linux/drivers/media/dvb/dvb-core/dvb_frontend.c

1152 lines
31 KiB
C
Raw Normal View History

/*
* dvb_frontend.c: DVB frontend tuning interface/thread
*
*
* Copyright (C) 1999-2001 Ralph Metzler
* Marcus Metzler
* Holger Waechtler
* for convergence integrated media GmbH
*
* Copyright (C) 2004 Andrew de Quincey (tuning thread cleanup)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/list.h>
#include <linux/freezer.h>
#include <linux/jiffies.h>
#include <linux/kthread.h>
#include <asm/processor.h>
#include "dvb_frontend.h"
#include "dvbdev.h"
static int dvb_frontend_debug;
static int dvb_shutdown_timeout = 5;
static int dvb_force_auto_inversion;
static int dvb_override_tune_delay;
static int dvb_powerdown_on_sleep = 1;
module_param_named(frontend_debug, dvb_frontend_debug, int, 0644);
MODULE_PARM_DESC(frontend_debug, "Turn on/off frontend core debugging (default:off).");
module_param(dvb_shutdown_timeout, int, 0644);
MODULE_PARM_DESC(dvb_shutdown_timeout, "wait <shutdown_timeout> seconds after close() before suspending hardware");
module_param(dvb_force_auto_inversion, int, 0644);
MODULE_PARM_DESC(dvb_force_auto_inversion, "0: normal (default), 1: INVERSION_AUTO forced always");
module_param(dvb_override_tune_delay, int, 0644);
MODULE_PARM_DESC(dvb_override_tune_delay, "0: normal (default), >0 => delay in milliseconds to wait for lock after a tune attempt");
module_param(dvb_powerdown_on_sleep, int, 0644);
MODULE_PARM_DESC(dvb_powerdown_on_sleep, "0: do not power down, 1: turn LNB voltage off on sleep (default)");
#define dprintk if (dvb_frontend_debug) printk
#define FESTATE_IDLE 1
#define FESTATE_RETUNE 2
#define FESTATE_TUNING_FAST 4
#define FESTATE_TUNING_SLOW 8
#define FESTATE_TUNED 16
#define FESTATE_ZIGZAG_FAST 32
#define FESTATE_ZIGZAG_SLOW 64
#define FESTATE_DISEQC 128
#define FESTATE_WAITFORLOCK (FESTATE_TUNING_FAST | FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW | FESTATE_DISEQC)
#define FESTATE_SEARCHING_FAST (FESTATE_TUNING_FAST | FESTATE_ZIGZAG_FAST)
#define FESTATE_SEARCHING_SLOW (FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_SLOW)
#define FESTATE_LOSTLOCK (FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW)
#define FE_ALGO_HW 1
/*
* FESTATE_IDLE. No tuning parameters have been supplied and the loop is idling.
* FESTATE_RETUNE. Parameters have been supplied, but we have not yet performed the first tune.
* FESTATE_TUNING_FAST. Tuning parameters have been supplied and fast zigzag scan is in progress.
* FESTATE_TUNING_SLOW. Tuning parameters have been supplied. Fast zigzag failed, so we're trying again, but slower.
* FESTATE_TUNED. The frontend has successfully locked on.
* FESTATE_ZIGZAG_FAST. The lock has been lost, and a fast zigzag has been initiated to try and regain it.
* FESTATE_ZIGZAG_SLOW. The lock has been lost. Fast zigzag has been failed, so we're trying again, but slower.
* FESTATE_DISEQC. A DISEQC command has just been issued.
* FESTATE_WAITFORLOCK. When we're waiting for a lock.
* FESTATE_SEARCHING_FAST. When we're searching for a signal using a fast zigzag scan.
* FESTATE_SEARCHING_SLOW. When we're searching for a signal using a slow zigzag scan.
* FESTATE_LOSTLOCK. When the lock has been lost, and we're searching it again.
*/
static DEFINE_MUTEX(frontend_mutex);
struct dvb_frontend_private {
/* thread/frontend values */
struct dvb_device *dvbdev;
struct dvb_frontend_parameters parameters;
struct dvb_fe_events events;
struct semaphore sem;
struct list_head list_head;
wait_queue_head_t wait_queue;
struct task_struct *thread;
unsigned long release_jiffies;
unsigned int exit;
unsigned int wakeup;
fe_status_t status;
unsigned long tune_mode_flags;
unsigned int delay;
unsigned int reinitialise;
int tone;
int voltage;
/* swzigzag values */
unsigned int state;
unsigned int bending;
int lnb_drift;
unsigned int inversion;
unsigned int auto_step;
unsigned int auto_sub_step;
unsigned int started_auto_step;
unsigned int min_delay;
unsigned int max_drift;
unsigned int step_size;
int quality;
unsigned int check_wrapped;
};
static void dvb_frontend_wakeup(struct dvb_frontend *fe);
static void dvb_frontend_add_event(struct dvb_frontend *fe, fe_status_t status)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_fe_events *events = &fepriv->events;
struct dvb_frontend_event *e;
int wp;
dprintk ("%s\n", __FUNCTION__);
if (down_interruptible (&events->sem))
return;
wp = (events->eventw + 1) % MAX_EVENT;
if (wp == events->eventr) {
events->overflow = 1;
events->eventr = (events->eventr + 1) % MAX_EVENT;
}
e = &events->events[events->eventw];
memcpy (&e->parameters, &fepriv->parameters,
sizeof (struct dvb_frontend_parameters));
if (status & FE_HAS_LOCK)
if (fe->ops.get_frontend)
fe->ops.get_frontend(fe, &e->parameters);
events->eventw = wp;
up (&events->sem);
e->status = status;
wake_up_interruptible (&events->wait_queue);
}
static int dvb_frontend_get_event(struct dvb_frontend *fe,
struct dvb_frontend_event *event, int flags)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct dvb_fe_events *events = &fepriv->events;
dprintk ("%s\n", __FUNCTION__);
if (events->overflow) {
events->overflow = 0;
return -EOVERFLOW;
}
if (events->eventw == events->eventr) {
int ret;
if (flags & O_NONBLOCK)
return -EWOULDBLOCK;
up(&fepriv->sem);
ret = wait_event_interruptible (events->wait_queue,
events->eventw != events->eventr);
if (down_interruptible (&fepriv->sem))
return -ERESTARTSYS;
if (ret < 0)
return ret;
}
if (down_interruptible (&events->sem))
return -ERESTARTSYS;
memcpy (event, &events->events[events->eventr],
sizeof(struct dvb_frontend_event));
events->eventr = (events->eventr + 1) % MAX_EVENT;
up (&events->sem);
return 0;
}
static void dvb_frontend_init(struct dvb_frontend *fe)
{
dprintk ("DVB: initialising frontend %i (%s)...\n",
fe->dvb->num,
fe->ops.info.name);
if (fe->ops.init)
fe->ops.init(fe);
if (fe->ops.tuner_ops.init) {
fe->ops.tuner_ops.init(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
}
void dvb_frontend_reinitialise(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
fepriv->reinitialise = 1;
dvb_frontend_wakeup(fe);
}
EXPORT_SYMBOL(dvb_frontend_reinitialise);
static void dvb_frontend_swzigzag_update_delay(struct dvb_frontend_private *fepriv, int locked)
{
int q2;
dprintk ("%s\n", __FUNCTION__);
if (locked)
(fepriv->quality) = (fepriv->quality * 220 + 36*256) / 256;
else
(fepriv->quality) = (fepriv->quality * 220 + 0) / 256;
q2 = fepriv->quality - 128;
q2 *= q2;
fepriv->delay = fepriv->min_delay + q2 * HZ / (128*128);
}
/**
* Performs automatic twiddling of frontend parameters.
*
* @param fe The frontend concerned.
* @param check_wrapped Checks if an iteration has completed. DO NOT SET ON THE FIRST ATTEMPT
* @returns Number of complete iterations that have been performed.
*/
static int dvb_frontend_swzigzag_autotune(struct dvb_frontend *fe, int check_wrapped)
{
int autoinversion;
int ready = 0;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int original_inversion = fepriv->parameters.inversion;
u32 original_frequency = fepriv->parameters.frequency;
/* are we using autoinversion? */
autoinversion = ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) &&
(fepriv->parameters.inversion == INVERSION_AUTO));
/* setup parameters correctly */
while(!ready) {
/* calculate the lnb_drift */
fepriv->lnb_drift = fepriv->auto_step * fepriv->step_size;
/* wrap the auto_step if we've exceeded the maximum drift */
if (fepriv->lnb_drift > fepriv->max_drift) {
fepriv->auto_step = 0;
fepriv->auto_sub_step = 0;
fepriv->lnb_drift = 0;
}
/* perform inversion and +/- zigzag */
switch(fepriv->auto_sub_step) {
case 0:
/* try with the current inversion and current drift setting */
ready = 1;
break;
case 1:
if (!autoinversion) break;
fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF;
ready = 1;
break;
case 2:
if (fepriv->lnb_drift == 0) break;
fepriv->lnb_drift = -fepriv->lnb_drift;
ready = 1;
break;
case 3:
if (fepriv->lnb_drift == 0) break;
if (!autoinversion) break;
fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF;
fepriv->lnb_drift = -fepriv->lnb_drift;
ready = 1;
break;
default:
fepriv->auto_step++;
fepriv->auto_sub_step = -1; /* it'll be incremented to 0 in a moment */
break;
}
if (!ready) fepriv->auto_sub_step++;
}
/* if this attempt would hit where we started, indicate a complete
* iteration has occurred */
if ((fepriv->auto_step == fepriv->started_auto_step) &&
(fepriv->auto_sub_step == 0) && check_wrapped) {
return 1;
}
dprintk("%s: drift:%i inversion:%i auto_step:%i "
"auto_sub_step:%i started_auto_step:%i\n",
__FUNCTION__, fepriv->lnb_drift, fepriv->inversion,
fepriv->auto_step, fepriv->auto_sub_step, fepriv->started_auto_step);
/* set the frontend itself */
fepriv->parameters.frequency += fepriv->lnb_drift;
if (autoinversion)
fepriv->parameters.inversion = fepriv->inversion;
if (fe->ops.set_frontend)
fe->ops.set_frontend(fe, &fepriv->parameters);
fepriv->parameters.frequency = original_frequency;
fepriv->parameters.inversion = original_inversion;
fepriv->auto_sub_step++;
return 0;
}
static void dvb_frontend_swzigzag(struct dvb_frontend *fe)
{
fe_status_t s = 0;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
/* if we've got no parameters, just keep idling */
if (fepriv->state & FESTATE_IDLE) {
fepriv->delay = 3*HZ;
fepriv->quality = 0;
return;
}
/* in SCAN mode, we just set the frontend when asked and leave it alone */
if (fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT) {
if (fepriv->state & FESTATE_RETUNE) {
if (fe->ops.set_frontend)
fe->ops.set_frontend(fe, &fepriv->parameters);
fepriv->state = FESTATE_TUNED;
}
fepriv->delay = 3*HZ;
fepriv->quality = 0;
return;
}
/* get the frontend status */
if (fepriv->state & FESTATE_RETUNE) {
s = 0;
} else {
if (fe->ops.read_status)
fe->ops.read_status(fe, &s);
if (s != fepriv->status) {
dvb_frontend_add_event(fe, s);
fepriv->status = s;
}
}
/* if we're not tuned, and we have a lock, move to the TUNED state */
if ((fepriv->state & FESTATE_WAITFORLOCK) && (s & FE_HAS_LOCK)) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
fepriv->state = FESTATE_TUNED;
/* if we're tuned, then we have determined the correct inversion */
if ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) &&
(fepriv->parameters.inversion == INVERSION_AUTO)) {
fepriv->parameters.inversion = fepriv->inversion;
}
return;
}
/* if we are tuned already, check we're still locked */
if (fepriv->state & FESTATE_TUNED) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
/* we're tuned, and the lock is still good... */
if (s & FE_HAS_LOCK) {
return;
} else { /* if we _WERE_ tuned, but now don't have a lock */
fepriv->state = FESTATE_ZIGZAG_FAST;
fepriv->started_auto_step = fepriv->auto_step;
fepriv->check_wrapped = 0;
}
}
/* don't actually do anything if we're in the LOSTLOCK state,
* the frontend is set to FE_CAN_RECOVER, and the max_drift is 0 */
if ((fepriv->state & FESTATE_LOSTLOCK) &&
(fe->ops.info.caps & FE_CAN_RECOVER) && (fepriv->max_drift == 0)) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
return;
}
/* don't do anything if we're in the DISEQC state, since this
* might be someone with a motorized dish controlled by DISEQC.
* If its actually a re-tune, there will be a SET_FRONTEND soon enough. */
if (fepriv->state & FESTATE_DISEQC) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
return;
}
/* if we're in the RETUNE state, set everything up for a brand
* new scan, keeping the current inversion setting, as the next
* tune is _very_ likely to require the same */
if (fepriv->state & FESTATE_RETUNE) {
fepriv->lnb_drift = 0;
fepriv->auto_step = 0;
fepriv->auto_sub_step = 0;
fepriv->started_auto_step = 0;
fepriv->check_wrapped = 0;
}
/* fast zigzag. */
if ((fepriv->state & FESTATE_SEARCHING_FAST) || (fepriv->state & FESTATE_RETUNE)) {
fepriv->delay = fepriv->min_delay;
/* peform a tune */
if (dvb_frontend_swzigzag_autotune(fe, fepriv->check_wrapped)) {
/* OK, if we've run out of trials at the fast speed.
* Drop back to slow for the _next_ attempt */
fepriv->state = FESTATE_SEARCHING_SLOW;
fepriv->started_auto_step = fepriv->auto_step;
return;
}
fepriv->check_wrapped = 1;
/* if we've just retuned, enter the ZIGZAG_FAST state.
* This ensures we cannot return from an
* FE_SET_FRONTEND ioctl before the first frontend tune
* occurs */
if (fepriv->state & FESTATE_RETUNE) {
fepriv->state = FESTATE_TUNING_FAST;
}
}
/* slow zigzag */
if (fepriv->state & FESTATE_SEARCHING_SLOW) {
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
/* Note: don't bother checking for wrapping; we stay in this
* state until we get a lock */
dvb_frontend_swzigzag_autotune(fe, 0);
}
}
static int dvb_frontend_is_exiting(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
if (fepriv->exit)
return 1;
if (fepriv->dvbdev->writers == 1)
if (time_after(jiffies, fepriv->release_jiffies +
dvb_shutdown_timeout * HZ))
return 1;
return 0;
}
static int dvb_frontend_should_wakeup(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
if (fepriv->wakeup) {
fepriv->wakeup = 0;
return 1;
}
return dvb_frontend_is_exiting(fe);
}
static void dvb_frontend_wakeup(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
fepriv->wakeup = 1;
wake_up_interruptible(&fepriv->wait_queue);
}
static int dvb_frontend_thread(void *data)
{
struct dvb_frontend *fe = data;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
unsigned long timeout;
fe_status_t s;
struct dvb_frontend_parameters *params;
dprintk("%s\n", __FUNCTION__);
fepriv->check_wrapped = 0;
fepriv->quality = 0;
fepriv->delay = 3*HZ;
fepriv->status = 0;
fepriv->wakeup = 0;
fepriv->reinitialise = 0;
dvb_frontend_init(fe);
while (1) {
up(&fepriv->sem); /* is locked when we enter the thread... */
restart:
timeout = wait_event_interruptible_timeout(fepriv->wait_queue,
dvb_frontend_should_wakeup(fe) || kthread_should_stop(),
fepriv->delay);
if (kthread_should_stop() || dvb_frontend_is_exiting(fe)) {
/* got signal or quitting */
break;
}
if (try_to_freeze())
goto restart;
if (down_interruptible(&fepriv->sem))
break;
if (fepriv->reinitialise) {
dvb_frontend_init(fe);
if (fepriv->tone != -1) {
fe->ops.set_tone(fe, fepriv->tone);
}
if (fepriv->voltage != -1) {
fe->ops.set_voltage(fe, fepriv->voltage);
}
fepriv->reinitialise = 0;
}
/* do an iteration of the tuning loop */
if (fe->ops.get_frontend_algo) {
if (fe->ops.get_frontend_algo(fe) == FE_ALGO_HW) {
/* have we been asked to retune? */
params = NULL;
if (fepriv->state & FESTATE_RETUNE) {
params = &fepriv->parameters;
fepriv->state = FESTATE_TUNED;
}
fe->ops.tune(fe, params, fepriv->tune_mode_flags, &fepriv->delay, &s);
if (s != fepriv->status) {
dvb_frontend_add_event(fe, s);
fepriv->status = s;
}
} else
dvb_frontend_swzigzag(fe);
} else
dvb_frontend_swzigzag(fe);
}
if (dvb_shutdown_timeout) {
if (dvb_powerdown_on_sleep)
if (fe->ops.set_voltage)
fe->ops.set_voltage(fe, SEC_VOLTAGE_OFF);
if (fe->ops.tuner_ops.sleep) {
fe->ops.tuner_ops.sleep(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
if (fe->ops.sleep)
fe->ops.sleep(fe);
}
fepriv->thread = NULL;
mb();
dvb_frontend_wakeup(fe);
return 0;
}
static void dvb_frontend_stop(struct dvb_frontend *fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
dprintk ("%s\n", __FUNCTION__);
fepriv->exit = 1;
mb();
if (!fepriv->thread)
return;
kthread_stop(fepriv->thread);
init_MUTEX (&fepriv->sem);
fepriv->state = FESTATE_IDLE;
/* paranoia check in case a signal arrived */
if (fepriv->thread)
printk("dvb_frontend_stop: warning: thread %p won't exit\n",
fepriv->thread);
}
s32 timeval_usec_diff(struct timeval lasttime, struct timeval curtime)
{
return ((curtime.tv_usec < lasttime.tv_usec) ?
1000000 - lasttime.tv_usec + curtime.tv_usec :
curtime.tv_usec - lasttime.tv_usec);
}
EXPORT_SYMBOL(timeval_usec_diff);
static inline void timeval_usec_add(struct timeval *curtime, u32 add_usec)
{
curtime->tv_usec += add_usec;
if (curtime->tv_usec >= 1000000) {
curtime->tv_usec -= 1000000;
curtime->tv_sec++;
}
}
/*
* Sleep until gettimeofday() > waketime + add_usec
* This needs to be as precise as possible, but as the delay is
* usually between 2ms and 32ms, it is done using a scheduled msleep
* followed by usleep (normally a busy-wait loop) for the remainder
*/
void dvb_frontend_sleep_until(struct timeval *waketime, u32 add_usec)
{
struct timeval lasttime;
s32 delta, newdelta;
timeval_usec_add(waketime, add_usec);
do_gettimeofday(&lasttime);
delta = timeval_usec_diff(lasttime, *waketime);
if (delta > 2500) {
msleep((delta - 1500) / 1000);
do_gettimeofday(&lasttime);
newdelta = timeval_usec_diff(lasttime, *waketime);
delta = (newdelta > delta) ? 0 : newdelta;
}
if (delta > 0)
udelay(delta);
}
EXPORT_SYMBOL(dvb_frontend_sleep_until);
static int dvb_frontend_start(struct dvb_frontend *fe)
{
int ret;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
struct task_struct *fe_thread;
dprintk ("%s\n", __FUNCTION__);
if (fepriv->thread) {
if (!fepriv->exit)
return 0;
else
dvb_frontend_stop (fe);
}
if (signal_pending(current))
return -EINTR;
if (down_interruptible (&fepriv->sem))
return -EINTR;
fepriv->state = FESTATE_IDLE;
fepriv->exit = 0;
fepriv->thread = NULL;
mb();
fe_thread = kthread_run(dvb_frontend_thread, fe,
"kdvb-fe-%i", fe->dvb->num);
if (IS_ERR(fe_thread)) {
ret = PTR_ERR(fe_thread);
printk("dvb_frontend_start: failed to start kthread (%d)\n", ret);
up(&fepriv->sem);
return ret;
}
fepriv->thread = fe_thread;
return 0;
}
static int dvb_frontend_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int err = -EOPNOTSUPP;
dprintk ("%s\n", __FUNCTION__);
if (!fe || fepriv->exit)
return -ENODEV;
if ((file->f_flags & O_ACCMODE) == O_RDONLY &&
(_IOC_DIR(cmd) != _IOC_READ || cmd == FE_GET_EVENT ||
cmd == FE_DISEQC_RECV_SLAVE_REPLY))
return -EPERM;
if (down_interruptible (&fepriv->sem))
return -ERESTARTSYS;
switch (cmd) {
case FE_GET_INFO: {
struct dvb_frontend_info* info = parg;
memcpy(info, &fe->ops.info, sizeof(struct dvb_frontend_info));
/* Force the CAN_INVERSION_AUTO bit on. If the frontend doesn't
* do it, it is done for it. */
info->caps |= FE_CAN_INVERSION_AUTO;
err = 0;
break;
}
case FE_READ_STATUS: {
fe_status_t* status = parg;
/* if retune was requested but hasn't occured yet, prevent
* that user get signal state from previous tuning */
if(fepriv->state == FESTATE_RETUNE) {
err=0;
*status = 0;
break;
}
if (fe->ops.read_status)
err = fe->ops.read_status(fe, status);
break;
}
case FE_READ_BER:
if (fe->ops.read_ber)
err = fe->ops.read_ber(fe, (__u32*) parg);
break;
case FE_READ_SIGNAL_STRENGTH:
if (fe->ops.read_signal_strength)
err = fe->ops.read_signal_strength(fe, (__u16*) parg);
break;
case FE_READ_SNR:
if (fe->ops.read_snr)
err = fe->ops.read_snr(fe, (__u16*) parg);
break;
case FE_READ_UNCORRECTED_BLOCKS:
if (fe->ops.read_ucblocks)
err = fe->ops.read_ucblocks(fe, (__u32*) parg);
break;
case FE_DISEQC_RESET_OVERLOAD:
if (fe->ops.diseqc_reset_overload) {
err = fe->ops.diseqc_reset_overload(fe);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISEQC_SEND_MASTER_CMD:
if (fe->ops.diseqc_send_master_cmd) {
err = fe->ops.diseqc_send_master_cmd(fe, (struct dvb_diseqc_master_cmd*) parg);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISEQC_SEND_BURST:
if (fe->ops.diseqc_send_burst) {
err = fe->ops.diseqc_send_burst(fe, (fe_sec_mini_cmd_t) parg);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_SET_TONE:
if (fe->ops.set_tone) {
err = fe->ops.set_tone(fe, (fe_sec_tone_mode_t) parg);
fepriv->tone = (fe_sec_tone_mode_t) parg;
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_SET_VOLTAGE:
if (fe->ops.set_voltage) {
err = fe->ops.set_voltage(fe, (fe_sec_voltage_t) parg);
fepriv->voltage = (fe_sec_voltage_t) parg;
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISHNETWORK_SEND_LEGACY_CMD:
if (fe->ops.dishnetwork_send_legacy_command) {
err = fe->ops.dishnetwork_send_legacy_command(fe, (unsigned long) parg);
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
} else if (fe->ops.set_voltage) {
/*
* NOTE: This is a fallback condition. Some frontends
* (stv0299 for instance) take longer than 8msec to
* respond to a set_voltage command. Those switches
* need custom routines to switch properly. For all
* other frontends, the following shoule work ok.
* Dish network legacy switches (as used by Dish500)
* are controlled by sending 9-bit command words
* spaced 8msec apart.
* the actual command word is switch/port dependant
* so it is up to the userspace application to send
* the right command.
* The command must always start with a '0' after
* initialization, so parg is 8 bits and does not
* include the initialization or start bit
*/
unsigned long cmd = ((unsigned long) parg) << 1;
struct timeval nexttime;
struct timeval tv[10];
int i;
u8 last = 1;
if (dvb_frontend_debug)
printk("%s switch command: 0x%04lx\n", __FUNCTION__, cmd);
do_gettimeofday(&nexttime);
if (dvb_frontend_debug)
memcpy(&tv[0], &nexttime, sizeof(struct timeval));
/* before sending a command, initialize by sending
* a 32ms 18V to the switch
*/
fe->ops.set_voltage(fe, SEC_VOLTAGE_18);
dvb_frontend_sleep_until(&nexttime, 32000);
for (i = 0; i < 9; i++) {
if (dvb_frontend_debug)
do_gettimeofday(&tv[i + 1]);
if ((cmd & 0x01) != last) {
/* set voltage to (last ? 13V : 18V) */
fe->ops.set_voltage(fe, (last) ? SEC_VOLTAGE_13 : SEC_VOLTAGE_18);
last = (last) ? 0 : 1;
}
cmd = cmd >> 1;
if (i != 8)
dvb_frontend_sleep_until(&nexttime, 8000);
}
if (dvb_frontend_debug) {
printk("%s(%d): switch delay (should be 32k followed by all 8k\n",
__FUNCTION__, fe->dvb->num);
for (i = 1; i < 10; i++)
printk("%d: %d\n", i, timeval_usec_diff(tv[i-1] , tv[i]));
}
err = 0;
fepriv->state = FESTATE_DISEQC;
fepriv->status = 0;
}
break;
case FE_DISEQC_RECV_SLAVE_REPLY:
if (fe->ops.diseqc_recv_slave_reply)
err = fe->ops.diseqc_recv_slave_reply(fe, (struct dvb_diseqc_slave_reply*) parg);
break;
case FE_ENABLE_HIGH_LNB_VOLTAGE:
if (fe->ops.enable_high_lnb_voltage)
err = fe->ops.enable_high_lnb_voltage(fe, (long) parg);
break;
case FE_SET_FRONTEND: {
struct dvb_frontend_tune_settings fetunesettings;
memcpy (&fepriv->parameters, parg,
sizeof (struct dvb_frontend_parameters));
memset(&fetunesettings, 0, sizeof(struct dvb_frontend_tune_settings));
memcpy(&fetunesettings.parameters, parg,
sizeof (struct dvb_frontend_parameters));
/* force auto frequency inversion if requested */
if (dvb_force_auto_inversion) {
fepriv->parameters.inversion = INVERSION_AUTO;
fetunesettings.parameters.inversion = INVERSION_AUTO;
}
if (fe->ops.info.type == FE_OFDM) {
/* without hierarchical coding code_rate_LP is irrelevant,
* so we tolerate the otherwise invalid FEC_NONE setting */
if (fepriv->parameters.u.ofdm.hierarchy_information == HIERARCHY_NONE &&
fepriv->parameters.u.ofdm.code_rate_LP == FEC_NONE)
fepriv->parameters.u.ofdm.code_rate_LP = FEC_AUTO;
}
/* get frontend-specific tuning settings */
if (fe->ops.get_tune_settings && (fe->ops.get_tune_settings(fe, &fetunesettings) == 0)) {
fepriv->min_delay = (fetunesettings.min_delay_ms * HZ) / 1000;
fepriv->max_drift = fetunesettings.max_drift;
fepriv->step_size = fetunesettings.step_size;
} else {
/* default values */
switch(fe->ops.info.type) {
case FE_QPSK:
fepriv->min_delay = HZ/20;
fepriv->step_size = fepriv->parameters.u.qpsk.symbol_rate / 16000;
fepriv->max_drift = fepriv->parameters.u.qpsk.symbol_rate / 2000;
break;
case FE_QAM:
fepriv->min_delay = HZ/20;
fepriv->step_size = 0; /* no zigzag */
fepriv->max_drift = 0;
break;
case FE_OFDM:
fepriv->min_delay = HZ/20;
fepriv->step_size = fe->ops.info.frequency_stepsize * 2;
fepriv->max_drift = (fe->ops.info.frequency_stepsize * 2) + 1;
break;
case FE_ATSC:
fepriv->min_delay = HZ/20;
fepriv->step_size = 0;
fepriv->max_drift = 0;
break;
}
}
if (dvb_override_tune_delay > 0)
fepriv->min_delay = (dvb_override_tune_delay * HZ) / 1000;
fepriv->state = FESTATE_RETUNE;
dvb_frontend_wakeup(fe);
dvb_frontend_add_event(fe, 0);
fepriv->status = 0;
err = 0;
break;
}
case FE_GET_EVENT:
err = dvb_frontend_get_event (fe, parg, file->f_flags);
break;
case FE_GET_FRONTEND:
if (fe->ops.get_frontend) {
memcpy (parg, &fepriv->parameters, sizeof (struct dvb_frontend_parameters));
err = fe->ops.get_frontend(fe, (struct dvb_frontend_parameters*) parg);
}
break;
case FE_SET_FRONTEND_TUNE_MODE:
fepriv->tune_mode_flags = (unsigned long) parg;
err = 0;
break;
};
up (&fepriv->sem);
return err;
}
static unsigned int dvb_frontend_poll(struct file *file, struct poll_table_struct *wait)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
dprintk ("%s\n", __FUNCTION__);
poll_wait (file, &fepriv->events.wait_queue, wait);
if (fepriv->events.eventw != fepriv->events.eventr)
return (POLLIN | POLLRDNORM | POLLPRI);
return 0;
}
static int dvb_frontend_open(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int ret;
dprintk ("%s\n", __FUNCTION__);
if ((ret = dvb_generic_open (inode, file)) < 0)
return ret;
if (fe->ops.ts_bus_ctrl) {
if ((ret = fe->ops.ts_bus_ctrl (fe, 1)) < 0) {
dvb_generic_release (inode, file);
return ret;
}
}
if ((file->f_flags & O_ACCMODE) != O_RDONLY) {
/* normal tune mode when opened R/W */
fepriv->tune_mode_flags &= ~FE_TUNE_MODE_ONESHOT;
fepriv->tone = -1;
fepriv->voltage = -1;
ret = dvb_frontend_start (fe);
if (ret)
dvb_generic_release (inode, file);
/* empty event queue */
fepriv->events.eventr = fepriv->events.eventw = 0;
}
return ret;
}
static int dvb_frontend_release(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct dvb_frontend *fe = dvbdev->priv;
struct dvb_frontend_private *fepriv = fe->frontend_priv;
int ret;
dprintk ("%s\n", __FUNCTION__);
if ((file->f_flags & O_ACCMODE) != O_RDONLY)
fepriv->release_jiffies = jiffies;
if (fe->ops.ts_bus_ctrl)
fe->ops.ts_bus_ctrl (fe, 0);
ret = dvb_generic_release (inode, file);
if (dvbdev->users==-1 && fepriv->exit==1) {
fops_put(file->f_op);
file->f_op = NULL;
wake_up(&dvbdev->wait_queue);
}
return ret;
}
static struct file_operations dvb_frontend_fops = {
.owner = THIS_MODULE,
.ioctl = dvb_generic_ioctl,
.poll = dvb_frontend_poll,
.open = dvb_frontend_open,
.release = dvb_frontend_release
};
int dvb_register_frontend(struct dvb_adapter* dvb,
struct dvb_frontend* fe)
{
struct dvb_frontend_private *fepriv;
static const struct dvb_device dvbdev_template = {
.users = ~0,
.writers = 1,
.readers = (~0)-1,
.fops = &dvb_frontend_fops,
.kernel_ioctl = dvb_frontend_ioctl
};
dprintk ("%s\n", __FUNCTION__);
if (mutex_lock_interruptible(&frontend_mutex))
return -ERESTARTSYS;
fe->frontend_priv = kzalloc(sizeof(struct dvb_frontend_private), GFP_KERNEL);
if (fe->frontend_priv == NULL) {
mutex_unlock(&frontend_mutex);
return -ENOMEM;
}
fepriv = fe->frontend_priv;
init_MUTEX (&fepriv->sem);
init_waitqueue_head (&fepriv->wait_queue);
init_waitqueue_head (&fepriv->events.wait_queue);
init_MUTEX (&fepriv->events.sem);
fe->dvb = dvb;
fepriv->inversion = INVERSION_OFF;
printk ("DVB: registering frontend %i (%s)...\n",
fe->dvb->num,
fe->ops.info.name);
dvb_register_device (fe->dvb, &fepriv->dvbdev, &dvbdev_template,
fe, DVB_DEVICE_FRONTEND);
mutex_unlock(&frontend_mutex);
return 0;
}
EXPORT_SYMBOL(dvb_register_frontend);
int dvb_unregister_frontend(struct dvb_frontend* fe)
{
struct dvb_frontend_private *fepriv = fe->frontend_priv;
dprintk ("%s\n", __FUNCTION__);
mutex_lock(&frontend_mutex);
dvb_frontend_stop (fe);
mutex_unlock(&frontend_mutex);
if (fepriv->dvbdev->users < -1)
wait_event(fepriv->dvbdev->wait_queue,
fepriv->dvbdev->users==-1);
mutex_lock(&frontend_mutex);
dvb_unregister_device (fepriv->dvbdev);
/* fe is invalid now */
kfree(fepriv);
mutex_unlock(&frontend_mutex);
return 0;
}
EXPORT_SYMBOL(dvb_unregister_frontend);
#ifdef CONFIG_DVB_CORE_ATTACH
void dvb_frontend_detach(struct dvb_frontend* fe)
{
void *ptr;
if (fe->ops.release_sec) {
fe->ops.release_sec(fe);
symbol_put_addr(fe->ops.release_sec);
}
if (fe->ops.tuner_ops.release) {
fe->ops.tuner_ops.release(fe);
symbol_put_addr(fe->ops.tuner_ops.release);
}
ptr = (void*)fe->ops.release;
if (ptr) {
fe->ops.release(fe);
symbol_put_addr(ptr);
}
}
#else
void dvb_frontend_detach(struct dvb_frontend* fe)
{
if (fe->ops.release_sec)
fe->ops.release_sec(fe);
if (fe->ops.tuner_ops.release)
fe->ops.tuner_ops.release(fe);
if (fe->ops.release)
fe->ops.release(fe);
}
#endif
EXPORT_SYMBOL(dvb_frontend_detach);