2006-06-20 20:37:23 +10:00
/*
* Common Twofish algorithm parts shared between the c and assembler
* implementations
*
* Originally Twofish for GPG
* By Matthew Skala < mskala @ ansuz . sooke . bc . ca > , July 26 , 1998
* 256 - bit key length added March 20 , 1999
* Some modifications to reduce the text size by Werner Koch , April , 1998
* Ported to the kerneli patch by Marc Mutz < Marc @ Mutz . com >
* Ported to CryptoAPI by Colin Slater < hoho @ tacomeat . net >
*
* The original author has disclaimed all copyright interest in this
* code and thus put it in the public domain . The subsequent authors
* have put this under the GNU General Public License .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307
* USA
*
* This code is a " clean room " implementation , written from the paper
* _Twofish : A 128 - Bit Block Cipher_ by Bruce Schneier , John Kelsey ,
* Doug Whiting , David Wagner , Chris Hall , and Niels Ferguson , available
* through http : //www.counterpane.com/twofish.html
*
* For background information on multiplication in finite fields , used for
* the matrix operations in the key schedule , see the book _Contemporary
* Abstract Algebra_ by Joseph A . Gallian , especially chapter 22 in the
* Third Edition .
*/
# include <crypto/twofish.h>
# include <linux/bitops.h>
# include <linux/crypto.h>
# include <linux/errno.h>
# include <linux/init.h>
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/types.h>
/* The large precomputed tables for the Twofish cipher (twofish.c)
* Taken from the same source as twofish . c
* Marc Mutz < Marc @ Mutz . com >
*/
/* These two tables are the q0 and q1 permutations, exactly as described in
* the Twofish paper . */
static const u8 q0 [ 256 ] = {
0xA9 , 0x67 , 0xB3 , 0xE8 , 0x04 , 0xFD , 0xA3 , 0x76 , 0x9A , 0x92 , 0x80 , 0x78 ,
0xE4 , 0xDD , 0xD1 , 0x38 , 0x0D , 0xC6 , 0x35 , 0x98 , 0x18 , 0xF7 , 0xEC , 0x6C ,
0x43 , 0x75 , 0x37 , 0x26 , 0xFA , 0x13 , 0x94 , 0x48 , 0xF2 , 0xD0 , 0x8B , 0x30 ,
0x84 , 0x54 , 0xDF , 0x23 , 0x19 , 0x5B , 0x3D , 0x59 , 0xF3 , 0xAE , 0xA2 , 0x82 ,
0x63 , 0x01 , 0x83 , 0x2E , 0xD9 , 0x51 , 0x9B , 0x7C , 0xA6 , 0xEB , 0xA5 , 0xBE ,
0x16 , 0x0C , 0xE3 , 0x61 , 0xC0 , 0x8C , 0x3A , 0xF5 , 0x73 , 0x2C , 0x25 , 0x0B ,
0xBB , 0x4E , 0x89 , 0x6B , 0x53 , 0x6A , 0xB4 , 0xF1 , 0xE1 , 0xE6 , 0xBD , 0x45 ,
0xE2 , 0xF4 , 0xB6 , 0x66 , 0xCC , 0x95 , 0x03 , 0x56 , 0xD4 , 0x1C , 0x1E , 0xD7 ,
0xFB , 0xC3 , 0x8E , 0xB5 , 0xE9 , 0xCF , 0xBF , 0xBA , 0xEA , 0x77 , 0x39 , 0xAF ,
0x33 , 0xC9 , 0x62 , 0x71 , 0x81 , 0x79 , 0x09 , 0xAD , 0x24 , 0xCD , 0xF9 , 0xD8 ,
0xE5 , 0xC5 , 0xB9 , 0x4D , 0x44 , 0x08 , 0x86 , 0xE7 , 0xA1 , 0x1D , 0xAA , 0xED ,
0x06 , 0x70 , 0xB2 , 0xD2 , 0x41 , 0x7B , 0xA0 , 0x11 , 0x31 , 0xC2 , 0x27 , 0x90 ,
0x20 , 0xF6 , 0x60 , 0xFF , 0x96 , 0x5C , 0xB1 , 0xAB , 0x9E , 0x9C , 0x52 , 0x1B ,
0x5F , 0x93 , 0x0A , 0xEF , 0x91 , 0x85 , 0x49 , 0xEE , 0x2D , 0x4F , 0x8F , 0x3B ,
0x47 , 0x87 , 0x6D , 0x46 , 0xD6 , 0x3E , 0x69 , 0x64 , 0x2A , 0xCE , 0xCB , 0x2F ,
0xFC , 0x97 , 0x05 , 0x7A , 0xAC , 0x7F , 0xD5 , 0x1A , 0x4B , 0x0E , 0xA7 , 0x5A ,
0x28 , 0x14 , 0x3F , 0x29 , 0x88 , 0x3C , 0x4C , 0x02 , 0xB8 , 0xDA , 0xB0 , 0x17 ,
0x55 , 0x1F , 0x8A , 0x7D , 0x57 , 0xC7 , 0x8D , 0x74 , 0xB7 , 0xC4 , 0x9F , 0x72 ,
0x7E , 0x15 , 0x22 , 0x12 , 0x58 , 0x07 , 0x99 , 0x34 , 0x6E , 0x50 , 0xDE , 0x68 ,
0x65 , 0xBC , 0xDB , 0xF8 , 0xC8 , 0xA8 , 0x2B , 0x40 , 0xDC , 0xFE , 0x32 , 0xA4 ,
0xCA , 0x10 , 0x21 , 0xF0 , 0xD3 , 0x5D , 0x0F , 0x00 , 0x6F , 0x9D , 0x36 , 0x42 ,
0x4A , 0x5E , 0xC1 , 0xE0
} ;
static const u8 q1 [ 256 ] = {
0x75 , 0xF3 , 0xC6 , 0xF4 , 0xDB , 0x7B , 0xFB , 0xC8 , 0x4A , 0xD3 , 0xE6 , 0x6B ,
0x45 , 0x7D , 0xE8 , 0x4B , 0xD6 , 0x32 , 0xD8 , 0xFD , 0x37 , 0x71 , 0xF1 , 0xE1 ,
0x30 , 0x0F , 0xF8 , 0x1B , 0x87 , 0xFA , 0x06 , 0x3F , 0x5E , 0xBA , 0xAE , 0x5B ,
0x8A , 0x00 , 0xBC , 0x9D , 0x6D , 0xC1 , 0xB1 , 0x0E , 0x80 , 0x5D , 0xD2 , 0xD5 ,
0xA0 , 0x84 , 0x07 , 0x14 , 0xB5 , 0x90 , 0x2C , 0xA3 , 0xB2 , 0x73 , 0x4C , 0x54 ,
0x92 , 0x74 , 0x36 , 0x51 , 0x38 , 0xB0 , 0xBD , 0x5A , 0xFC , 0x60 , 0x62 , 0x96 ,
0x6C , 0x42 , 0xF7 , 0x10 , 0x7C , 0x28 , 0x27 , 0x8C , 0x13 , 0x95 , 0x9C , 0xC7 ,
0x24 , 0x46 , 0x3B , 0x70 , 0xCA , 0xE3 , 0x85 , 0xCB , 0x11 , 0xD0 , 0x93 , 0xB8 ,
0xA6 , 0x83 , 0x20 , 0xFF , 0x9F , 0x77 , 0xC3 , 0xCC , 0x03 , 0x6F , 0x08 , 0xBF ,
0x40 , 0xE7 , 0x2B , 0xE2 , 0x79 , 0x0C , 0xAA , 0x82 , 0x41 , 0x3A , 0xEA , 0xB9 ,
0xE4 , 0x9A , 0xA4 , 0x97 , 0x7E , 0xDA , 0x7A , 0x17 , 0x66 , 0x94 , 0xA1 , 0x1D ,
0x3D , 0xF0 , 0xDE , 0xB3 , 0x0B , 0x72 , 0xA7 , 0x1C , 0xEF , 0xD1 , 0x53 , 0x3E ,
0x8F , 0x33 , 0x26 , 0x5F , 0xEC , 0x76 , 0x2A , 0x49 , 0x81 , 0x88 , 0xEE , 0x21 ,
0xC4 , 0x1A , 0xEB , 0xD9 , 0xC5 , 0x39 , 0x99 , 0xCD , 0xAD , 0x31 , 0x8B , 0x01 ,
0x18 , 0x23 , 0xDD , 0x1F , 0x4E , 0x2D , 0xF9 , 0x48 , 0x4F , 0xF2 , 0x65 , 0x8E ,
0x78 , 0x5C , 0x58 , 0x19 , 0x8D , 0xE5 , 0x98 , 0x57 , 0x67 , 0x7F , 0x05 , 0x64 ,
0xAF , 0x63 , 0xB6 , 0xFE , 0xF5 , 0xB7 , 0x3C , 0xA5 , 0xCE , 0xE9 , 0x68 , 0x44 ,
0xE0 , 0x4D , 0x43 , 0x69 , 0x29 , 0x2E , 0xAC , 0x15 , 0x59 , 0xA8 , 0x0A , 0x9E ,
0x6E , 0x47 , 0xDF , 0x34 , 0x35 , 0x6A , 0xCF , 0xDC , 0x22 , 0xC9 , 0xC0 , 0x9B ,
0x89 , 0xD4 , 0xED , 0xAB , 0x12 , 0xA2 , 0x0D , 0x52 , 0xBB , 0x02 , 0x2F , 0xA9 ,
0xD7 , 0x61 , 0x1E , 0xB4 , 0x50 , 0x04 , 0xF6 , 0xC2 , 0x16 , 0x25 , 0x86 , 0x56 ,
0x55 , 0x09 , 0xBE , 0x91
} ;
/* These MDS tables are actually tables of MDS composed with q0 and q1,
* because it is only ever used that way and we can save some time by
* precomputing . Of course the main saving comes from precomputing the
* GF ( 2 ^ 8 ) multiplication involved in the MDS matrix multiply ; by looking
* things up in these tables we reduce the matrix multiply to four lookups
* and three XORs . Semi - formally , the definition of these tables is :
* mds [ 0 ] [ i ] = MDS ( q1 [ i ] 0 0 0 ) ^ T mds [ 1 ] [ i ] = MDS ( 0 q0 [ i ] 0 0 ) ^ T
* mds [ 2 ] [ i ] = MDS ( 0 0 q1 [ i ] 0 ) ^ T mds [ 3 ] [ i ] = MDS ( 0 0 0 q0 [ i ] ) ^ T
* where ^ T means " transpose " , the matrix multiply is performed in GF ( 2 ^ 8 )
* represented as GF ( 2 ) [ x ] / v ( x ) where v ( x ) = x ^ 8 + x ^ 6 + x ^ 5 + x ^ 3 + 1 as described
* by Schneier et al , and I ' m casually glossing over the byte / word
* conversion issues . */
static const u32 mds [ 4 ] [ 256 ] = {
{
0xBCBC3275 , 0xECEC21F3 , 0x202043C6 , 0xB3B3C9F4 , 0xDADA03DB , 0x02028B7B ,
0xE2E22BFB , 0x9E9EFAC8 , 0xC9C9EC4A , 0xD4D409D3 , 0x18186BE6 , 0x1E1E9F6B ,
0x98980E45 , 0xB2B2387D , 0xA6A6D2E8 , 0x2626B74B , 0x3C3C57D6 , 0x93938A32 ,
0x8282EED8 , 0x525298FD , 0x7B7BD437 , 0xBBBB3771 , 0x5B5B97F1 , 0x474783E1 ,
0x24243C30 , 0x5151E20F , 0xBABAC6F8 , 0x4A4AF31B , 0xBFBF4887 , 0x0D0D70FA ,
0xB0B0B306 , 0x7575DE3F , 0xD2D2FD5E , 0x7D7D20BA , 0x666631AE , 0x3A3AA35B ,
0x59591C8A , 0x00000000 , 0xCDCD93BC , 0x1A1AE09D , 0xAEAE2C6D , 0x7F7FABC1 ,
0x2B2BC7B1 , 0xBEBEB90E , 0xE0E0A080 , 0x8A8A105D , 0x3B3B52D2 , 0x6464BAD5 ,
0xD8D888A0 , 0xE7E7A584 , 0x5F5FE807 , 0x1B1B1114 , 0x2C2CC2B5 , 0xFCFCB490 ,
0x3131272C , 0x808065A3 , 0x73732AB2 , 0x0C0C8173 , 0x79795F4C , 0x6B6B4154 ,
0x4B4B0292 , 0x53536974 , 0x94948F36 , 0x83831F51 , 0x2A2A3638 , 0xC4C49CB0 ,
0x2222C8BD , 0xD5D5F85A , 0xBDBDC3FC , 0x48487860 , 0xFFFFCE62 , 0x4C4C0796 ,
0x4141776C , 0xC7C7E642 , 0xEBEB24F7 , 0x1C1C1410 , 0x5D5D637C , 0x36362228 ,
0x6767C027 , 0xE9E9AF8C , 0x4444F913 , 0x1414EA95 , 0xF5F5BB9C , 0xCFCF18C7 ,
0x3F3F2D24 , 0xC0C0E346 , 0x7272DB3B , 0x54546C70 , 0x29294CCA , 0xF0F035E3 ,
0x0808FE85 , 0xC6C617CB , 0xF3F34F11 , 0x8C8CE4D0 , 0xA4A45993 , 0xCACA96B8 ,
0x68683BA6 , 0xB8B84D83 , 0x38382820 , 0xE5E52EFF , 0xADAD569F , 0x0B0B8477 ,
0xC8C81DC3 , 0x9999FFCC , 0x5858ED03 , 0x19199A6F , 0x0E0E0A08 , 0x95957EBF ,
0x70705040 , 0xF7F730E7 , 0x6E6ECF2B , 0x1F1F6EE2 , 0xB5B53D79 , 0x09090F0C ,
0x616134AA , 0x57571682 , 0x9F9F0B41 , 0x9D9D803A , 0x111164EA , 0x2525CDB9 ,
0xAFAFDDE4 , 0x4545089A , 0xDFDF8DA4 , 0xA3A35C97 , 0xEAEAD57E , 0x353558DA ,
0xEDEDD07A , 0x4343FC17 , 0xF8F8CB66 , 0xFBFBB194 , 0x3737D3A1 , 0xFAFA401D ,
0xC2C2683D , 0xB4B4CCF0 , 0x32325DDE , 0x9C9C71B3 , 0x5656E70B , 0xE3E3DA72 ,
0x878760A7 , 0x15151B1C , 0xF9F93AEF , 0x6363BFD1 , 0x3434A953 , 0x9A9A853E ,
0xB1B1428F , 0x7C7CD133 , 0x88889B26 , 0x3D3DA65F , 0xA1A1D7EC , 0xE4E4DF76 ,
0x8181942A , 0x91910149 , 0x0F0FFB81 , 0xEEEEAA88 , 0x161661EE , 0xD7D77321 ,
0x9797F5C4 , 0xA5A5A81A , 0xFEFE3FEB , 0x6D6DB5D9 , 0x7878AEC5 , 0xC5C56D39 ,
0x1D1DE599 , 0x7676A4CD , 0x3E3EDCAD , 0xCBCB6731 , 0xB6B6478B , 0xEFEF5B01 ,
0x12121E18 , 0x6060C523 , 0x6A6AB0DD , 0x4D4DF61F , 0xCECEE94E , 0xDEDE7C2D ,
0x55559DF9 , 0x7E7E5A48 , 0x2121B24F , 0x03037AF2 , 0xA0A02665 , 0x5E5E198E ,
0x5A5A6678 , 0x65654B5C , 0x62624E58 , 0xFDFD4519 , 0x0606F48D , 0x404086E5 ,
0xF2F2BE98 , 0x3333AC57 , 0x17179067 , 0x05058E7F , 0xE8E85E05 , 0x4F4F7D64 ,
0x89896AAF , 0x10109563 , 0x74742FB6 , 0x0A0A75FE , 0x5C5C92F5 , 0x9B9B74B7 ,
0x2D2D333C , 0x3030D6A5 , 0x2E2E49CE , 0x494989E9 , 0x46467268 , 0x77775544 ,
0xA8A8D8E0 , 0x9696044D , 0x2828BD43 , 0xA9A92969 , 0xD9D97929 , 0x8686912E ,
0xD1D187AC , 0xF4F44A15 , 0x8D8D1559 , 0xD6D682A8 , 0xB9B9BC0A , 0x42420D9E ,
0xF6F6C16E , 0x2F2FB847 , 0xDDDD06DF , 0x23233934 , 0xCCCC6235 , 0xF1F1C46A ,
0xC1C112CF , 0x8585EBDC , 0x8F8F9E22 , 0x7171A1C9 , 0x9090F0C0 , 0xAAAA539B ,
0x0101F189 , 0x8B8BE1D4 , 0x4E4E8CED , 0x8E8E6FAB , 0xABABA212 , 0x6F6F3EA2 ,
0xE6E6540D , 0xDBDBF252 , 0x92927BBB , 0xB7B7B602 , 0x6969CA2F , 0x3939D9A9 ,
0xD3D30CD7 , 0xA7A72361 , 0xA2A2AD1E , 0xC3C399B4 , 0x6C6C4450 , 0x07070504 ,
0x04047FF6 , 0x272746C2 , 0xACACA716 , 0xD0D07625 , 0x50501386 , 0xDCDCF756 ,
0x84841A55 , 0xE1E15109 , 0x7A7A25BE , 0x1313EF91 } ,
{
0xA9D93939 , 0x67901717 , 0xB3719C9C , 0xE8D2A6A6 , 0x04050707 , 0xFD985252 ,
0xA3658080 , 0x76DFE4E4 , 0x9A084545 , 0x92024B4B , 0x80A0E0E0 , 0x78665A5A ,
0xE4DDAFAF , 0xDDB06A6A , 0xD1BF6363 , 0x38362A2A , 0x0D54E6E6 , 0xC6432020 ,
0x3562CCCC , 0x98BEF2F2 , 0x181E1212 , 0xF724EBEB , 0xECD7A1A1 , 0x6C774141 ,
0x43BD2828 , 0x7532BCBC , 0x37D47B7B , 0x269B8888 , 0xFA700D0D , 0x13F94444 ,
0x94B1FBFB , 0x485A7E7E , 0xF27A0303 , 0xD0E48C8C , 0x8B47B6B6 , 0x303C2424 ,
0x84A5E7E7 , 0x54416B6B , 0xDF06DDDD , 0x23C56060 , 0x1945FDFD , 0x5BA33A3A ,
0x3D68C2C2 , 0x59158D8D , 0xF321ECEC , 0xAE316666 , 0xA23E6F6F , 0x82165757 ,
0x63951010 , 0x015BEFEF , 0x834DB8B8 , 0x2E918686 , 0xD9B56D6D , 0x511F8383 ,
0x9B53AAAA , 0x7C635D5D , 0xA63B6868 , 0xEB3FFEFE , 0xA5D63030 , 0xBE257A7A ,
0x16A7ACAC , 0x0C0F0909 , 0xE335F0F0 , 0x6123A7A7 , 0xC0F09090 , 0x8CAFE9E9 ,
0x3A809D9D , 0xF5925C5C , 0x73810C0C , 0x2C273131 , 0x2576D0D0 , 0x0BE75656 ,
0xBB7B9292 , 0x4EE9CECE , 0x89F10101 , 0x6B9F1E1E , 0x53A93434 , 0x6AC4F1F1 ,
0xB499C3C3 , 0xF1975B5B , 0xE1834747 , 0xE66B1818 , 0xBDC82222 , 0x450E9898 ,
0xE26E1F1F , 0xF4C9B3B3 , 0xB62F7474 , 0x66CBF8F8 , 0xCCFF9999 , 0x95EA1414 ,
0x03ED5858 , 0x56F7DCDC , 0xD4E18B8B , 0x1C1B1515 , 0x1EADA2A2 , 0xD70CD3D3 ,
0xFB2BE2E2 , 0xC31DC8C8 , 0x8E195E5E , 0xB5C22C2C , 0xE9894949 , 0xCF12C1C1 ,
0xBF7E9595 , 0xBA207D7D , 0xEA641111 , 0x77840B0B , 0x396DC5C5 , 0xAF6A8989 ,
0x33D17C7C , 0xC9A17171 , 0x62CEFFFF , 0x7137BBBB , 0x81FB0F0F , 0x793DB5B5 ,
0x0951E1E1 , 0xADDC3E3E , 0x242D3F3F , 0xCDA47676 , 0xF99D5555 , 0xD8EE8282 ,
0xE5864040 , 0xC5AE7878 , 0xB9CD2525 , 0x4D049696 , 0x44557777 , 0x080A0E0E ,
0x86135050 , 0xE730F7F7 , 0xA1D33737 , 0x1D40FAFA , 0xAA346161 , 0xED8C4E4E ,
0x06B3B0B0 , 0x706C5454 , 0xB22A7373 , 0xD2523B3B , 0x410B9F9F , 0x7B8B0202 ,
0xA088D8D8 , 0x114FF3F3 , 0x3167CBCB , 0xC2462727 , 0x27C06767 , 0x90B4FCFC ,
0x20283838 , 0xF67F0404 , 0x60784848 , 0xFF2EE5E5 , 0x96074C4C , 0x5C4B6565 ,
0xB1C72B2B , 0xAB6F8E8E , 0x9E0D4242 , 0x9CBBF5F5 , 0x52F2DBDB , 0x1BF34A4A ,
0x5FA63D3D , 0x9359A4A4 , 0x0ABCB9B9 , 0xEF3AF9F9 , 0x91EF1313 , 0x85FE0808 ,
0x49019191 , 0xEE611616 , 0x2D7CDEDE , 0x4FB22121 , 0x8F42B1B1 , 0x3BDB7272 ,
0x47B82F2F , 0x8748BFBF , 0x6D2CAEAE , 0x46E3C0C0 , 0xD6573C3C , 0x3E859A9A ,
0x6929A9A9 , 0x647D4F4F , 0x2A948181 , 0xCE492E2E , 0xCB17C6C6 , 0x2FCA6969 ,
0xFCC3BDBD , 0x975CA3A3 , 0x055EE8E8 , 0x7AD0EDED , 0xAC87D1D1 , 0x7F8E0505 ,
0xD5BA6464 , 0x1AA8A5A5 , 0x4BB72626 , 0x0EB9BEBE , 0xA7608787 , 0x5AF8D5D5 ,
0x28223636 , 0x14111B1B , 0x3FDE7575 , 0x2979D9D9 , 0x88AAEEEE , 0x3C332D2D ,
0x4C5F7979 , 0x02B6B7B7 , 0xB896CACA , 0xDA583535 , 0xB09CC4C4 , 0x17FC4343 ,
0x551A8484 , 0x1FF64D4D , 0x8A1C5959 , 0x7D38B2B2 , 0x57AC3333 , 0xC718CFCF ,
0x8DF40606 , 0x74695353 , 0xB7749B9B , 0xC4F59797 , 0x9F56ADAD , 0x72DAE3E3 ,
0x7ED5EAEA , 0x154AF4F4 , 0x229E8F8F , 0x12A2ABAB , 0x584E6262 , 0x07E85F5F ,
0x99E51D1D , 0x34392323 , 0x6EC1F6F6 , 0x50446C6C , 0xDE5D3232 , 0x68724646 ,
0x6526A0A0 , 0xBC93CDCD , 0xDB03DADA , 0xF8C6BABA , 0xC8FA9E9E , 0xA882D6D6 ,
0x2BCF6E6E , 0x40507070 , 0xDCEB8585 , 0xFE750A0A , 0x328A9393 , 0xA48DDFDF ,
0xCA4C2929 , 0x10141C1C , 0x2173D7D7 , 0xF0CCB4B4 , 0xD309D4D4 , 0x5D108A8A ,
0x0FE25151 , 0x00000000 , 0x6F9A1919 , 0x9DE01A1A , 0x368F9494 , 0x42E6C7C7 ,
0x4AECC9C9 , 0x5EFDD2D2 , 0xC1AB7F7F , 0xE0D8A8A8 } ,
{
0xBC75BC32 , 0xECF3EC21 , 0x20C62043 , 0xB3F4B3C9 , 0xDADBDA03 , 0x027B028B ,
0xE2FBE22B , 0x9EC89EFA , 0xC94AC9EC , 0xD4D3D409 , 0x18E6186B , 0x1E6B1E9F ,
0x9845980E , 0xB27DB238 , 0xA6E8A6D2 , 0x264B26B7 , 0x3CD63C57 , 0x9332938A ,
0x82D882EE , 0x52FD5298 , 0x7B377BD4 , 0xBB71BB37 , 0x5BF15B97 , 0x47E14783 ,
0x2430243C , 0x510F51E2 , 0xBAF8BAC6 , 0x4A1B4AF3 , 0xBF87BF48 , 0x0DFA0D70 ,
0xB006B0B3 , 0x753F75DE , 0xD25ED2FD , 0x7DBA7D20 , 0x66AE6631 , 0x3A5B3AA3 ,
0x598A591C , 0x00000000 , 0xCDBCCD93 , 0x1A9D1AE0 , 0xAE6DAE2C , 0x7FC17FAB ,
0x2BB12BC7 , 0xBE0EBEB9 , 0xE080E0A0 , 0x8A5D8A10 , 0x3BD23B52 , 0x64D564BA ,
0xD8A0D888 , 0xE784E7A5 , 0x5F075FE8 , 0x1B141B11 , 0x2CB52CC2 , 0xFC90FCB4 ,
0x312C3127 , 0x80A38065 , 0x73B2732A , 0x0C730C81 , 0x794C795F , 0x6B546B41 ,
0x4B924B02 , 0x53745369 , 0x9436948F , 0x8351831F , 0x2A382A36 , 0xC4B0C49C ,
0x22BD22C8 , 0xD55AD5F8 , 0xBDFCBDC3 , 0x48604878 , 0xFF62FFCE , 0x4C964C07 ,
0x416C4177 , 0xC742C7E6 , 0xEBF7EB24 , 0x1C101C14 , 0x5D7C5D63 , 0x36283622 ,
0x672767C0 , 0xE98CE9AF , 0x441344F9 , 0x149514EA , 0xF59CF5BB , 0xCFC7CF18 ,
0x3F243F2D , 0xC046C0E3 , 0x723B72DB , 0x5470546C , 0x29CA294C , 0xF0E3F035 ,
0x088508FE , 0xC6CBC617 , 0xF311F34F , 0x8CD08CE4 , 0xA493A459 , 0xCAB8CA96 ,
0x68A6683B , 0xB883B84D , 0x38203828 , 0xE5FFE52E , 0xAD9FAD56 , 0x0B770B84 ,
0xC8C3C81D , 0x99CC99FF , 0x580358ED , 0x196F199A , 0x0E080E0A , 0x95BF957E ,
0x70407050 , 0xF7E7F730 , 0x6E2B6ECF , 0x1FE21F6E , 0xB579B53D , 0x090C090F ,
0x61AA6134 , 0x57825716 , 0x9F419F0B , 0x9D3A9D80 , 0x11EA1164 , 0x25B925CD ,
0xAFE4AFDD , 0x459A4508 , 0xDFA4DF8D , 0xA397A35C , 0xEA7EEAD5 , 0x35DA3558 ,
0xED7AEDD0 , 0x431743FC , 0xF866F8CB , 0xFB94FBB1 , 0x37A137D3 , 0xFA1DFA40 ,
0xC23DC268 , 0xB4F0B4CC , 0x32DE325D , 0x9CB39C71 , 0x560B56E7 , 0xE372E3DA ,
0x87A78760 , 0x151C151B , 0xF9EFF93A , 0x63D163BF , 0x345334A9 , 0x9A3E9A85 ,
0xB18FB142 , 0x7C337CD1 , 0x8826889B , 0x3D5F3DA6 , 0xA1ECA1D7 , 0xE476E4DF ,
0x812A8194 , 0x91499101 , 0x0F810FFB , 0xEE88EEAA , 0x16EE1661 , 0xD721D773 ,
0x97C497F5 , 0xA51AA5A8 , 0xFEEBFE3F , 0x6DD96DB5 , 0x78C578AE , 0xC539C56D ,
0x1D991DE5 , 0x76CD76A4 , 0x3EAD3EDC , 0xCB31CB67 , 0xB68BB647 , 0xEF01EF5B ,
0x1218121E , 0x602360C5 , 0x6ADD6AB0 , 0x4D1F4DF6 , 0xCE4ECEE9 , 0xDE2DDE7C ,
0x55F9559D , 0x7E487E5A , 0x214F21B2 , 0x03F2037A , 0xA065A026 , 0x5E8E5E19 ,
0x5A785A66 , 0x655C654B , 0x6258624E , 0xFD19FD45 , 0x068D06F4 , 0x40E54086 ,
0xF298F2BE , 0x335733AC , 0x17671790 , 0x057F058E , 0xE805E85E , 0x4F644F7D ,
0x89AF896A , 0x10631095 , 0x74B6742F , 0x0AFE0A75 , 0x5CF55C92 , 0x9BB79B74 ,
0x2D3C2D33 , 0x30A530D6 , 0x2ECE2E49 , 0x49E94989 , 0x46684672 , 0x77447755 ,
0xA8E0A8D8 , 0x964D9604 , 0x284328BD , 0xA969A929 , 0xD929D979 , 0x862E8691 ,
0xD1ACD187 , 0xF415F44A , 0x8D598D15 , 0xD6A8D682 , 0xB90AB9BC , 0x429E420D ,
0xF66EF6C1 , 0x2F472FB8 , 0xDDDFDD06 , 0x23342339 , 0xCC35CC62 , 0xF16AF1C4 ,
0xC1CFC112 , 0x85DC85EB , 0x8F228F9E , 0x71C971A1 , 0x90C090F0 , 0xAA9BAA53 ,
0x018901F1 , 0x8BD48BE1 , 0x4EED4E8C , 0x8EAB8E6F , 0xAB12ABA2 , 0x6FA26F3E ,
0xE60DE654 , 0xDB52DBF2 , 0x92BB927B , 0xB702B7B6 , 0x692F69CA , 0x39A939D9 ,
0xD3D7D30C , 0xA761A723 , 0xA21EA2AD , 0xC3B4C399 , 0x6C506C44 , 0x07040705 ,
0x04F6047F , 0x27C22746 , 0xAC16ACA7 , 0xD025D076 , 0x50865013 , 0xDC56DCF7 ,
0x8455841A , 0xE109E151 , 0x7ABE7A25 , 0x139113EF } ,
{
0xD939A9D9 , 0x90176790 , 0x719CB371 , 0xD2A6E8D2 , 0x05070405 , 0x9852FD98 ,
0x6580A365 , 0xDFE476DF , 0x08459A08 , 0x024B9202 , 0xA0E080A0 , 0x665A7866 ,
0xDDAFE4DD , 0xB06ADDB0 , 0xBF63D1BF , 0x362A3836 , 0x54E60D54 , 0x4320C643 ,
0x62CC3562 , 0xBEF298BE , 0x1E12181E , 0x24EBF724 , 0xD7A1ECD7 , 0x77416C77 ,
0xBD2843BD , 0x32BC7532 , 0xD47B37D4 , 0x9B88269B , 0x700DFA70 , 0xF94413F9 ,
0xB1FB94B1 , 0x5A7E485A , 0x7A03F27A , 0xE48CD0E4 , 0x47B68B47 , 0x3C24303C ,
0xA5E784A5 , 0x416B5441 , 0x06DDDF06 , 0xC56023C5 , 0x45FD1945 , 0xA33A5BA3 ,
0x68C23D68 , 0x158D5915 , 0x21ECF321 , 0x3166AE31 , 0x3E6FA23E , 0x16578216 ,
0x95106395 , 0x5BEF015B , 0x4DB8834D , 0x91862E91 , 0xB56DD9B5 , 0x1F83511F ,
0x53AA9B53 , 0x635D7C63 , 0x3B68A63B , 0x3FFEEB3F , 0xD630A5D6 , 0x257ABE25 ,
0xA7AC16A7 , 0x0F090C0F , 0x35F0E335 , 0x23A76123 , 0xF090C0F0 , 0xAFE98CAF ,
0x809D3A80 , 0x925CF592 , 0x810C7381 , 0x27312C27 , 0x76D02576 , 0xE7560BE7 ,
0x7B92BB7B , 0xE9CE4EE9 , 0xF10189F1 , 0x9F1E6B9F , 0xA93453A9 , 0xC4F16AC4 ,
0x99C3B499 , 0x975BF197 , 0x8347E183 , 0x6B18E66B , 0xC822BDC8 , 0x0E98450E ,
0x6E1FE26E , 0xC9B3F4C9 , 0x2F74B62F , 0xCBF866CB , 0xFF99CCFF , 0xEA1495EA ,
0xED5803ED , 0xF7DC56F7 , 0xE18BD4E1 , 0x1B151C1B , 0xADA21EAD , 0x0CD3D70C ,
0x2BE2FB2B , 0x1DC8C31D , 0x195E8E19 , 0xC22CB5C2 , 0x8949E989 , 0x12C1CF12 ,
0x7E95BF7E , 0x207DBA20 , 0x6411EA64 , 0x840B7784 , 0x6DC5396D , 0x6A89AF6A ,
0xD17C33D1 , 0xA171C9A1 , 0xCEFF62CE , 0x37BB7137 , 0xFB0F81FB , 0x3DB5793D ,
0x51E10951 , 0xDC3EADDC , 0x2D3F242D , 0xA476CDA4 , 0x9D55F99D , 0xEE82D8EE ,
0x8640E586 , 0xAE78C5AE , 0xCD25B9CD , 0x04964D04 , 0x55774455 , 0x0A0E080A ,
0x13508613 , 0x30F7E730 , 0xD337A1D3 , 0x40FA1D40 , 0x3461AA34 , 0x8C4EED8C ,
0xB3B006B3 , 0x6C54706C , 0x2A73B22A , 0x523BD252 , 0x0B9F410B , 0x8B027B8B ,
0x88D8A088 , 0x4FF3114F , 0x67CB3167 , 0x4627C246 , 0xC06727C0 , 0xB4FC90B4 ,
0x28382028 , 0x7F04F67F , 0x78486078 , 0x2EE5FF2E , 0x074C9607 , 0x4B655C4B ,
0xC72BB1C7 , 0x6F8EAB6F , 0x0D429E0D , 0xBBF59CBB , 0xF2DB52F2 , 0xF34A1BF3 ,
0xA63D5FA6 , 0x59A49359 , 0xBCB90ABC , 0x3AF9EF3A , 0xEF1391EF , 0xFE0885FE ,
0x01914901 , 0x6116EE61 , 0x7CDE2D7C , 0xB2214FB2 , 0x42B18F42 , 0xDB723BDB ,
0xB82F47B8 , 0x48BF8748 , 0x2CAE6D2C , 0xE3C046E3 , 0x573CD657 , 0x859A3E85 ,
0x29A96929 , 0x7D4F647D , 0x94812A94 , 0x492ECE49 , 0x17C6CB17 , 0xCA692FCA ,
0xC3BDFCC3 , 0x5CA3975C , 0x5EE8055E , 0xD0ED7AD0 , 0x87D1AC87 , 0x8E057F8E ,
0xBA64D5BA , 0xA8A51AA8 , 0xB7264BB7 , 0xB9BE0EB9 , 0x6087A760 , 0xF8D55AF8 ,
0x22362822 , 0x111B1411 , 0xDE753FDE , 0x79D92979 , 0xAAEE88AA , 0x332D3C33 ,
0x5F794C5F , 0xB6B702B6 , 0x96CAB896 , 0x5835DA58 , 0x9CC4B09C , 0xFC4317FC ,
0x1A84551A , 0xF64D1FF6 , 0x1C598A1C , 0x38B27D38 , 0xAC3357AC , 0x18CFC718 ,
0xF4068DF4 , 0x69537469 , 0x749BB774 , 0xF597C4F5 , 0x56AD9F56 , 0xDAE372DA ,
0xD5EA7ED5 , 0x4AF4154A , 0x9E8F229E , 0xA2AB12A2 , 0x4E62584E , 0xE85F07E8 ,
0xE51D99E5 , 0x39233439 , 0xC1F66EC1 , 0x446C5044 , 0x5D32DE5D , 0x72466872 ,
0x26A06526 , 0x93CDBC93 , 0x03DADB03 , 0xC6BAF8C6 , 0xFA9EC8FA , 0x82D6A882 ,
0xCF6E2BCF , 0x50704050 , 0xEB85DCEB , 0x750AFE75 , 0x8A93328A , 0x8DDFA48D ,
0x4C29CA4C , 0x141C1014 , 0x73D72173 , 0xCCB4F0CC , 0x09D4D309 , 0x108A5D10 ,
0xE2510FE2 , 0x00000000 , 0x9A196F9A , 0xE01A9DE0 , 0x8F94368F , 0xE6C742E6 ,
0xECC94AEC , 0xFDD25EFD , 0xAB7FC1AB , 0xD8A8E0D8 }
} ;
/* The exp_to_poly and poly_to_exp tables are used to perform efficient
* operations in GF ( 2 ^ 8 ) represented as GF ( 2 ) [ x ] / w ( x ) where
* w ( x ) = x ^ 8 + x ^ 6 + x ^ 3 + x ^ 2 + 1. We care about doing that because it ' s part of the
* definition of the RS matrix in the key schedule . Elements of that field
* are polynomials of degree not greater than 7 and all coefficients 0 or 1 ,
* which can be represented naturally by bytes ( just substitute x = 2 ) . In that
* form , GF ( 2 ^ 8 ) addition is the same as bitwise XOR , but GF ( 2 ^ 8 )
* multiplication is inefficient without hardware support . To multiply
* faster , I make use of the fact x is a generator for the nonzero elements ,
* so that every element p of GF ( 2 ) [ x ] / w ( x ) is either 0 or equal to ( x ) ^ n for
* some n in 0. .254 . Note that that caret is exponentiation in GF ( 2 ^ 8 ) ,
* * not * polynomial notation . So if I want to compute pq where p and q are
* in GF ( 2 ^ 8 ) , I can just say :
* 1. if p = 0 or q = 0 then pq = 0
* 2. otherwise , find m and n such that p = x ^ m and q = x ^ n
* 3. pq = ( x ^ m ) ( x ^ n ) = x ^ ( m + n ) , so add m and n and find pq
* The translations in steps 2 and 3 are looked up in the tables
* poly_to_exp ( for step 2 ) and exp_to_poly ( for step 3 ) . To see this
* in action , look at the CALC_S macro . As additional wrinkles , note that
* one of my operands is always a constant , so the poly_to_exp lookup on it
* is done in advance ; I included the original values in the comments so
* readers can have some chance of recognizing that this * is * the RS matrix
* from the Twofish paper . I ' ve only included the table entries I actually
* need ; I never do a lookup on a variable input of zero and the biggest
* exponents I ' ll ever see are 254 ( variable ) and 237 ( constant ) , so they ' ll
* never sum to more than 491. I ' m repeating part of the exp_to_poly table
* so that I don ' t have to do mod - 255 reduction in the exponent arithmetic .
* Since I know my constant operands are never zero , I only have to worry
* about zero values in the variable operand , and I do it with a simple
* conditional branch . I know conditionals are expensive , but I couldn ' t
* see a non - horrible way of avoiding them , and I did manage to group the
* statements so that each if covers four group multiplications . */
static const u8 poly_to_exp [ 255 ] = {
0x00 , 0x01 , 0x17 , 0x02 , 0x2E , 0x18 , 0x53 , 0x03 , 0x6A , 0x2F , 0x93 , 0x19 ,
0x34 , 0x54 , 0x45 , 0x04 , 0x5C , 0x6B , 0xB6 , 0x30 , 0xA6 , 0x94 , 0x4B , 0x1A ,
0x8C , 0x35 , 0x81 , 0x55 , 0xAA , 0x46 , 0x0D , 0x05 , 0x24 , 0x5D , 0x87 , 0x6C ,
0x9B , 0xB7 , 0xC1 , 0x31 , 0x2B , 0xA7 , 0xA3 , 0x95 , 0x98 , 0x4C , 0xCA , 0x1B ,
0xE6 , 0x8D , 0x73 , 0x36 , 0xCD , 0x82 , 0x12 , 0x56 , 0x62 , 0xAB , 0xF0 , 0x47 ,
0x4F , 0x0E , 0xBD , 0x06 , 0xD4 , 0x25 , 0xD2 , 0x5E , 0x27 , 0x88 , 0x66 , 0x6D ,
0xD6 , 0x9C , 0x79 , 0xB8 , 0x08 , 0xC2 , 0xDF , 0x32 , 0x68 , 0x2C , 0xFD , 0xA8 ,
0x8A , 0xA4 , 0x5A , 0x96 , 0x29 , 0x99 , 0x22 , 0x4D , 0x60 , 0xCB , 0xE4 , 0x1C ,
0x7B , 0xE7 , 0x3B , 0x8E , 0x9E , 0x74 , 0xF4 , 0x37 , 0xD8 , 0xCE , 0xF9 , 0x83 ,
0x6F , 0x13 , 0xB2 , 0x57 , 0xE1 , 0x63 , 0xDC , 0xAC , 0xC4 , 0xF1 , 0xAF , 0x48 ,
0x0A , 0x50 , 0x42 , 0x0F , 0xBA , 0xBE , 0xC7 , 0x07 , 0xDE , 0xD5 , 0x78 , 0x26 ,
0x65 , 0xD3 , 0xD1 , 0x5F , 0xE3 , 0x28 , 0x21 , 0x89 , 0x59 , 0x67 , 0xFC , 0x6E ,
0xB1 , 0xD7 , 0xF8 , 0x9D , 0xF3 , 0x7A , 0x3A , 0xB9 , 0xC6 , 0x09 , 0x41 , 0xC3 ,
0xAE , 0xE0 , 0xDB , 0x33 , 0x44 , 0x69 , 0x92 , 0x2D , 0x52 , 0xFE , 0x16 , 0xA9 ,
0x0C , 0x8B , 0x80 , 0xA5 , 0x4A , 0x5B , 0xB5 , 0x97 , 0xC9 , 0x2A , 0xA2 , 0x9A ,
0xC0 , 0x23 , 0x86 , 0x4E , 0xBC , 0x61 , 0xEF , 0xCC , 0x11 , 0xE5 , 0x72 , 0x1D ,
0x3D , 0x7C , 0xEB , 0xE8 , 0xE9 , 0x3C , 0xEA , 0x8F , 0x7D , 0x9F , 0xEC , 0x75 ,
0x1E , 0xF5 , 0x3E , 0x38 , 0xF6 , 0xD9 , 0x3F , 0xCF , 0x76 , 0xFA , 0x1F , 0x84 ,
0xA0 , 0x70 , 0xED , 0x14 , 0x90 , 0xB3 , 0x7E , 0x58 , 0xFB , 0xE2 , 0x20 , 0x64 ,
0xD0 , 0xDD , 0x77 , 0xAD , 0xDA , 0xC5 , 0x40 , 0xF2 , 0x39 , 0xB0 , 0xF7 , 0x49 ,
0xB4 , 0x0B , 0x7F , 0x51 , 0x15 , 0x43 , 0x91 , 0x10 , 0x71 , 0xBB , 0xEE , 0xBF ,
0x85 , 0xC8 , 0xA1
} ;
static const u8 exp_to_poly [ 492 ] = {
0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0x4D , 0x9A , 0x79 , 0xF2 ,
0xA9 , 0x1F , 0x3E , 0x7C , 0xF8 , 0xBD , 0x37 , 0x6E , 0xDC , 0xF5 , 0xA7 , 0x03 ,
0x06 , 0x0C , 0x18 , 0x30 , 0x60 , 0xC0 , 0xCD , 0xD7 , 0xE3 , 0x8B , 0x5B , 0xB6 ,
0x21 , 0x42 , 0x84 , 0x45 , 0x8A , 0x59 , 0xB2 , 0x29 , 0x52 , 0xA4 , 0x05 , 0x0A ,
0x14 , 0x28 , 0x50 , 0xA0 , 0x0D , 0x1A , 0x34 , 0x68 , 0xD0 , 0xED , 0x97 , 0x63 ,
0xC6 , 0xC1 , 0xCF , 0xD3 , 0xEB , 0x9B , 0x7B , 0xF6 , 0xA1 , 0x0F , 0x1E , 0x3C ,
0x78 , 0xF0 , 0xAD , 0x17 , 0x2E , 0x5C , 0xB8 , 0x3D , 0x7A , 0xF4 , 0xA5 , 0x07 ,
0x0E , 0x1C , 0x38 , 0x70 , 0xE0 , 0x8D , 0x57 , 0xAE , 0x11 , 0x22 , 0x44 , 0x88 ,
0x5D , 0xBA , 0x39 , 0x72 , 0xE4 , 0x85 , 0x47 , 0x8E , 0x51 , 0xA2 , 0x09 , 0x12 ,
0x24 , 0x48 , 0x90 , 0x6D , 0xDA , 0xF9 , 0xBF , 0x33 , 0x66 , 0xCC , 0xD5 , 0xE7 ,
0x83 , 0x4B , 0x96 , 0x61 , 0xC2 , 0xC9 , 0xDF , 0xF3 , 0xAB , 0x1B , 0x36 , 0x6C ,
0xD8 , 0xFD , 0xB7 , 0x23 , 0x46 , 0x8C , 0x55 , 0xAA , 0x19 , 0x32 , 0x64 , 0xC8 ,
0xDD , 0xF7 , 0xA3 , 0x0B , 0x16 , 0x2C , 0x58 , 0xB0 , 0x2D , 0x5A , 0xB4 , 0x25 ,
0x4A , 0x94 , 0x65 , 0xCA , 0xD9 , 0xFF , 0xB3 , 0x2B , 0x56 , 0xAC , 0x15 , 0x2A ,
0x54 , 0xA8 , 0x1D , 0x3A , 0x74 , 0xE8 , 0x9D , 0x77 , 0xEE , 0x91 , 0x6F , 0xDE ,
0xF1 , 0xAF , 0x13 , 0x26 , 0x4C , 0x98 , 0x7D , 0xFA , 0xB9 , 0x3F , 0x7E , 0xFC ,
0xB5 , 0x27 , 0x4E , 0x9C , 0x75 , 0xEA , 0x99 , 0x7F , 0xFE , 0xB1 , 0x2F , 0x5E ,
0xBC , 0x35 , 0x6A , 0xD4 , 0xE5 , 0x87 , 0x43 , 0x86 , 0x41 , 0x82 , 0x49 , 0x92 ,
0x69 , 0xD2 , 0xE9 , 0x9F , 0x73 , 0xE6 , 0x81 , 0x4F , 0x9E , 0x71 , 0xE2 , 0x89 ,
0x5F , 0xBE , 0x31 , 0x62 , 0xC4 , 0xC5 , 0xC7 , 0xC3 , 0xCB , 0xDB , 0xFB , 0xBB ,
0x3B , 0x76 , 0xEC , 0x95 , 0x67 , 0xCE , 0xD1 , 0xEF , 0x93 , 0x6B , 0xD6 , 0xE1 ,
0x8F , 0x53 , 0xA6 , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0x4D ,
0x9A , 0x79 , 0xF2 , 0xA9 , 0x1F , 0x3E , 0x7C , 0xF8 , 0xBD , 0x37 , 0x6E , 0xDC ,
0xF5 , 0xA7 , 0x03 , 0x06 , 0x0C , 0x18 , 0x30 , 0x60 , 0xC0 , 0xCD , 0xD7 , 0xE3 ,
0x8B , 0x5B , 0xB6 , 0x21 , 0x42 , 0x84 , 0x45 , 0x8A , 0x59 , 0xB2 , 0x29 , 0x52 ,
0xA4 , 0x05 , 0x0A , 0x14 , 0x28 , 0x50 , 0xA0 , 0x0D , 0x1A , 0x34 , 0x68 , 0xD0 ,
0xED , 0x97 , 0x63 , 0xC6 , 0xC1 , 0xCF , 0xD3 , 0xEB , 0x9B , 0x7B , 0xF6 , 0xA1 ,
0x0F , 0x1E , 0x3C , 0x78 , 0xF0 , 0xAD , 0x17 , 0x2E , 0x5C , 0xB8 , 0x3D , 0x7A ,
0xF4 , 0xA5 , 0x07 , 0x0E , 0x1C , 0x38 , 0x70 , 0xE0 , 0x8D , 0x57 , 0xAE , 0x11 ,
0x22 , 0x44 , 0x88 , 0x5D , 0xBA , 0x39 , 0x72 , 0xE4 , 0x85 , 0x47 , 0x8E , 0x51 ,
0xA2 , 0x09 , 0x12 , 0x24 , 0x48 , 0x90 , 0x6D , 0xDA , 0xF9 , 0xBF , 0x33 , 0x66 ,
0xCC , 0xD5 , 0xE7 , 0x83 , 0x4B , 0x96 , 0x61 , 0xC2 , 0xC9 , 0xDF , 0xF3 , 0xAB ,
0x1B , 0x36 , 0x6C , 0xD8 , 0xFD , 0xB7 , 0x23 , 0x46 , 0x8C , 0x55 , 0xAA , 0x19 ,
0x32 , 0x64 , 0xC8 , 0xDD , 0xF7 , 0xA3 , 0x0B , 0x16 , 0x2C , 0x58 , 0xB0 , 0x2D ,
0x5A , 0xB4 , 0x25 , 0x4A , 0x94 , 0x65 , 0xCA , 0xD9 , 0xFF , 0xB3 , 0x2B , 0x56 ,
0xAC , 0x15 , 0x2A , 0x54 , 0xA8 , 0x1D , 0x3A , 0x74 , 0xE8 , 0x9D , 0x77 , 0xEE ,
0x91 , 0x6F , 0xDE , 0xF1 , 0xAF , 0x13 , 0x26 , 0x4C , 0x98 , 0x7D , 0xFA , 0xB9 ,
0x3F , 0x7E , 0xFC , 0xB5 , 0x27 , 0x4E , 0x9C , 0x75 , 0xEA , 0x99 , 0x7F , 0xFE ,
0xB1 , 0x2F , 0x5E , 0xBC , 0x35 , 0x6A , 0xD4 , 0xE5 , 0x87 , 0x43 , 0x86 , 0x41 ,
0x82 , 0x49 , 0x92 , 0x69 , 0xD2 , 0xE9 , 0x9F , 0x73 , 0xE6 , 0x81 , 0x4F , 0x9E ,
0x71 , 0xE2 , 0x89 , 0x5F , 0xBE , 0x31 , 0x62 , 0xC4 , 0xC5 , 0xC7 , 0xC3 , 0xCB
} ;
/* The table constants are indices of
* S - box entries , preprocessed through q0 and q1 . */
static const u8 calc_sb_tbl [ 512 ] = {
0xA9 , 0x75 , 0x67 , 0xF3 , 0xB3 , 0xC6 , 0xE8 , 0xF4 ,
0x04 , 0xDB , 0xFD , 0x7B , 0xA3 , 0xFB , 0x76 , 0xC8 ,
0x9A , 0x4A , 0x92 , 0xD3 , 0x80 , 0xE6 , 0x78 , 0x6B ,
0xE4 , 0x45 , 0xDD , 0x7D , 0xD1 , 0xE8 , 0x38 , 0x4B ,
0x0D , 0xD6 , 0xC6 , 0x32 , 0x35 , 0xD8 , 0x98 , 0xFD ,
0x18 , 0x37 , 0xF7 , 0x71 , 0xEC , 0xF1 , 0x6C , 0xE1 ,
0x43 , 0x30 , 0x75 , 0x0F , 0x37 , 0xF8 , 0x26 , 0x1B ,
0xFA , 0x87 , 0x13 , 0xFA , 0x94 , 0x06 , 0x48 , 0x3F ,
0xF2 , 0x5E , 0xD0 , 0xBA , 0x8B , 0xAE , 0x30 , 0x5B ,
0x84 , 0x8A , 0x54 , 0x00 , 0xDF , 0xBC , 0x23 , 0x9D ,
0x19 , 0x6D , 0x5B , 0xC1 , 0x3D , 0xB1 , 0x59 , 0x0E ,
0xF3 , 0x80 , 0xAE , 0x5D , 0xA2 , 0xD2 , 0x82 , 0xD5 ,
0x63 , 0xA0 , 0x01 , 0x84 , 0x83 , 0x07 , 0x2E , 0x14 ,
0xD9 , 0xB5 , 0x51 , 0x90 , 0x9B , 0x2C , 0x7C , 0xA3 ,
0xA6 , 0xB2 , 0xEB , 0x73 , 0xA5 , 0x4C , 0xBE , 0x54 ,
0x16 , 0x92 , 0x0C , 0x74 , 0xE3 , 0x36 , 0x61 , 0x51 ,
0xC0 , 0x38 , 0x8C , 0xB0 , 0x3A , 0xBD , 0xF5 , 0x5A ,
0x73 , 0xFC , 0x2C , 0x60 , 0x25 , 0x62 , 0x0B , 0x96 ,
0xBB , 0x6C , 0x4E , 0x42 , 0x89 , 0xF7 , 0x6B , 0x10 ,
0x53 , 0x7C , 0x6A , 0x28 , 0xB4 , 0x27 , 0xF1 , 0x8C ,
0xE1 , 0x13 , 0xE6 , 0x95 , 0xBD , 0x9C , 0x45 , 0xC7 ,
0xE2 , 0x24 , 0xF4 , 0x46 , 0xB6 , 0x3B , 0x66 , 0x70 ,
0xCC , 0xCA , 0x95 , 0xE3 , 0x03 , 0x85 , 0x56 , 0xCB ,
0xD4 , 0x11 , 0x1C , 0xD0 , 0x1E , 0x93 , 0xD7 , 0xB8 ,
0xFB , 0xA6 , 0xC3 , 0x83 , 0x8E , 0x20 , 0xB5 , 0xFF ,
0xE9 , 0x9F , 0xCF , 0x77 , 0xBF , 0xC3 , 0xBA , 0xCC ,
0xEA , 0x03 , 0x77 , 0x6F , 0x39 , 0x08 , 0xAF , 0xBF ,
0x33 , 0x40 , 0xC9 , 0xE7 , 0x62 , 0x2B , 0x71 , 0xE2 ,
0x81 , 0x79 , 0x79 , 0x0C , 0x09 , 0xAA , 0xAD , 0x82 ,
0x24 , 0x41 , 0xCD , 0x3A , 0xF9 , 0xEA , 0xD8 , 0xB9 ,
0xE5 , 0xE4 , 0xC5 , 0x9A , 0xB9 , 0xA4 , 0x4D , 0x97 ,
0x44 , 0x7E , 0x08 , 0xDA , 0x86 , 0x7A , 0xE7 , 0x17 ,
0xA1 , 0x66 , 0x1D , 0x94 , 0xAA , 0xA1 , 0xED , 0x1D ,
0x06 , 0x3D , 0x70 , 0xF0 , 0xB2 , 0xDE , 0xD2 , 0xB3 ,
0x41 , 0x0B , 0x7B , 0x72 , 0xA0 , 0xA7 , 0x11 , 0x1C ,
0x31 , 0xEF , 0xC2 , 0xD1 , 0x27 , 0x53 , 0x90 , 0x3E ,
0x20 , 0x8F , 0xF6 , 0x33 , 0x60 , 0x26 , 0xFF , 0x5F ,
0x96 , 0xEC , 0x5C , 0x76 , 0xB1 , 0x2A , 0xAB , 0x49 ,
0x9E , 0x81 , 0x9C , 0x88 , 0x52 , 0xEE , 0x1B , 0x21 ,
0x5F , 0xC4 , 0x93 , 0x1A , 0x0A , 0xEB , 0xEF , 0xD9 ,
0x91 , 0xC5 , 0x85 , 0x39 , 0x49 , 0x99 , 0xEE , 0xCD ,
0x2D , 0xAD , 0x4F , 0x31 , 0x8F , 0x8B , 0x3B , 0x01 ,
0x47 , 0x18 , 0x87 , 0x23 , 0x6D , 0xDD , 0x46 , 0x1F ,
0xD6 , 0x4E , 0x3E , 0x2D , 0x69 , 0xF9 , 0x64 , 0x48 ,
0x2A , 0x4F , 0xCE , 0xF2 , 0xCB , 0x65 , 0x2F , 0x8E ,
0xFC , 0x78 , 0x97 , 0x5C , 0x05 , 0x58 , 0x7A , 0x19 ,
0xAC , 0x8D , 0x7F , 0xE5 , 0xD5 , 0x98 , 0x1A , 0x57 ,
0x4B , 0x67 , 0x0E , 0x7F , 0xA7 , 0x05 , 0x5A , 0x64 ,
0x28 , 0xAF , 0x14 , 0x63 , 0x3F , 0xB6 , 0x29 , 0xFE ,
0x88 , 0xF5 , 0x3C , 0xB7 , 0x4C , 0x3C , 0x02 , 0xA5 ,
0xB8 , 0xCE , 0xDA , 0xE9 , 0xB0 , 0x68 , 0x17 , 0x44 ,
0x55 , 0xE0 , 0x1F , 0x4D , 0x8A , 0x43 , 0x7D , 0x69 ,
0x57 , 0x29 , 0xC7 , 0x2E , 0x8D , 0xAC , 0x74 , 0x15 ,
0xB7 , 0x59 , 0xC4 , 0xA8 , 0x9F , 0x0A , 0x72 , 0x9E ,
0x7E , 0x6E , 0x15 , 0x47 , 0x22 , 0xDF , 0x12 , 0x34 ,
0x58 , 0x35 , 0x07 , 0x6A , 0x99 , 0xCF , 0x34 , 0xDC ,
0x6E , 0x22 , 0x50 , 0xC9 , 0xDE , 0xC0 , 0x68 , 0x9B ,
0x65 , 0x89 , 0xBC , 0xD4 , 0xDB , 0xED , 0xF8 , 0xAB ,
0xC8 , 0x12 , 0xA8 , 0xA2 , 0x2B , 0x0D , 0x40 , 0x52 ,
0xDC , 0xBB , 0xFE , 0x02 , 0x32 , 0x2F , 0xA4 , 0xA9 ,
0xCA , 0xD7 , 0x10 , 0x61 , 0x21 , 0x1E , 0xF0 , 0xB4 ,
0xD3 , 0x50 , 0x5D , 0x04 , 0x0F , 0xF6 , 0x00 , 0xC2 ,
0x6F , 0x16 , 0x9D , 0x25 , 0x36 , 0x86 , 0x42 , 0x56 ,
0x4A , 0x55 , 0x5E , 0x09 , 0xC1 , 0xBE , 0xE0 , 0x91
} ;
/* Macro to perform one column of the RS matrix multiplication. The
* parameters a , b , c , and d are the four bytes of output ; i is the index
* of the key bytes , and w , x , y , and z , are the column of constants from
* the RS matrix , preprocessed through the poly_to_exp table . */
# define CALC_S(a, b, c, d, i, w, x, y, z) \
if ( key [ i ] ) { \
tmp = poly_to_exp [ key [ i ] - 1 ] ; \
( a ) ^ = exp_to_poly [ tmp + ( w ) ] ; \
( b ) ^ = exp_to_poly [ tmp + ( x ) ] ; \
( c ) ^ = exp_to_poly [ tmp + ( y ) ] ; \
( d ) ^ = exp_to_poly [ tmp + ( z ) ] ; \
}
/* Macros to calculate the key-dependent S-boxes for a 128-bit key using
* the S vector from CALC_S . CALC_SB_2 computes a single entry in all
* four S - boxes , where i is the index of the entry to compute , and a and b
* are the index numbers preprocessed through the q0 and q1 tables
* respectively . */
# define CALC_SB_2(i, a, b) \
ctx - > s [ 0 ] [ i ] = mds [ 0 ] [ q0 [ ( a ) ^ sa ] ^ se ] ; \
ctx - > s [ 1 ] [ i ] = mds [ 1 ] [ q0 [ ( b ) ^ sb ] ^ sf ] ; \
ctx - > s [ 2 ] [ i ] = mds [ 2 ] [ q1 [ ( a ) ^ sc ] ^ sg ] ; \
ctx - > s [ 3 ] [ i ] = mds [ 3 ] [ q1 [ ( b ) ^ sd ] ^ sh ]
/* Macro exactly like CALC_SB_2, but for 192-bit keys. */
# define CALC_SB192_2(i, a, b) \
ctx - > s [ 0 ] [ i ] = mds [ 0 ] [ q0 [ q0 [ ( b ) ^ sa ] ^ se ] ^ si ] ; \
ctx - > s [ 1 ] [ i ] = mds [ 1 ] [ q0 [ q1 [ ( b ) ^ sb ] ^ sf ] ^ sj ] ; \
ctx - > s [ 2 ] [ i ] = mds [ 2 ] [ q1 [ q0 [ ( a ) ^ sc ] ^ sg ] ^ sk ] ; \
ctx - > s [ 3 ] [ i ] = mds [ 3 ] [ q1 [ q1 [ ( a ) ^ sd ] ^ sh ] ^ sl ] ;
/* Macro exactly like CALC_SB_2, but for 256-bit keys. */
# define CALC_SB256_2(i, a, b) \
ctx - > s [ 0 ] [ i ] = mds [ 0 ] [ q0 [ q0 [ q1 [ ( b ) ^ sa ] ^ se ] ^ si ] ^ sm ] ; \
ctx - > s [ 1 ] [ i ] = mds [ 1 ] [ q0 [ q1 [ q1 [ ( a ) ^ sb ] ^ sf ] ^ sj ] ^ sn ] ; \
ctx - > s [ 2 ] [ i ] = mds [ 2 ] [ q1 [ q0 [ q0 [ ( a ) ^ sc ] ^ sg ] ^ sk ] ^ so ] ; \
ctx - > s [ 3 ] [ i ] = mds [ 3 ] [ q1 [ q1 [ q0 [ ( b ) ^ sd ] ^ sh ] ^ sl ] ^ sp ] ;
/* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the
* last two stages of the h ( ) function for a given index ( either 2 i or 2 i + 1 ) .
* a , b , c , and d are the four bytes going into the last two stages . For
* 128 - bit keys , this is the entire h ( ) function and a and c are the index
* preprocessed through q0 and q1 respectively ; for longer keys they are the
* output of previous stages . j is the index of the first key byte to use .
* CALC_K computes a pair of subkeys for 128 - bit Twofish , by calling CALC_K_2
* twice , doing the Pseudo - Hadamard Transform , and doing the necessary
* rotations . Its parameters are : a , the array to write the results into ,
* j , the index of the first output entry , k and l , the preprocessed indices
* for index 2 i , and m and n , the preprocessed indices for index 2 i + 1.
* CALC_K192_2 expands CALC_K_2 to handle 192 - bit keys , by doing an
* additional lookup - and - XOR stage . The parameters a , b , c and d are the
* four bytes going into the last three stages . For 192 - bit keys , c = d
* are the index preprocessed through q0 , and a = b are the index
* preprocessed through q1 ; j is the index of the first key byte to use .
* CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
* instead of CALC_K_2 .
* CALC_K256_2 expands CALC_K192_2 to handle 256 - bit keys , by doing an
* additional lookup - and - XOR stage . The parameters a and b are the index
* preprocessed through q0 and q1 respectively ; j is the index of the first
* key byte to use . CALC_K256 is identical to CALC_K but for using the
* CALC_K256_2 macro instead of CALC_K_2 . */
# define CALC_K_2(a, b, c, d, j) \
mds [ 0 ] [ q0 [ a ^ key [ ( j ) + 8 ] ] ^ key [ j ] ] \
^ mds [ 1 ] [ q0 [ b ^ key [ ( j ) + 9 ] ] ^ key [ ( j ) + 1 ] ] \
^ mds [ 2 ] [ q1 [ c ^ key [ ( j ) + 10 ] ] ^ key [ ( j ) + 2 ] ] \
^ mds [ 3 ] [ q1 [ d ^ key [ ( j ) + 11 ] ] ^ key [ ( j ) + 3 ] ]
# define CALC_K(a, j, k, l, m, n) \
x = CALC_K_2 ( k , l , k , l , 0 ) ; \
y = CALC_K_2 ( m , n , m , n , 4 ) ; \
y = rol32 ( y , 8 ) ; \
x + = y ; y + = x ; ctx - > a [ j ] = x ; \
ctx - > a [ ( j ) + 1 ] = rol32 ( y , 9 )
# define CALC_K192_2(a, b, c, d, j) \
CALC_K_2 ( q0 [ a ^ key [ ( j ) + 16 ] ] , \
q1 [ b ^ key [ ( j ) + 17 ] ] , \
q0 [ c ^ key [ ( j ) + 18 ] ] , \
q1 [ d ^ key [ ( j ) + 19 ] ] , j )
# define CALC_K192(a, j, k, l, m, n) \
x = CALC_K192_2 ( l , l , k , k , 0 ) ; \
y = CALC_K192_2 ( n , n , m , m , 4 ) ; \
y = rol32 ( y , 8 ) ; \
x + = y ; y + = x ; ctx - > a [ j ] = x ; \
ctx - > a [ ( j ) + 1 ] = rol32 ( y , 9 )
# define CALC_K256_2(a, b, j) \
CALC_K192_2 ( q1 [ b ^ key [ ( j ) + 24 ] ] , \
q1 [ a ^ key [ ( j ) + 25 ] ] , \
q0 [ a ^ key [ ( j ) + 26 ] ] , \
q0 [ b ^ key [ ( j ) + 27 ] ] , j )
# define CALC_K256(a, j, k, l, m, n) \
x = CALC_K256_2 ( k , l , 0 ) ; \
y = CALC_K256_2 ( m , n , 4 ) ; \
y = rol32 ( y , 8 ) ; \
x + = y ; y + = x ; ctx - > a [ j ] = x ; \
ctx - > a [ ( j ) + 1 ] = rol32 ( y , 9 )
/* Perform the key setup. */
2006-08-13 14:16:39 +10:00
int twofish_setkey ( struct crypto_tfm * tfm , const u8 * key , unsigned int key_len )
2006-06-20 20:37:23 +10:00
{
struct twofish_ctx * ctx = crypto_tfm_ctx ( tfm ) ;
2006-08-13 14:16:39 +10:00
u32 * flags = & tfm - > crt_flags ;
2006-06-20 20:37:23 +10:00
int i , j , k ;
/* Temporaries for CALC_K. */
u32 x , y ;
/* The S vector used to key the S-boxes, split up into individual bytes.
* 128 - bit keys use only sa through sh ; 256 - bit use all of them . */
u8 sa = 0 , sb = 0 , sc = 0 , sd = 0 , se = 0 , sf = 0 , sg = 0 , sh = 0 ;
u8 si = 0 , sj = 0 , sk = 0 , sl = 0 , sm = 0 , sn = 0 , so = 0 , sp = 0 ;
/* Temporary for CALC_S. */
u8 tmp ;
/* Check key length. */
2006-08-13 14:16:39 +10:00
if ( key_len % 8 )
2006-06-20 20:37:23 +10:00
{
* flags | = CRYPTO_TFM_RES_BAD_KEY_LEN ;
return - EINVAL ; /* unsupported key length */
}
/* Compute the first two words of the S vector. The magic numbers are
* the entries of the RS matrix , preprocessed through poly_to_exp . The
* numbers in the comments are the original ( polynomial form ) matrix
* entries . */
CALC_S ( sa , sb , sc , sd , 0 , 0x00 , 0x2D , 0x01 , 0x2D ) ; /* 01 A4 02 A4 */
CALC_S ( sa , sb , sc , sd , 1 , 0x2D , 0xA4 , 0x44 , 0x8A ) ; /* A4 56 A1 55 */
CALC_S ( sa , sb , sc , sd , 2 , 0x8A , 0xD5 , 0xBF , 0xD1 ) ; /* 55 82 FC 87 */
CALC_S ( sa , sb , sc , sd , 3 , 0xD1 , 0x7F , 0x3D , 0x99 ) ; /* 87 F3 C1 5A */
CALC_S ( sa , sb , sc , sd , 4 , 0x99 , 0x46 , 0x66 , 0x96 ) ; /* 5A 1E 47 58 */
CALC_S ( sa , sb , sc , sd , 5 , 0x96 , 0x3C , 0x5B , 0xED ) ; /* 58 C6 AE DB */
CALC_S ( sa , sb , sc , sd , 6 , 0xED , 0x37 , 0x4F , 0xE0 ) ; /* DB 68 3D 9E */
CALC_S ( sa , sb , sc , sd , 7 , 0xE0 , 0xD0 , 0x8C , 0x17 ) ; /* 9E E5 19 03 */
CALC_S ( se , sf , sg , sh , 8 , 0x00 , 0x2D , 0x01 , 0x2D ) ; /* 01 A4 02 A4 */
CALC_S ( se , sf , sg , sh , 9 , 0x2D , 0xA4 , 0x44 , 0x8A ) ; /* A4 56 A1 55 */
CALC_S ( se , sf , sg , sh , 10 , 0x8A , 0xD5 , 0xBF , 0xD1 ) ; /* 55 82 FC 87 */
CALC_S ( se , sf , sg , sh , 11 , 0xD1 , 0x7F , 0x3D , 0x99 ) ; /* 87 F3 C1 5A */
CALC_S ( se , sf , sg , sh , 12 , 0x99 , 0x46 , 0x66 , 0x96 ) ; /* 5A 1E 47 58 */
CALC_S ( se , sf , sg , sh , 13 , 0x96 , 0x3C , 0x5B , 0xED ) ; /* 58 C6 AE DB */
CALC_S ( se , sf , sg , sh , 14 , 0xED , 0x37 , 0x4F , 0xE0 ) ; /* DB 68 3D 9E */
CALC_S ( se , sf , sg , sh , 15 , 0xE0 , 0xD0 , 0x8C , 0x17 ) ; /* 9E E5 19 03 */
if ( key_len = = 24 | | key_len = = 32 ) { /* 192- or 256-bit key */
/* Calculate the third word of the S vector */
CALC_S ( si , sj , sk , sl , 16 , 0x00 , 0x2D , 0x01 , 0x2D ) ; /* 01 A4 02 A4 */
CALC_S ( si , sj , sk , sl , 17 , 0x2D , 0xA4 , 0x44 , 0x8A ) ; /* A4 56 A1 55 */
CALC_S ( si , sj , sk , sl , 18 , 0x8A , 0xD5 , 0xBF , 0xD1 ) ; /* 55 82 FC 87 */
CALC_S ( si , sj , sk , sl , 19 , 0xD1 , 0x7F , 0x3D , 0x99 ) ; /* 87 F3 C1 5A */
CALC_S ( si , sj , sk , sl , 20 , 0x99 , 0x46 , 0x66 , 0x96 ) ; /* 5A 1E 47 58 */
CALC_S ( si , sj , sk , sl , 21 , 0x96 , 0x3C , 0x5B , 0xED ) ; /* 58 C6 AE DB */
CALC_S ( si , sj , sk , sl , 22 , 0xED , 0x37 , 0x4F , 0xE0 ) ; /* DB 68 3D 9E */
CALC_S ( si , sj , sk , sl , 23 , 0xE0 , 0xD0 , 0x8C , 0x17 ) ; /* 9E E5 19 03 */
}
if ( key_len = = 32 ) { /* 256-bit key */
/* Calculate the fourth word of the S vector */
CALC_S ( sm , sn , so , sp , 24 , 0x00 , 0x2D , 0x01 , 0x2D ) ; /* 01 A4 02 A4 */
CALC_S ( sm , sn , so , sp , 25 , 0x2D , 0xA4 , 0x44 , 0x8A ) ; /* A4 56 A1 55 */
CALC_S ( sm , sn , so , sp , 26 , 0x8A , 0xD5 , 0xBF , 0xD1 ) ; /* 55 82 FC 87 */
CALC_S ( sm , sn , so , sp , 27 , 0xD1 , 0x7F , 0x3D , 0x99 ) ; /* 87 F3 C1 5A */
CALC_S ( sm , sn , so , sp , 28 , 0x99 , 0x46 , 0x66 , 0x96 ) ; /* 5A 1E 47 58 */
CALC_S ( sm , sn , so , sp , 29 , 0x96 , 0x3C , 0x5B , 0xED ) ; /* 58 C6 AE DB */
CALC_S ( sm , sn , so , sp , 30 , 0xED , 0x37 , 0x4F , 0xE0 ) ; /* DB 68 3D 9E */
CALC_S ( sm , sn , so , sp , 31 , 0xE0 , 0xD0 , 0x8C , 0x17 ) ; /* 9E E5 19 03 */
/* Compute the S-boxes. */
for ( i = j = 0 , k = 1 ; i < 256 ; i + + , j + = 2 , k + = 2 ) {
CALC_SB256_2 ( i , calc_sb_tbl [ j ] , calc_sb_tbl [ k ] ) ;
}
/* Calculate whitening and round subkeys. The constants are
* indices of subkeys , preprocessed through q0 and q1 . */
CALC_K256 ( w , 0 , 0xA9 , 0x75 , 0x67 , 0xF3 ) ;
CALC_K256 ( w , 2 , 0xB3 , 0xC6 , 0xE8 , 0xF4 ) ;
CALC_K256 ( w , 4 , 0x04 , 0xDB , 0xFD , 0x7B ) ;
CALC_K256 ( w , 6 , 0xA3 , 0xFB , 0x76 , 0xC8 ) ;
CALC_K256 ( k , 0 , 0x9A , 0x4A , 0x92 , 0xD3 ) ;
CALC_K256 ( k , 2 , 0x80 , 0xE6 , 0x78 , 0x6B ) ;
CALC_K256 ( k , 4 , 0xE4 , 0x45 , 0xDD , 0x7D ) ;
CALC_K256 ( k , 6 , 0xD1 , 0xE8 , 0x38 , 0x4B ) ;
CALC_K256 ( k , 8 , 0x0D , 0xD6 , 0xC6 , 0x32 ) ;
CALC_K256 ( k , 10 , 0x35 , 0xD8 , 0x98 , 0xFD ) ;
CALC_K256 ( k , 12 , 0x18 , 0x37 , 0xF7 , 0x71 ) ;
CALC_K256 ( k , 14 , 0xEC , 0xF1 , 0x6C , 0xE1 ) ;
CALC_K256 ( k , 16 , 0x43 , 0x30 , 0x75 , 0x0F ) ;
CALC_K256 ( k , 18 , 0x37 , 0xF8 , 0x26 , 0x1B ) ;
CALC_K256 ( k , 20 , 0xFA , 0x87 , 0x13 , 0xFA ) ;
CALC_K256 ( k , 22 , 0x94 , 0x06 , 0x48 , 0x3F ) ;
CALC_K256 ( k , 24 , 0xF2 , 0x5E , 0xD0 , 0xBA ) ;
CALC_K256 ( k , 26 , 0x8B , 0xAE , 0x30 , 0x5B ) ;
CALC_K256 ( k , 28 , 0x84 , 0x8A , 0x54 , 0x00 ) ;
CALC_K256 ( k , 30 , 0xDF , 0xBC , 0x23 , 0x9D ) ;
} else if ( key_len = = 24 ) { /* 192-bit key */
/* Compute the S-boxes. */
for ( i = j = 0 , k = 1 ; i < 256 ; i + + , j + = 2 , k + = 2 ) {
CALC_SB192_2 ( i , calc_sb_tbl [ j ] , calc_sb_tbl [ k ] ) ;
}
/* Calculate whitening and round subkeys. The constants are
* indices of subkeys , preprocessed through q0 and q1 . */
CALC_K192 ( w , 0 , 0xA9 , 0x75 , 0x67 , 0xF3 ) ;
CALC_K192 ( w , 2 , 0xB3 , 0xC6 , 0xE8 , 0xF4 ) ;
CALC_K192 ( w , 4 , 0x04 , 0xDB , 0xFD , 0x7B ) ;
CALC_K192 ( w , 6 , 0xA3 , 0xFB , 0x76 , 0xC8 ) ;
CALC_K192 ( k , 0 , 0x9A , 0x4A , 0x92 , 0xD3 ) ;
CALC_K192 ( k , 2 , 0x80 , 0xE6 , 0x78 , 0x6B ) ;
CALC_K192 ( k , 4 , 0xE4 , 0x45 , 0xDD , 0x7D ) ;
CALC_K192 ( k , 6 , 0xD1 , 0xE8 , 0x38 , 0x4B ) ;
CALC_K192 ( k , 8 , 0x0D , 0xD6 , 0xC6 , 0x32 ) ;
CALC_K192 ( k , 10 , 0x35 , 0xD8 , 0x98 , 0xFD ) ;
CALC_K192 ( k , 12 , 0x18 , 0x37 , 0xF7 , 0x71 ) ;
CALC_K192 ( k , 14 , 0xEC , 0xF1 , 0x6C , 0xE1 ) ;
CALC_K192 ( k , 16 , 0x43 , 0x30 , 0x75 , 0x0F ) ;
CALC_K192 ( k , 18 , 0x37 , 0xF8 , 0x26 , 0x1B ) ;
CALC_K192 ( k , 20 , 0xFA , 0x87 , 0x13 , 0xFA ) ;
CALC_K192 ( k , 22 , 0x94 , 0x06 , 0x48 , 0x3F ) ;
CALC_K192 ( k , 24 , 0xF2 , 0x5E , 0xD0 , 0xBA ) ;
CALC_K192 ( k , 26 , 0x8B , 0xAE , 0x30 , 0x5B ) ;
CALC_K192 ( k , 28 , 0x84 , 0x8A , 0x54 , 0x00 ) ;
CALC_K192 ( k , 30 , 0xDF , 0xBC , 0x23 , 0x9D ) ;
} else { /* 128-bit key */
/* Compute the S-boxes. */
for ( i = j = 0 , k = 1 ; i < 256 ; i + + , j + = 2 , k + = 2 ) {
CALC_SB_2 ( i , calc_sb_tbl [ j ] , calc_sb_tbl [ k ] ) ;
}
/* Calculate whitening and round subkeys. The constants are
* indices of subkeys , preprocessed through q0 and q1 . */
CALC_K ( w , 0 , 0xA9 , 0x75 , 0x67 , 0xF3 ) ;
CALC_K ( w , 2 , 0xB3 , 0xC6 , 0xE8 , 0xF4 ) ;
CALC_K ( w , 4 , 0x04 , 0xDB , 0xFD , 0x7B ) ;
CALC_K ( w , 6 , 0xA3 , 0xFB , 0x76 , 0xC8 ) ;
CALC_K ( k , 0 , 0x9A , 0x4A , 0x92 , 0xD3 ) ;
CALC_K ( k , 2 , 0x80 , 0xE6 , 0x78 , 0x6B ) ;
CALC_K ( k , 4 , 0xE4 , 0x45 , 0xDD , 0x7D ) ;
CALC_K ( k , 6 , 0xD1 , 0xE8 , 0x38 , 0x4B ) ;
CALC_K ( k , 8 , 0x0D , 0xD6 , 0xC6 , 0x32 ) ;
CALC_K ( k , 10 , 0x35 , 0xD8 , 0x98 , 0xFD ) ;
CALC_K ( k , 12 , 0x18 , 0x37 , 0xF7 , 0x71 ) ;
CALC_K ( k , 14 , 0xEC , 0xF1 , 0x6C , 0xE1 ) ;
CALC_K ( k , 16 , 0x43 , 0x30 , 0x75 , 0x0F ) ;
CALC_K ( k , 18 , 0x37 , 0xF8 , 0x26 , 0x1B ) ;
CALC_K ( k , 20 , 0xFA , 0x87 , 0x13 , 0xFA ) ;
CALC_K ( k , 22 , 0x94 , 0x06 , 0x48 , 0x3F ) ;
CALC_K ( k , 24 , 0xF2 , 0x5E , 0xD0 , 0xBA ) ;
CALC_K ( k , 26 , 0x8B , 0xAE , 0x30 , 0x5B ) ;
CALC_K ( k , 28 , 0x84 , 0x8A , 0x54 , 0x00 ) ;
CALC_K ( k , 30 , 0xDF , 0xBC , 0x23 , 0x9D ) ;
}
return 0 ;
}
EXPORT_SYMBOL_GPL ( twofish_setkey ) ;
MODULE_LICENSE ( " GPL " ) ;
MODULE_DESCRIPTION ( " Twofish cipher common functions " ) ;