353 lines
8.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* fixed.c
*
* Copyright 2008 Wolfson Microelectronics PLC.
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* Copyright (c) 2009 Nokia Corporation
* Roger Quadros <ext-roger.quadros@nokia.com>
*
* This is useful for systems with mixed controllable and
* non-controllable regulators, as well as for allowing testing on
* systems with no controllable regulators.
*/
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/fixed.h>
regulator: fixed: Convert to use GPIO descriptor only As we augmented the regulator core to accept a GPIO descriptor instead of a GPIO number, we can augment the fixed GPIO regulator to look up and pass that descriptor directly from device tree or board GPIO descriptor look up tables. Some boards just auto-enumerate their fixed regulator platform devices and I have assumed they get names like "fixed-regulator.0" but it's pretty hard to guess this. I need some testing from board maintainers to be sure. Other boards are straight forward, using just plain "fixed-regulator" (ID -1) or "fixed-regulator.1" hammering down the device ID. It seems the da9055 and da9211 has never got around to actually passing any enable gpio into its platform data (not the in-tree code anyway) so we can just decide to simply pass a descriptor instead. The fixed GPIO-controlled regulator in mach-pxa/ezx.c was confusingly named "*_dummy_supply_device" while it is a very real device backed by a GPIO line. There is nothing dummy about it at all, so I renamed it with the infix *_regulator_* as part of this patch set. Intel MID portions tested by Andy. Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> # Check the x86 BCM stuff Acked-by: Tony Lindgren <tony@atomide.com> # OMAP1,2,3 maintainer Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-09-06 14:24:36 +02:00
#include <linux/gpio/consumer.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/machine.h>
#include <linux/clk.h>
struct fixed_voltage_data {
struct regulator_desc desc;
struct regulator_dev *dev;
struct clk *enable_clock;
unsigned int enable_counter;
int performance_state;
};
struct fixed_dev_type {
bool has_enable_clock;
bool has_performance_state;
};
static int reg_clock_enable(struct regulator_dev *rdev)
{
struct fixed_voltage_data *priv = rdev_get_drvdata(rdev);
int ret = 0;
ret = clk_prepare_enable(priv->enable_clock);
if (ret)
return ret;
priv->enable_counter++;
return ret;
}
static int reg_clock_disable(struct regulator_dev *rdev)
{
struct fixed_voltage_data *priv = rdev_get_drvdata(rdev);
clk_disable_unprepare(priv->enable_clock);
priv->enable_counter--;
return 0;
}
static int reg_domain_enable(struct regulator_dev *rdev)
{
struct fixed_voltage_data *priv = rdev_get_drvdata(rdev);
struct device *dev = rdev->dev.parent;
int ret;
ret = dev_pm_genpd_set_performance_state(dev, priv->performance_state);
if (ret)
return ret;
priv->enable_counter++;
return ret;
}
static int reg_domain_disable(struct regulator_dev *rdev)
{
struct fixed_voltage_data *priv = rdev_get_drvdata(rdev);
struct device *dev = rdev->dev.parent;
priv->enable_counter--;
return dev_pm_genpd_set_performance_state(dev, 0);
}
static int reg_is_enabled(struct regulator_dev *rdev)
{
struct fixed_voltage_data *priv = rdev_get_drvdata(rdev);
return priv->enable_counter > 0;
}
/**
* of_get_fixed_voltage_config - extract fixed_voltage_config structure info
* @dev: device requesting for fixed_voltage_config
* @desc: regulator description
*
* Populates fixed_voltage_config structure by extracting data from device
* tree node, returns a pointer to the populated structure of NULL if memory
* alloc fails.
*/
static struct fixed_voltage_config *
of_get_fixed_voltage_config(struct device *dev,
const struct regulator_desc *desc)
{
struct fixed_voltage_config *config;
struct device_node *np = dev->of_node;
struct regulator_init_data *init_data;
config = devm_kzalloc(dev, sizeof(struct fixed_voltage_config),
GFP_KERNEL);
if (!config)
return ERR_PTR(-ENOMEM);
config->init_data = of_get_regulator_init_data(dev, dev->of_node, desc);
if (!config->init_data)
return ERR_PTR(-EINVAL);
init_data = config->init_data;
init_data->constraints.apply_uV = 0;
config->supply_name = init_data->constraints.name;
if (init_data->constraints.min_uV == init_data->constraints.max_uV) {
config->microvolts = init_data->constraints.min_uV;
} else {
dev_err(dev,
"Fixed regulator specified with variable voltages\n");
return ERR_PTR(-EINVAL);
}
if (init_data->constraints.boot_on)
config->enabled_at_boot = true;
of_property_read_u32(np, "startup-delay-us", &config->startup_delay);
of_property_read_u32(np, "off-on-delay-us", &config->off_on_delay);
if (of_find_property(np, "vin-supply", NULL))
config->input_supply = "vin";
return config;
}
static const struct regulator_ops fixed_voltage_ops = {
};
static const struct regulator_ops fixed_voltage_clkenabled_ops = {
.enable = reg_clock_enable,
.disable = reg_clock_disable,
.is_enabled = reg_is_enabled,
};
static const struct regulator_ops fixed_voltage_domain_ops = {
.enable = reg_domain_enable,
.disable = reg_domain_disable,
.is_enabled = reg_is_enabled,
};
static int reg_fixed_voltage_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct fixed_voltage_config *config;
struct fixed_voltage_data *drvdata;
const struct fixed_dev_type *drvtype = of_device_get_match_data(dev);
struct regulator_config cfg = { };
regulator: fixed: Convert to use GPIO descriptor only As we augmented the regulator core to accept a GPIO descriptor instead of a GPIO number, we can augment the fixed GPIO regulator to look up and pass that descriptor directly from device tree or board GPIO descriptor look up tables. Some boards just auto-enumerate their fixed regulator platform devices and I have assumed they get names like "fixed-regulator.0" but it's pretty hard to guess this. I need some testing from board maintainers to be sure. Other boards are straight forward, using just plain "fixed-regulator" (ID -1) or "fixed-regulator.1" hammering down the device ID. It seems the da9055 and da9211 has never got around to actually passing any enable gpio into its platform data (not the in-tree code anyway) so we can just decide to simply pass a descriptor instead. The fixed GPIO-controlled regulator in mach-pxa/ezx.c was confusingly named "*_dummy_supply_device" while it is a very real device backed by a GPIO line. There is nothing dummy about it at all, so I renamed it with the infix *_regulator_* as part of this patch set. Intel MID portions tested by Andy. Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> # Check the x86 BCM stuff Acked-by: Tony Lindgren <tony@atomide.com> # OMAP1,2,3 maintainer Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-09-06 14:24:36 +02:00
enum gpiod_flags gflags;
int ret;
drvdata = devm_kzalloc(&pdev->dev, sizeof(struct fixed_voltage_data),
GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
if (pdev->dev.of_node) {
config = of_get_fixed_voltage_config(&pdev->dev,
&drvdata->desc);
if (IS_ERR(config))
return PTR_ERR(config);
} else {
config = dev_get_platdata(&pdev->dev);
}
if (!config)
return -ENOMEM;
drvdata->desc.name = devm_kstrdup(&pdev->dev,
config->supply_name,
GFP_KERNEL);
if (drvdata->desc.name == NULL) {
dev_err(&pdev->dev, "Failed to allocate supply name\n");
return -ENOMEM;
}
drvdata->desc.type = REGULATOR_VOLTAGE;
drvdata->desc.owner = THIS_MODULE;
if (drvtype && drvtype->has_enable_clock) {
drvdata->desc.ops = &fixed_voltage_clkenabled_ops;
drvdata->enable_clock = devm_clk_get(dev, NULL);
if (IS_ERR(drvdata->enable_clock)) {
dev_err(dev, "Can't get enable-clock from devicetree\n");
return -ENOENT;
}
} else if (drvtype && drvtype->has_performance_state) {
drvdata->desc.ops = &fixed_voltage_domain_ops;
drvdata->performance_state = of_get_required_opp_performance_state(dev->of_node, 0);
if (drvdata->performance_state < 0) {
dev_err(dev, "Can't get performance state from devicetree\n");
return drvdata->performance_state;
}
} else {
drvdata->desc.ops = &fixed_voltage_ops;
}
drvdata->desc.enable_time = config->startup_delay;
drvdata->desc.off_on_delay = config->off_on_delay;
if (config->input_supply) {
drvdata->desc.supply_name = devm_kstrdup(&pdev->dev,
config->input_supply,
GFP_KERNEL);
if (!drvdata->desc.supply_name) {
dev_err(&pdev->dev,
"Failed to allocate input supply\n");
return -ENOMEM;
}
}
if (config->microvolts)
drvdata->desc.n_voltages = 1;
drvdata->desc.fixed_uV = config->microvolts;
regulator: fixed/gpio: Pull inversion/OD into gpiolib This pushes the handling of inversion semantics and open drain settings to the GPIO descriptor and gpiolib. All affected board files are also augmented. This is especially nice since we don't have to have any confusing flags passed around to the left and right littering the fixed and GPIO regulator drivers and the regulator core. It is all just very straight-forward: the core asks the GPIO line to be asserted or deasserted and gpiolib deals with the rest depending on how the platform is configured: if the line is active low, it deals with that, if the line is open drain, it deals with that too. Cc: Alexander Shiyan <shc_work@mail.ru> # i.MX boards user Cc: Haojian Zhuang <haojian.zhuang@gmail.com> # MMP2 maintainer Cc: Aaro Koskinen <aaro.koskinen@iki.fi> # OMAP1 maintainer Cc: Tony Lindgren <tony@atomide.com> # OMAP1,2,3 maintainer Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> # EM-X270 maintainer Cc: Robert Jarzmik <robert.jarzmik@free.fr> # EZX maintainer Cc: Philipp Zabel <philipp.zabel@gmail.com> # Magician maintainer Cc: Petr Cvek <petr.cvek@tul.cz> # Magician Cc: Robert Jarzmik <robert.jarzmik@free.fr> # PXA Cc: Paul Parsons <lost.distance@yahoo.com> # hx4700 Cc: Daniel Mack <zonque@gmail.com> # Raumfeld maintainer Cc: Marc Zyngier <marc.zyngier@arm.com> # Zeus maintainer Cc: Geert Uytterhoeven <geert+renesas@glider.be> # SuperH pinctrl/GPIO maintainer Cc: Russell King <rmk+kernel@armlinux.org.uk> # SA1100 Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> #OMAP1 Amstrad Delta Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Mark Brown <broonie@kernel.org>
2019-01-29 11:31:53 +01:00
/*
* The signal will be inverted by the GPIO core if flagged so in the
* descriptor.
regulator: fixed/gpio: Pull inversion/OD into gpiolib This pushes the handling of inversion semantics and open drain settings to the GPIO descriptor and gpiolib. All affected board files are also augmented. This is especially nice since we don't have to have any confusing flags passed around to the left and right littering the fixed and GPIO regulator drivers and the regulator core. It is all just very straight-forward: the core asks the GPIO line to be asserted or deasserted and gpiolib deals with the rest depending on how the platform is configured: if the line is active low, it deals with that, if the line is open drain, it deals with that too. Cc: Alexander Shiyan <shc_work@mail.ru> # i.MX boards user Cc: Haojian Zhuang <haojian.zhuang@gmail.com> # MMP2 maintainer Cc: Aaro Koskinen <aaro.koskinen@iki.fi> # OMAP1 maintainer Cc: Tony Lindgren <tony@atomide.com> # OMAP1,2,3 maintainer Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> # EM-X270 maintainer Cc: Robert Jarzmik <robert.jarzmik@free.fr> # EZX maintainer Cc: Philipp Zabel <philipp.zabel@gmail.com> # Magician maintainer Cc: Petr Cvek <petr.cvek@tul.cz> # Magician Cc: Robert Jarzmik <robert.jarzmik@free.fr> # PXA Cc: Paul Parsons <lost.distance@yahoo.com> # hx4700 Cc: Daniel Mack <zonque@gmail.com> # Raumfeld maintainer Cc: Marc Zyngier <marc.zyngier@arm.com> # Zeus maintainer Cc: Geert Uytterhoeven <geert+renesas@glider.be> # SuperH pinctrl/GPIO maintainer Cc: Russell King <rmk+kernel@armlinux.org.uk> # SA1100 Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> #OMAP1 Amstrad Delta Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Mark Brown <broonie@kernel.org>
2019-01-29 11:31:53 +01:00
*/
if (config->enabled_at_boot)
gflags = GPIOD_OUT_HIGH;
else
gflags = GPIOD_OUT_LOW;
regulator: fixed: Convert to use GPIO descriptor only As we augmented the regulator core to accept a GPIO descriptor instead of a GPIO number, we can augment the fixed GPIO regulator to look up and pass that descriptor directly from device tree or board GPIO descriptor look up tables. Some boards just auto-enumerate their fixed regulator platform devices and I have assumed they get names like "fixed-regulator.0" but it's pretty hard to guess this. I need some testing from board maintainers to be sure. Other boards are straight forward, using just plain "fixed-regulator" (ID -1) or "fixed-regulator.1" hammering down the device ID. It seems the da9055 and da9211 has never got around to actually passing any enable gpio into its platform data (not the in-tree code anyway) so we can just decide to simply pass a descriptor instead. The fixed GPIO-controlled regulator in mach-pxa/ezx.c was confusingly named "*_dummy_supply_device" while it is a very real device backed by a GPIO line. There is nothing dummy about it at all, so I renamed it with the infix *_regulator_* as part of this patch set. Intel MID portions tested by Andy. Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> # Check the x86 BCM stuff Acked-by: Tony Lindgren <tony@atomide.com> # OMAP1,2,3 maintainer Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-09-06 14:24:36 +02:00
/*
* Some fixed regulators share the enable line between two
* regulators which makes it necessary to get a handle on the
* same descriptor for two different consumers. This will get
* the GPIO descriptor, but only the first call will initialize
* it so any flags such as inversion or open drain will only
* be set up by the first caller and assumed identical on the
* next caller.
*
* FIXME: find a better way to deal with this.
*/
gflags |= GPIOD_FLAGS_BIT_NONEXCLUSIVE;
/*
* Do not use devm* here: the regulator core takes over the
* lifecycle management of the GPIO descriptor.
*/
cfg.ena_gpiod = gpiod_get_optional(&pdev->dev, NULL, gflags);
regulator: fixed: Convert to use GPIO descriptor only As we augmented the regulator core to accept a GPIO descriptor instead of a GPIO number, we can augment the fixed GPIO regulator to look up and pass that descriptor directly from device tree or board GPIO descriptor look up tables. Some boards just auto-enumerate their fixed regulator platform devices and I have assumed they get names like "fixed-regulator.0" but it's pretty hard to guess this. I need some testing from board maintainers to be sure. Other boards are straight forward, using just plain "fixed-regulator" (ID -1) or "fixed-regulator.1" hammering down the device ID. It seems the da9055 and da9211 has never got around to actually passing any enable gpio into its platform data (not the in-tree code anyway) so we can just decide to simply pass a descriptor instead. The fixed GPIO-controlled regulator in mach-pxa/ezx.c was confusingly named "*_dummy_supply_device" while it is a very real device backed by a GPIO line. There is nothing dummy about it at all, so I renamed it with the infix *_regulator_* as part of this patch set. Intel MID portions tested by Andy. Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> # Check the x86 BCM stuff Acked-by: Tony Lindgren <tony@atomide.com> # OMAP1,2,3 maintainer Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-09-06 14:24:36 +02:00
if (IS_ERR(cfg.ena_gpiod))
return PTR_ERR(cfg.ena_gpiod);
cfg.dev = &pdev->dev;
cfg.init_data = config->init_data;
cfg.driver_data = drvdata;
cfg.of_node = pdev->dev.of_node;
drvdata->dev = devm_regulator_register(&pdev->dev, &drvdata->desc,
&cfg);
if (IS_ERR(drvdata->dev)) {
ret = PTR_ERR(drvdata->dev);
dev_err(&pdev->dev, "Failed to register regulator: %d\n", ret);
return ret;
}
platform_set_drvdata(pdev, drvdata);
dev_dbg(&pdev->dev, "%s supplying %duV\n", drvdata->desc.name,
drvdata->desc.fixed_uV);
return 0;
}
#if defined(CONFIG_OF)
static const struct fixed_dev_type fixed_voltage_data = {
.has_enable_clock = false,
};
static const struct fixed_dev_type fixed_clkenable_data = {
.has_enable_clock = true,
};
static const struct fixed_dev_type fixed_domain_data = {
.has_performance_state = true,
};
static const struct of_device_id fixed_of_match[] = {
{
.compatible = "regulator-fixed",
.data = &fixed_voltage_data,
},
{
.compatible = "regulator-fixed-clock",
.data = &fixed_clkenable_data,
},
{
.compatible = "regulator-fixed-domain",
.data = &fixed_domain_data,
},
{
},
};
MODULE_DEVICE_TABLE(of, fixed_of_match);
#endif
static struct platform_driver regulator_fixed_voltage_driver = {
.probe = reg_fixed_voltage_probe,
.driver = {
.name = "reg-fixed-voltage",
.of_match_table = of_match_ptr(fixed_of_match),
},
};
static int __init regulator_fixed_voltage_init(void)
{
return platform_driver_register(&regulator_fixed_voltage_driver);
}
subsys_initcall(regulator_fixed_voltage_init);
static void __exit regulator_fixed_voltage_exit(void)
{
platform_driver_unregister(&regulator_fixed_voltage_driver);
}
module_exit(regulator_fixed_voltage_exit);
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
MODULE_DESCRIPTION("Fixed voltage regulator");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:reg-fixed-voltage");