320 lines
7.8 KiB
C
320 lines
7.8 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* DesignWare PWM Controller driver
|
||
|
*
|
||
|
* Copyright (C) 2018-2020 Intel Corporation
|
||
|
*
|
||
|
* Author: Felipe Balbi (Intel)
|
||
|
* Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
|
||
|
* Author: Raymond Tan <raymond.tan@intel.com>
|
||
|
*
|
||
|
* Limitations:
|
||
|
* - The hardware cannot generate a 0 % or 100 % duty cycle. Both high and low
|
||
|
* periods are one or more input clock periods long.
|
||
|
*/
|
||
|
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/pm_runtime.h>
|
||
|
#include <linux/pwm.h>
|
||
|
|
||
|
#define DWC_TIM_LD_CNT(n) ((n) * 0x14)
|
||
|
#define DWC_TIM_LD_CNT2(n) (((n) * 4) + 0xb0)
|
||
|
#define DWC_TIM_CUR_VAL(n) (((n) * 0x14) + 0x04)
|
||
|
#define DWC_TIM_CTRL(n) (((n) * 0x14) + 0x08)
|
||
|
#define DWC_TIM_EOI(n) (((n) * 0x14) + 0x0c)
|
||
|
#define DWC_TIM_INT_STS(n) (((n) * 0x14) + 0x10)
|
||
|
|
||
|
#define DWC_TIMERS_INT_STS 0xa0
|
||
|
#define DWC_TIMERS_EOI 0xa4
|
||
|
#define DWC_TIMERS_RAW_INT_STS 0xa8
|
||
|
#define DWC_TIMERS_COMP_VERSION 0xac
|
||
|
|
||
|
#define DWC_TIMERS_TOTAL 8
|
||
|
#define DWC_CLK_PERIOD_NS 10
|
||
|
|
||
|
/* Timer Control Register */
|
||
|
#define DWC_TIM_CTRL_EN BIT(0)
|
||
|
#define DWC_TIM_CTRL_MODE BIT(1)
|
||
|
#define DWC_TIM_CTRL_MODE_FREE (0 << 1)
|
||
|
#define DWC_TIM_CTRL_MODE_USER (1 << 1)
|
||
|
#define DWC_TIM_CTRL_INT_MASK BIT(2)
|
||
|
#define DWC_TIM_CTRL_PWM BIT(3)
|
||
|
|
||
|
struct dwc_pwm_ctx {
|
||
|
u32 cnt;
|
||
|
u32 cnt2;
|
||
|
u32 ctrl;
|
||
|
};
|
||
|
|
||
|
struct dwc_pwm {
|
||
|
struct pwm_chip chip;
|
||
|
void __iomem *base;
|
||
|
struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
|
||
|
};
|
||
|
#define to_dwc_pwm(p) (container_of((p), struct dwc_pwm, chip))
|
||
|
|
||
|
static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
|
||
|
{
|
||
|
return readl(dwc->base + offset);
|
||
|
}
|
||
|
|
||
|
static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
|
||
|
{
|
||
|
writel(value, dwc->base + offset);
|
||
|
}
|
||
|
|
||
|
static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
|
||
|
{
|
||
|
u32 reg;
|
||
|
|
||
|
reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
|
||
|
|
||
|
if (enabled)
|
||
|
reg |= DWC_TIM_CTRL_EN;
|
||
|
else
|
||
|
reg &= ~DWC_TIM_CTRL_EN;
|
||
|
|
||
|
dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
|
||
|
}
|
||
|
|
||
|
static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
|
||
|
struct pwm_device *pwm,
|
||
|
const struct pwm_state *state)
|
||
|
{
|
||
|
u64 tmp;
|
||
|
u32 ctrl;
|
||
|
u32 high;
|
||
|
u32 low;
|
||
|
|
||
|
/*
|
||
|
* Calculate width of low and high period in terms of input clock
|
||
|
* periods and check are the result within HW limits between 1 and
|
||
|
* 2^32 periods.
|
||
|
*/
|
||
|
tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
|
||
|
if (tmp < 1 || tmp > (1ULL << 32))
|
||
|
return -ERANGE;
|
||
|
low = tmp - 1;
|
||
|
|
||
|
tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
|
||
|
DWC_CLK_PERIOD_NS);
|
||
|
if (tmp < 1 || tmp > (1ULL << 32))
|
||
|
return -ERANGE;
|
||
|
high = tmp - 1;
|
||
|
|
||
|
/*
|
||
|
* Specification says timer usage flow is to disable timer, then
|
||
|
* program it followed by enable. It also says Load Count is loaded
|
||
|
* into timer after it is enabled - either after a disable or
|
||
|
* a reset. Based on measurements it happens also without disable
|
||
|
* whenever Load Count is updated. But follow the specification.
|
||
|
*/
|
||
|
__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
|
||
|
|
||
|
/*
|
||
|
* Write Load Count and Load Count 2 registers. Former defines the
|
||
|
* width of low period and latter the width of high period in terms
|
||
|
* multiple of input clock periods:
|
||
|
* Width = ((Count + 1) * input clock period).
|
||
|
*/
|
||
|
dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
|
||
|
dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
|
||
|
|
||
|
/*
|
||
|
* Set user-defined mode, timer reloads from Load Count registers
|
||
|
* when it counts down to 0.
|
||
|
* Set PWM mode, it makes output to toggle and width of low and high
|
||
|
* periods are set by Load Count registers.
|
||
|
*/
|
||
|
ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
|
||
|
dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
|
||
|
|
||
|
/*
|
||
|
* Enable timer. Output starts from low period.
|
||
|
*/
|
||
|
__dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
|
||
|
const struct pwm_state *state)
|
||
|
{
|
||
|
struct dwc_pwm *dwc = to_dwc_pwm(chip);
|
||
|
|
||
|
if (state->polarity != PWM_POLARITY_INVERSED)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (state->enabled) {
|
||
|
if (!pwm->state.enabled)
|
||
|
pm_runtime_get_sync(chip->dev);
|
||
|
return __dwc_pwm_configure_timer(dwc, pwm, state);
|
||
|
} else {
|
||
|
if (pwm->state.enabled) {
|
||
|
__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
|
||
|
pm_runtime_put_sync(chip->dev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
|
||
|
struct pwm_state *state)
|
||
|
{
|
||
|
struct dwc_pwm *dwc = to_dwc_pwm(chip);
|
||
|
u64 duty, period;
|
||
|
|
||
|
pm_runtime_get_sync(chip->dev);
|
||
|
|
||
|
state->enabled = !!(dwc_pwm_readl(dwc,
|
||
|
DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
|
||
|
|
||
|
duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
|
||
|
duty += 1;
|
||
|
duty *= DWC_CLK_PERIOD_NS;
|
||
|
state->duty_cycle = duty;
|
||
|
|
||
|
period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
|
||
|
period += 1;
|
||
|
period *= DWC_CLK_PERIOD_NS;
|
||
|
period += duty;
|
||
|
state->period = period;
|
||
|
|
||
|
state->polarity = PWM_POLARITY_INVERSED;
|
||
|
|
||
|
pm_runtime_put_sync(chip->dev);
|
||
|
}
|
||
|
|
||
|
static const struct pwm_ops dwc_pwm_ops = {
|
||
|
.apply = dwc_pwm_apply,
|
||
|
.get_state = dwc_pwm_get_state,
|
||
|
.owner = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
|
||
|
{
|
||
|
struct device *dev = &pci->dev;
|
||
|
struct dwc_pwm *dwc;
|
||
|
int ret;
|
||
|
|
||
|
dwc = devm_kzalloc(&pci->dev, sizeof(*dwc), GFP_KERNEL);
|
||
|
if (!dwc)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ret = pcim_enable_device(pci);
|
||
|
if (ret) {
|
||
|
dev_err(&pci->dev,
|
||
|
"Failed to enable device (%pe)\n", ERR_PTR(ret));
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
pci_set_master(pci);
|
||
|
|
||
|
ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
|
||
|
if (ret) {
|
||
|
dev_err(&pci->dev,
|
||
|
"Failed to iomap PCI BAR (%pe)\n", ERR_PTR(ret));
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
dwc->base = pcim_iomap_table(pci)[0];
|
||
|
if (!dwc->base) {
|
||
|
dev_err(&pci->dev, "Base address missing\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
pci_set_drvdata(pci, dwc);
|
||
|
|
||
|
dwc->chip.dev = dev;
|
||
|
dwc->chip.ops = &dwc_pwm_ops;
|
||
|
dwc->chip.npwm = DWC_TIMERS_TOTAL;
|
||
|
dwc->chip.base = -1;
|
||
|
|
||
|
ret = pwmchip_add(&dwc->chip);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
pm_runtime_put(dev);
|
||
|
pm_runtime_allow(dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dwc_pwm_remove(struct pci_dev *pci)
|
||
|
{
|
||
|
struct dwc_pwm *dwc = pci_get_drvdata(pci);
|
||
|
|
||
|
pm_runtime_forbid(&pci->dev);
|
||
|
pm_runtime_get_noresume(&pci->dev);
|
||
|
|
||
|
pwmchip_remove(&dwc->chip);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
static int dwc_pwm_suspend(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
|
||
|
struct dwc_pwm *dwc = pci_get_drvdata(pdev);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
|
||
|
if (dwc->chip.pwms[i].state.enabled) {
|
||
|
dev_err(dev, "PWM %u in use by consumer (%s)\n",
|
||
|
i, dwc->chip.pwms[i].label);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
dwc->ctx[i].cnt = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(i));
|
||
|
dwc->ctx[i].cnt2 = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(i));
|
||
|
dwc->ctx[i].ctrl = dwc_pwm_readl(dwc, DWC_TIM_CTRL(i));
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int dwc_pwm_resume(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
|
||
|
struct dwc_pwm *dwc = pci_get_drvdata(pdev);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
|
||
|
dwc_pwm_writel(dwc, dwc->ctx[i].cnt, DWC_TIM_LD_CNT(i));
|
||
|
dwc_pwm_writel(dwc, dwc->ctx[i].cnt2, DWC_TIM_LD_CNT2(i));
|
||
|
dwc_pwm_writel(dwc, dwc->ctx[i].ctrl, DWC_TIM_CTRL(i));
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static SIMPLE_DEV_PM_OPS(dwc_pwm_pm_ops, dwc_pwm_suspend, dwc_pwm_resume);
|
||
|
|
||
|
static const struct pci_device_id dwc_pwm_id_table[] = {
|
||
|
{ PCI_VDEVICE(INTEL, 0x4bb7) }, /* Elkhart Lake */
|
||
|
{ } /* Terminating Entry */
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(pci, dwc_pwm_id_table);
|
||
|
|
||
|
static struct pci_driver dwc_pwm_driver = {
|
||
|
.name = "pwm-dwc",
|
||
|
.probe = dwc_pwm_probe,
|
||
|
.remove = dwc_pwm_remove,
|
||
|
.id_table = dwc_pwm_id_table,
|
||
|
.driver = {
|
||
|
.pm = &dwc_pwm_pm_ops,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
module_pci_driver(dwc_pwm_driver);
|
||
|
|
||
|
MODULE_AUTHOR("Felipe Balbi (Intel)");
|
||
|
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
|
||
|
MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
|
||
|
MODULE_DESCRIPTION("DesignWare PWM Controller");
|
||
|
MODULE_LICENSE("GPL");
|