIZE
? kmalloc(size, gfp_mask)
: vpmalloc(size, gfp_mask);
}
int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t);
#define HEAP(type) \
struct { \
size_t size, used; \
type *data; \
}
#define DECLARE_HEAP(type, name) HEAP(type) name
#define init_heap(heap, _size, gfp) \
({ \
(heap)->used = 0; \
(heap)->size = (_size); \
(heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\
(gfp)); \
})
#define free_heap(heap) \
do { \
kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0])); \
(heap)->data = NULL; \
} while (0)
#define heap_set_backpointer(h, i, _fn) \
do { \
void (*fn)(typeof(h), size_t) = _fn; \
if (fn) \
fn(h, i); \
} while (0)
#define heap_swap(h, i, j, set_backpointer) \
do { \
swap((h)->data[i], (h)->data[j]); \
heap_set_backpointer(h, i, set_backpointer); \
heap_set_backpointer(h, j, set_backpointer); \
} while (0)
#define heap_peek(h) \
({ \
EBUG_ON(!(h)->used); \
(h)->data[0]; \
})
#define heap_full(h) ((h)->used == (h)->size)
#define heap_sift_down(h, i, cmp, set_backpointer) \
do { \
size_t _c, _j = i; \
\
for (; _j * 2 + 1 < (h)->used; _j = _c) { \
_c = _j * 2 + 1; \
if (_c + 1 < (h)->used && \
cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \
_c++; \
\
if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \
break; \
heap_swap(h, _c, _j, set_backpointer); \
} \
} while (0)
#define heap_sift_up(h, i, cmp, set_backpointer) \
do { \
while (i) { \
size_t p = (i - 1) / 2; \
if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \
break; \
heap_swap(h, i, p, set_backpointer); \
i = p; \
} \
} while (0)
#define __heap_add(h, d, cmp, set_backpointer) \
({ \
size_t _i = (h)->used++; \
(h)->data[_i] = d; \
heap_set_backpointer(h, _i, set_backpointer); \
\
heap_sift_up(h, _i, cmp, set_backpointer); \
_i; \
})
#define heap_add(h, d, cmp, set_backpointer) \
({ \
bool _r = !heap_full(h); \
if (_r) \
__heap_add(h, d, cmp, set_backpointer); \
_r; \
})
#define heap_add_or_replace(h, new, cmp, set_backpointer) \
do { \
if (!heap_add(h, new, cmp, set_backpointer) && \
cmp(h, new, heap_peek(h)) >= 0) { \
(h)->data[0] = new; \
heap_set_backpointer(h, 0, set_backpointer); \
heap_sift_down(h, 0, cmp, set_backpointer); \
} \
} while (0)
#define heap_del(h, i, cmp, set_backpointer) \
do { \
size_t _i = (i); \
\
BUG_ON(_i >= (h)->used); \
(h)->used--; \
if ((_i) < (h)->used) { \
heap_swap(h, _i, (h)->used, set_backpointer); \
heap_sift_up(h, _i, cmp, set_backpointer); \
heap_sift_down(h, _i, cmp, set_backpointer); \
} \
} while (0)
#define heap_pop(h, d, cmp, set_backpointer) \
({ \
bool _r = (h)->used; \
if (_r) { \
(d) = (h)->data[0]; \
heap_del(h, 0, cmp, set_backpointer); \
} \
_r; \
})
#define heap_resort(heap, cmp, set_backpointer) \
do { \
ssize_t _i; \
for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \
heap_sift_down(heap, _i, cmp, set_backpointer); \
} while (0)
#define ANYSINT_MAX(t) \
((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
#include "printbuf.h"
#define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__)
#define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__)
#define printbuf_str(_buf) bch2_printbuf_str(_buf)
#define printbuf_exit(_buf) bch2_printbuf_exit(_buf)
#define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf)
#define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf)
#define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n)
#define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n)
#define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n)
#define prt_newline(_out) bch2_prt_newline(_out)
#define prt_tab(_out) bch2_prt_tab(_out)
#define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out)
#define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__)
#define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v))
#define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__)
#define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__)
#define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__)
#define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__)
#define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__)
#define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__)
#define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__)
void bch2_pr_time_units(struct printbuf *, u64);
void bch2_prt_datetime(struct printbuf *, time64_t);
#ifdef __KERNEL__
static inline void uuid_unparse_lower(u8 *uuid, char *out)
{
sprintf(out, "%pUb", uuid);
}
#else
#include <uuid/uuid.h>
#endif
static inline void pr_uuid(struct printbuf *out, u8 *uuid)
{
char uuid_str[40];
uuid_unparse_lower(uuid, uuid_str);
prt_printf(out, "%s", uuid_str);
}
int bch2_strtoint_h(const char *, int *);
int bch2_strtouint_h(const char *, unsigned int *);
int bch2_strtoll_h(const char *, long long *);
int bch2_strtoull_h(const char *, unsigned long long *);
int bch2_strtou64_h(const char *, u64 *);
static inline int bch2_strtol_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
return bch2_strtoint_h(cp, (int *) res);
#else
return bch2_strtoll_h(cp, (long long *) res);
#endif
}
static inline int bch2_strtoul_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
return bch2_strtouint_h(cp, (unsigned int *) res);
#else
return bch2_strtoull_h(cp, (unsigned long long *) res);
#endif
}
#define strtoi_h(cp, res) \
( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\
: type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\
: type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\
: type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\
: type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\
: type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
: -EINVAL)
#define strtoul_safe(cp, var) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (!_r) \
var = _v; \
_r; \
})
#define strtoul_safe_clamp(cp, var, min, max) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (!_r) \
var = clamp_t(typeof(var), _v, min, max); \
_r; \
})
#define strtoul_safe_restrict(cp, var, min, max) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (!_r && _v >= min && _v <= max) \
var = _v; \
else \
_r = -EINVAL; \
_r; \
})
#define snprint(out, var) \
prt_printf(out, \
type_is(var, int) ? "%i\n" \
: type_is(var, unsigned) ? "%u\n" \
: type_is(var, long) ? "%li\n" \
: type_is(var, unsigned long) ? "%lu\n" \
: type_is(var, s64) ? "%lli\n" \
: type_is(var, u64) ? "%llu\n" \
: type_is(var, char *) ? "%s\n" \
: "%i\n", var)
bool bch2_is_zero(const void *, size_t);
u64 bch2_read_flag_list(char *, const char * const[]);
void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
void bch2_prt_u64_base2(struct printbuf *, u64);
void bch2_print_string_as_lines(const char *prefix, const char *lines);
typedef DARRAY(unsigned long) bch_stacktrace;
int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t);
void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t);
static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
{
#ifdef __KERNEL__
prt_printf(out, "%pg", bdev);
#else
prt_str(out, bdev->name);
#endif
}
#define NR_QUANTILES 15
#define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES)
#define QUANTILE_FIRST eytzinger0_first(NR_QUANTILES)
#define QUANTILE_LAST eytzinger0_last(NR_QUANTILES)
struct bch2_quantiles {
struct bch2_quantile_entry {
u64 m;
u64 step;
} entries[NR_QUANTILES];
};
struct bch2_time_stat_buffer {
unsigned nr;
struct bch2_time_stat_buffer_entry {
u64 start;
u64 end;
} entries[32];
};
struct bch2_time_stats {
spinlock_t lock;
/* all fields are in nanoseconds */
u64 min_duration;
u64 max_duration;
u64 total_duration;
u64 max_freq;
u64 min_freq;
u64 last_event;
struct bch2_quantiles quantiles;
struct mean_and_variance duration_stats;
struct mean_and_variance_weighted duration_stats_weighted;
struct mean_and_variance freq_stats;
struct mean_and_variance_weighted freq_stats_weighted;
struct bch2_time_stat_buffer __percpu *buffer;
};
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64);
static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start)
{
__bch2_time_stats_update(stats, start, local_clock());
}
static inline bool track_event_change(struct bch2_time_stats *stats,
u64 *start, bool v)
{
if (v != !!*start) {
if (!v) {
bch2_time_stats_update(stats, *start);
*start = 0;
} else {
*start = local_clock() ?: 1;
return true;
}
}
return false;
}
#else
static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {}
static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) {}
static inline bool track_event_change(struct bch2_time_stats *stats,
u64 *start, bool v)
{
bool ret = v && !*start;
*start = v;
return ret;
}
#endif
void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
void bch2_time_stats_exit(struct bch2_time_stats *);
void bch2_time_stats_init(struct bch2_time_stats *);
#define ewma_add(ewma, val, weight) \
({ \
typeof(ewma) _ewma = (ewma); \
typeof(weight) _weight = (weight); \
\
(((_ewma << _weight) - _ewma) + (val)) >> _weight; \
})
struct bch_ratelimit {
/* Next time we want to do some work, in nanoseconds */
u64 next;
/*
* Rate at which we want to do work, in units per nanosecond
* The units here correspond to the units passed to
* bch2_ratelimit_increment()
*/
unsigned rate;
};
static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
{
d->next = local_clock();
}
u64 bch2_ratelimit_delay(struct bch_ratelimit *);
void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
struct bch_pd_controller {
struct bch_ratelimit rate;
unsigned long last_update;
s64 last_actual;
s64 smoothed_derivative;
unsigned p_term_inverse;
unsigned d_smooth;
unsigned d_term;
/* for exporting to sysfs (no effect on behavior) */
s64 last_derivative;
s64 last_proportional;
s64 last_change;
s64 last_target;
/*
* If true, the rate will not increase if bch2_ratelimit_delay()
* is not being called often enough.
*/
bool backpressure;
};
void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
void bch2_pd_controller_init(struct bch_pd_controller *);
void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
#define sysfs_pd_controller_attribute(name) \
rw_attribute(name##_rate); \
rw_attribute(name##_rate_bytes); \
rw_attribute(name##_rate_d_term); \
rw_attribute(name##_rate_p_term_inverse); \
read_attribute(name##_rate_debug)
#define sysfs_pd_controller_files(name) \
&sysfs_##name##_rate, \
&sysfs_##name##_rate_bytes, \
&sysfs_##name##_rate_d_term, \
&sysfs_##name##_rate_p_term_inverse, \
&sysfs_##name##_rate_debug
#define sysfs_pd_controller_show(name, var) \
do { \
sysfs_hprint(name##_rate, (var)->rate.rate); \
sysfs_print(name##_rate_bytes, (var)->rate.rate); \
sysfs_print(name##_rate_d_term, (var)->d_term); \
sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \
\
if (attr == &sysfs_##name##_rate_debug) \
bch2_pd_controller_debug_to_text(out, var); \
} while (0)
#define sysfs_pd_controller_store(name, var) \
do { \
sysfs_strtoul_clamp(name##_rate, \
(var)->rate.rate, 1, UINT_MAX); \
sysfs_strtoul_clamp(name##_rate_bytes, \
(var)->rate.rate, 1, UINT_MAX); \
sysfs_strtoul(name##_rate_d_term, (var)->d_term); \
sysfs_strtoul_clamp(name##_rate_p_term_inverse, \
(var)->p_term_inverse, 1, INT_MAX); \
} while (0)
#define container_of_or_null(ptr, type, member) \
({ \
typeof(ptr) _ptr = ptr; \
_ptr ? container_of(_ptr, type, member) : NULL; \
})
/* Does linear interpolation between powers of two */
static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
{
unsigned fract = x & ~(~0 << fract_bits);
x >>= fract_bits;
x = 1 << x;
x += (x * fract) >> fract_bits;
return x;
}
void bch2_bio_map(struct bio *bio, void *base, size_t);
int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
static inline sector_t bdev_sectors(struct block_device *bdev)
{
return bdev->bd_inode->i_size >> 9;
}
#define closure_bio_submit(bio, cl) \
do { \
closure_get(cl); \
submit_bio(bio); \
} while (0)
#define kthread_wait(cond) \
({ \
int _ret = 0; \
\
while (1) { \
set_current_state(TASK_INTERRUPTIBLE); \
if (kthread_should_stop()) { \
_ret = -1; \
break; \
} \
\
if (cond) \
break; \
\
schedule(); \
} \
set_current_state(TASK_RUNNING); \
_ret; \
})
#define kthread_wait_freezable(cond) \
({ \
int _ret = 0; \
while (1) { \
set_current_state(TASK_INTERRUPTIBLE); \
if (kthread_should_stop()) { \
_ret = -1; \
break; \
} \
\
if (cond) \
break; \
\
schedule(); \
try_to_freeze(); \
} \
set_current_state(TASK_RUNNING); \
_ret; \
})
size_t bch2_rand_range(size_t);
void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
static inline void memcpy_u64s_small(void *dst, const void *src,
unsigned u64s)
{
u64 *d = dst;
const u64 *s = src;
while (u64s--)
*d++ = *s++;
}
static inline void __memcpy_u64s(void *dst, const void *src,
unsigned u64s)
{
#ifdef CONFIG_X86_64
long d0, d1, d2;
asm volatile("rep ; movsq"
: "=&c" (d0), "=&D" (d1), "=&S" (d2)
: "0" (u64s), "1" (dst), "2" (src)
: "memory");
#else
u64 *d = dst;
const u64 *s = src;
while (u64s--)
*d++ = *s++;
#endif
}
static inline void memcpy_u64s(void *dst, const void *src,
unsigned u64s)
{
EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
dst + u64s * sizeof(u64) <= src));
__memcpy_u64s(dst, src, u64s);
}
static inline void __memmove_u64s_down(void *dst, const void *src,
unsigned u64s)
{
__memcpy_u64s(dst, src, u64s);
}
static inline void memmove_u64s_down(void *dst, const void *src,
unsigned u64s)
{
EBUG_ON(dst > src);
__memmove_u64s_down(dst, src, u64s);
}
static inline void __memmove_u64s_down_small(void *dst, const void *src,
unsigned u64s)
{
memcpy_u64s_small(dst, src, u64s);
}
static inline void memmove_u64s_down_small(void *dst, const void *src,
unsigned u64s)
{
EBUG_ON(dst > src);
__memmove_u64s_down_small(dst, src, u64s);
}
static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
unsigned u64s)
{
u64 *dst = (u64 *) _dst + u64s;
u64 *src = (u64 *) _src + u64s;
while (u64s--)
*--dst = *--src;
}
static inline void memmove_u64s_up_small(void *dst, const void *src,
unsigned u64s)
{
EBUG_ON(dst < src);
__memmove_u64s_up_small(dst, src, u64s);
}
static inline void __memmove_u64s_up(void *_dst, const void *_src,
unsigned u64s)
{
u64 *dst = (u64 *) _dst + u64s - 1;
u64 *src = (u64 *) _src + u64s - 1;
#ifdef CONFIG_X86_64
long d0, d1, d2;
asm volatile("std ;\n"
"rep ; movsq\n"
"cld ;\n"
: "=&c" (d0), "=&D" (d1), "=&S" (d2)
: "0" (u64s), "1" (dst), "2" (src)
: "memory");
#else
while (u64s--)
*dst-- = *src--;
#endif
}
static inline void memmove_u64s_up(void *dst, const void *src,
unsigned u64s)
{
EBUG_ON(dst < src);
__memmove_u64s_up(dst, src, u64s);
}
static inline void memmove_u64s(void *dst, const void *src,
unsigned u64s)
{
if (dst < src)
__memmove_u64s_down(dst, src, u64s);
else
__memmove_u64s_up(dst, src, u64s);
}
/* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
{
unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
memset(s + bytes, c, rem);
}
void sort_cmp_size(void *base, size_t num, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
void (*swap_func)(void *, void *, size_t));
/* just the memmove, doesn't update @_nr */
#define __array_insert_item(_array, _nr, _pos) \
memmove(&(_array)[(_pos) + 1], \
&(_array)[(_pos)], \
sizeof((_array)[0]) * ((_nr) - (_pos)))
#define array_insert_item(_array, _nr, _pos, _new_item) \
do { \
__array_insert_item(_array, _nr, _pos); \
(_nr)++; \
(_array)[(_pos)] = (_new_item); \
} while (0)
#define array_remove_items(_array, _nr, _pos, _nr_to_remove) \
do { \
(_nr) -= (_nr_to_remove); \
memmove(&(_array)[(_pos)], \
&(_array)[(_pos) + (_nr_to_remove)], \
sizeof((_array)[0]) * ((_nr) - (_pos))); \
} while (0)
#define array_remove_item(_array, _nr, _pos) \
array_remove_items(_array, _nr, _pos, 1)
static inline void __move_gap(void *array, size_t element_size,
size_t nr, size_t size,
size_t old_gap, size_t new_gap)
{
size_t gap_end = old_gap + size - nr;
if (new_gap < old_gap) {
size_t move = old_gap - new_gap;
memmove(array + element_size * (gap_end - move),
array + element_size * (old_gap - move),
element_size * move);
} else if (new_gap > old_gap) {
size_t move = new_gap - old_gap;
memmove(array + element_size * old_gap,
array + element_size * gap_end,
element_size * move);
}
}
/* Move the gap in a gap buffer: */
#define move_gap(_array, _nr, _size, _old_gap, _new_gap) \
__move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap)
#define bubble_sort(_base, _nr, _cmp) \
do { \
ssize_t _i, _last; \
bool _swapped = true; \
\
for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
_swapped = false; \
for (_i = 0; _i < _last; _i++) \
if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \
swap((_base)[_i], (_base)[_i + 1]); \
_swapped = true; \
} \
} \
} while (0)
static inline u64 percpu_u64_get(u64 __percpu *src)
{
u64 ret = 0;
int cpu;
for_each_possible_cpu(cpu)
ret += *per_cpu_ptr(src, cpu);
return ret;
}
static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
{
int cpu;
for_each_possible_cpu(cpu)
*per_cpu_ptr(dst, cpu) = 0;
this_cpu_write(*dst, src);
}
static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
{
unsigned i;
for (i = 0; i < nr; i++)
acc[i] += src[i];
}
static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
unsigned nr)
{
int cpu;
for_each_possible_cpu(cpu)
acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
}
static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
{
int cpu;
for_each_possible_cpu(cpu)
memset(per_cpu_ptr(p, cpu), c, bytes);
}
u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
#define cmp_int(l, r) ((l > r) - (l < r))
static inline int u8_cmp(u8 l, u8 r)
{
return cmp_int(l, r);
}
static inline int cmp_le32(__le32 l, __le32 r)
{
return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
}
#include <linux/uuid.h>
#define QSTR(n) { { { .len = strlen(n) } }, .name = n }
static inline bool qstr_eq(const struct qstr l, const struct qstr r)
{
return l.len == r.len && !memcmp(l.name, r.name, l.len);
}
void bch2_darray_str_exit(darray_str *);
int bch2_split_devs(const char *, darray_str *);
#endif /* _BCACHEFS_UTIL_H */