linux/net/rds/tcp_send.c

227 lines
6.8 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/in.h>
#include <net/tcp.h>
#include "rds_single_path.h"
#include "rds.h"
#include "tcp.h"
void rds_tcp_xmit_path_prepare(struct rds_conn_path *cp)
{
struct rds_tcp_connection *tc = cp->cp_transport_data;
tcp_sock_set_cork(tc->t_sock->sk, true);
}
void rds_tcp_xmit_path_complete(struct rds_conn_path *cp)
{
struct rds_tcp_connection *tc = cp->cp_transport_data;
tcp_sock_set_cork(tc->t_sock->sk, false);
}
/* the core send_sem serializes this with other xmit and shutdown */
static int rds_tcp_sendmsg(struct socket *sock, void *data, unsigned int len)
{
struct kvec vec = {
.iov_base = data,
.iov_len = len,
};
struct msghdr msg = {
.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL,
};
return kernel_sendmsg(sock, &msg, &vec, 1, vec.iov_len);
}
/* the core send_sem serializes this with other xmit and shutdown */
int rds_tcp_xmit(struct rds_connection *conn, struct rds_message *rm,
unsigned int hdr_off, unsigned int sg, unsigned int off)
{
struct rds_conn_path *cp = rm->m_inc.i_conn_path;
struct rds_tcp_connection *tc = cp->cp_transport_data;
struct msghdr msg = {};
struct bio_vec bvec;
int done = 0;
int ret = 0;
if (hdr_off == 0) {
/*
* m_ack_seq is set to the sequence number of the last byte of
* header and data. see rds_tcp_is_acked().
*/
tc->t_last_sent_nxt = rds_tcp_write_seq(tc);
rm->m_ack_seq = tc->t_last_sent_nxt +
sizeof(struct rds_header) +
be32_to_cpu(rm->m_inc.i_hdr.h_len) - 1;
smp_mb__before_atomic();
set_bit(RDS_MSG_HAS_ACK_SEQ, &rm->m_flags);
tc->t_last_expected_una = rm->m_ack_seq + 1;
if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
rdsdebug("rm %p tcp nxt %u ack_seq %llu\n",
rm, rds_tcp_write_seq(tc),
(unsigned long long)rm->m_ack_seq);
}
if (hdr_off < sizeof(struct rds_header)) {
/* see rds_tcp_write_space() */
set_bit(SOCK_NOSPACE, &tc->t_sock->sk->sk_socket->flags);
ret = rds_tcp_sendmsg(tc->t_sock,
(void *)&rm->m_inc.i_hdr + hdr_off,
sizeof(rm->m_inc.i_hdr) - hdr_off);
if (ret < 0)
goto out;
done += ret;
if (hdr_off + done != sizeof(struct rds_header))
goto out;
}
while (sg < rm->data.op_nents) {
msg.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL;
if (sg + 1 < rm->data.op_nents)
msg.msg_flags |= MSG_MORE;
bvec_set_page(&bvec, sg_page(&rm->data.op_sg[sg]),
rm->data.op_sg[sg].length - off,
rm->data.op_sg[sg].offset + off);
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
rm->data.op_sg[sg].length - off);
ret = sock_sendmsg(tc->t_sock, &msg);
rdsdebug("tcp sendpage %p:%u:%u ret %d\n", (void *)sg_page(&rm->data.op_sg[sg]),
rm->data.op_sg[sg].offset + off, rm->data.op_sg[sg].length - off,
ret);
if (ret <= 0)
break;
off += ret;
done += ret;
if (off == rm->data.op_sg[sg].length) {
off = 0;
sg++;
}
}
out:
if (ret <= 0) {
/* write_space will hit after EAGAIN, all else fatal */
if (ret == -EAGAIN) {
rds_tcp_stats_inc(s_tcp_sndbuf_full);
ret = 0;
} else {
/* No need to disconnect/reconnect if path_drop
* has already been triggered, because, e.g., of
* an incoming RST.
*/
if (rds_conn_path_up(cp)) {
pr_warn("RDS/tcp: send to %pI6c on cp [%d]"
"returned %d, "
"disconnecting and reconnecting\n",
&conn->c_faddr, cp->cp_index, ret);
rds_conn_path_drop(cp, false);
}
}
}
if (done == 0)
done = ret;
return done;
}
/*
* rm->m_ack_seq is set to the tcp sequence number that corresponds to the
* last byte of the message, including the header. This means that the
* entire message has been received if rm->m_ack_seq is "before" the next
* unacked byte of the TCP sequence space. We have to do very careful
* wrapping 32bit comparisons here.
*/
static int rds_tcp_is_acked(struct rds_message *rm, uint64_t ack)
{
if (!test_bit(RDS_MSG_HAS_ACK_SEQ, &rm->m_flags))
return 0;
return (__s32)((u32)rm->m_ack_seq - (u32)ack) < 0;
}
void rds_tcp_write_space(struct sock *sk)
{
void (*write_space)(struct sock *sk);
struct rds_conn_path *cp;
struct rds_tcp_connection *tc;
read_lock_bh(&sk->sk_callback_lock);
cp = sk->sk_user_data;
if (!cp) {
write_space = sk->sk_write_space;
goto out;
}
tc = cp->cp_transport_data;
rdsdebug("write_space for tc %p\n", tc);
write_space = tc->t_orig_write_space;
rds_tcp_stats_inc(s_tcp_write_space_calls);
rdsdebug("tcp una %u\n", rds_tcp_snd_una(tc));
tc->t_last_seen_una = rds_tcp_snd_una(tc);
rds_send_path_drop_acked(cp, rds_tcp_snd_una(tc), rds_tcp_is_acked);
rcu_read_lock();
if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf &&
rds: tcp: use rds_destroy_pending() to synchronize netns/module teardown and rds connection/workq management An rds_connection can get added during netns deletion between lines 528 and 529 of 506 static void rds_tcp_kill_sock(struct net *net) : /* code to pull out all the rds_connections that should be destroyed */ : 528 spin_unlock_irq(&rds_tcp_conn_lock); 529 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) 530 rds_conn_destroy(tc->t_cpath->cp_conn); Such an rds_connection would miss out the rds_conn_destroy() loop (that cancels all pending work) and (if it was scheduled after netns deletion) could trigger the use-after-free. A similar race-window exists for the module unload path in rds_tcp_exit -> rds_tcp_destroy_conns Concurrency with netns deletion (rds_tcp_kill_sock()) must be handled by checking check_net() before enqueuing new work or adding new connections. Concurrency with module-unload is handled by maintaining a module specific flag that is set at the start of the module exit function, and must be checked before enqueuing new work or adding new connections. This commit refactors existing RDS_DESTROY_PENDING checks added by commit 3db6e0d172c9 ("rds: use RCU to synchronize work-enqueue with connection teardown") and consolidates all the concurrency checks listed above into the function rds_destroy_pending(). Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-03 04:26:51 -08:00
!rds_destroy_pending(cp->cp_conn))
queue_delayed_work(rds_wq, &cp->cp_send_w, 0);
rcu_read_unlock();
out:
read_unlock_bh(&sk->sk_callback_lock);
/*
* write_space is only called when data leaves tcp's send queue if
* SOCK_NOSPACE is set. We set SOCK_NOSPACE every time we put
* data in tcp's send queue because we use write_space to parse the
* sequence numbers and notice that rds messages have been fully
* received.
*
* tcp's write_space clears SOCK_NOSPACE if the send queue has more
* than a certain amount of space. So we need to set it again *after*
* we call tcp's write_space or else we might only get called on the
* first of a series of incoming tcp acks.
*/
write_space(sk);
if (sk->sk_socket)
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
}